
Efficient Networking for Pervasive eHealth Applications*

Heikki Helin1, Tim van Pelt2, Michael Schumacher2, Ahti Syreeni1

1TeliaSonera Finland Oyj
P.O.Box 970, FIN-00051 Sonera, Finland

{heikki.j.helin, ahti.syreeni}@teliasonera.com

2Swiss Federal Institute of Technology Lausanne (EPFL)
IN (Ecublens), CH-1015 Lausanne, Switzerland
{tim.vanpelt, michael.schumacher}@epfl.ch

Abstract: This paper presents the networking architecture developed in the
CASCOM research project. This architecture provides an efficient and reliable
communication support and service discovery for pervasive intelligent P2P
business applications. We give an overview how wireless environments and
resource-poor devices are taken into account in our architecture. For that, we have
designed and implemented a new agent platform for resource-poor devices, which
is a modified version of JADE/LEAP. Agents are used to coordinate (semantic)
web services in the health care domain. To support the discovery of such web
services descriptions, we shortly describe a distributed directory system called
WSDir. It is based on federation of repositories of web service descriptions that are
managed with pre-defined policies. Our architecture is being evaluated using a
sample ad-hoc emergency health care assistance application scenario.

1 Introduction

In this paper, we present the networking architecture developed in the CASCOM
research project†. The main objective of CASCOM is to implement, validate, and trial
value-added supportive infrastructure for business application services for mobile
workers and users across mobile and fixed networks. The driving vision of CASCOM is
that ubiquitous business application services are flexibly coordinated and pervasively
provided to the mobile worker/user by intelligent agents in the dynamically changing
contexts of open, large-scale, and pervasive environments. The application domain is
pervasive eHealth.

To achieve these goals, a generic CASCOM architecture has been defined to combine
intelligent agent technology, semantic Web services, peer-to-peer, and mobile computing
for intelligent peer-to-peer mobile service environments. For this purpose, a layered

* This work has been supported in part by the European Commission under the project grant FP6-IST-511632-
CASCOM.

† www.ist-cascom.org

167

167



approach has been followed. The Networking Layer is a generic, secure, and open
intelligent P2P (IP2P) network infrastructure taking into account varying Quality of
Service (QoS) of wireless communication paths, limitations of resource-constrained
mobile devices, service discovery, and contextual variability of nomadic environments.
The IP2P network architecture can be used in several different network configurations
including WLAN and several different kinds of WWAN networks (e.g., GPRS and
UMTS). The Service Coordination Layer, situated above the networking layer, provides
flexible semantic web service discovery, matchmaking, composition and execution
functionalities. Orthogonal to both layers, the Context Subsystem is in charge of
acquiring, storing and providing context information. Security and Privacy Subsystem,
also orthogonal to the Networking and Service Coordination Layer, is responsible for
ensuring security and privacy of information throughout the different components of the
CASCOM infrastructure. Applications make use of the CASCOM generic architecture
essentially through the Service Coordination layer. The Networking layer, as well as
Context and Security and Privacy Subsystems, need to access the underlying networks.

In this paper, we present the networking layer of the generic CASCOM architecture.
Especially, this paper provides (1) an agent execution environment for resource-
constrained mobile devices, (2) efficient and reliable agent message transport
communication over wireless (and wireline) communication paths independent of the
access technology, (3) service discovery in IP2P environments, and (4) context
information monitoring of network-related context information (e.g., QoS of a network,
network availability, etc.). Further, necessary security and privacy requirements must be
met in order to deploy the CASCOM architecture in real-world business applications.
However, in this paper we discuss neither context information nor security and privacy
issues.

The rest of this paper is organized as follows. In Section 2, we discuss a real-world use
case scenario to illustrate the kind of domains that the proposed architecture aims at.
Section 3 describes the agent platform designed and implemented for resource-poor
mobile devices. In Section 4, we describe the CASCOM communication architecture
that takes into account the possibilities and limitations of wireless communication paths.
Section 5 presents our service discovery architecture. Finally, Section 6 concludes the
paper.

2 Motivation

The business application scenario that we use in CASCOM is taken from the health care
business domain, although our architecture does not contain any features that are specific
to this field. The health care domain is to be one of the most viable and growing
application field for intelligent mobile service coordination, not just for the technical
requirements that it imposes, but also for its huge economic and social relevance.
Benefits of using ICT in health care domain have the potential to significantly impact the
quality, accessibility, and cost of health care. Due to the characteristics of the CASCOM
health care scenarios, we believe that the application of the CASCOM technology has
the potential to contribute to all three categories mentioned above

168

168



Consider the following sample scenario:

Rosi, a tourist visiting Portugal, suddenly fells ill. Her personal CASCOM agent installed
on her PDA quickly finds out the contact information of a local emergency centre, so that
Rosi gives the noticeable symptoms of her sickness, her location and some general
information. The local representative orders her to go to the nearest hospital
immediately.

After Rosi’s call, her personal agent contacts the Emergency Medical Assistance (EMA)
CASCOM agent in Finland and requests to send Rosi’s medical history to the Portuguese
hospital. During the first examinations by the physician, there are some doubts about the
diagnosis and she wants to obtain a second opinion, so she searches for a second opinion
service using her CASCOM agent. After having found a specialized cardiologist, the
agent provides Rosi’s symptoms and medical records. The cardiologist asks the physician
to provide more precise information about a particular symptom (e.g., if the body area
affected by the pain has been operated in the past). Finally the cardiologist provides her
opinion, but it is not sufficiently clear to the physician in a certain part, so she asks for a
further explanation.

The local physician, the patient, and EMA jointly take the decision that Rosi should be
transferred back to Finland as soon as possible. Rosi’s personal agent automatically
finds out possible flight arrangements and informs all people that are involved during the
travel (e.g., possible doctors and escorts). The agent also makes all the arrangements
with a Finnish hospital. Back in Finland, Rosi is treated at a hospital in Helsinki.

Mobile communication is essential to this scenario: Rosi, a mobile user getting sick in a
foreign country may get in touch with various relevant people and services for help
either personally or by using her personal CASCOM agent residing on her personal
mobile device. For mobile workers such as EMA’s Finnish representative in the above
scenario, the CASCOM architecture enables ad hoc and timely communication and
access to relevant information in any place, any time. Further, agents play an essential
role in helping mobile workers performing their business tasks by finding and
composing relevant (semantic Web) services on demand. Mobile workers gain more
time for tasks that only humans can do, but a necessary support from underlying
architecture is needed in order to deploy reliable applications in mobile/wireless
environments. In what follows, we describe how the CASCOM architecture takes these
issues into account. More detailed descriptions of our use case scenarios can be found in
[CAS05].

3 Agent Platform for Mobile Devices

Agents in the CASCOM architecture need an agent platform that is usable in resource-
constrained devices. The CASCOM agent platform is based on JADE/LEAP [BPBC01],
which already provides the basic agent platform functionality needed by the CASCOM
architecture. Although there are other agent platform designed for mobile devices (e.g.,
A-Globe [SPP04] and MicroFIPA-OS [LTL02]), the JADE/LEAP is to our best
knowledge the only one which fully supports FIPA standards and is actively maintained.

169

169



JADE [BCPR03] is a distributed FIPA-compliant agent platform that allows agents to be
executed on desktop computers in J2SE environment. When an extra component, LEAP
add-on for JADE, is added to JADE, it can be also compiled for small devices, for
example, PDAs and mobile phones supporting CLDC 1.0 and MIDP 2.0. This
combination is called JADE-LEAP platform.

As noted, the CASCOM agent platform is based on JADE/LEAP. JADE/LEAP,
however, cannot be used in pure IP2P network configurations as it expects some
infrastructure components (known as main containers; see Figure 1), of which existence
cannot be assumed, for example, in pure P2P network architectures. Therefore, we have
designed and implemented necessary changes to the JADE/LEAP so that it can be
executed in resource-poor devices supporting the J2ME CLDC 1.1 and that it does not
need any infrastructure components outside the local device. Figure 2 depicts the basic
agent platform configuration in our infrastructure.

Figure 1: Split container model of LEAP

Figure 2: CASCOM agent platform configuration

170

170



The architecture of the CASCOM agent platform follows the design of the original
JADE platform. The main components are depicted in Figure 3. The core services of
JADE are loaded at startup. The main difference to the original JADE is that internal
message protocol (IMTP) does not exist, thus there cannot be more than one container
because the messaging between containers would require an IMTP implementation.
However, the Figure 3 gives a simplified overview of the CASCOM agent platform main
components, details are more complicated as there are still most of the JADE core
classes left. Many of the core classes are needed to start the main container and cannot
be removed unless making intensive changes to the current architecture of JADE.

Figure 3: Overview of the CASCOM agent platform main components

4 Agent Communication in Wireless Networks

This section gives an overview of the CASCOM agent communication architecture. Here
we will take a pragmatic view to agent communication. In particular, we neither consider
why agents are communicating nor the semantics of messages. However, we assume that
agents are communicating with one another and at least part of the communication path
is implemented using wireless technology. The latter assumption is an additional
requirement in the sense that many of the solutions provided are applicable also in
environments where the whole communication path is implemented using wireline
technologies. The agent communication in the CASCOM architecture is based on FIPA
standards.

4.1 Communication over Wireless Communication Paths

Efficient agent message transport is an essential feature of the CASCOM networking
architecture as wireless communication paths are used. Without this, usability of the
CASCOM architecture would not be optimal. Efficient agent message transport includes
appropriate agent message encoding (e.g., using efficient binary encoding instead of

171

171



more verbose string-based encoding) and a message transport protocol that can transfer
messages reliably and efficiently.

Communication between agents can be depicted as layered model (see Figure 4). The
transport and signaling protocol layer should provide an efficient and reliable data
transport service. Usually this layer should be transparent to agents. Therefore, the
agents are typically unable to optimize anything at this layer by themselves. Given this,
we will not discuss these issues in more detailed here. An overview of transport
protocols in wireless environments can be found in [MD00], as an example.

Figure 4: A layered model of agent communication

The message transport protocol (MTP) defines the structure of messages sent using a
transport protocol. The MTP typically implicitly defines also the transport protocol, in
which case the agents do not have to care which one is used. In the CASCOM
architecture, we use HTTP as an MTP [FIP00b]. HTTP is not an optimal protocol for
communication over wireless links, but is easy and quite light-weight to implement in
resource-poor devices.

The message envelope, the agent communication language (ACL) and content language
layers are treated as encoding layer. Although all these layers have their own encoding,
the basic principles for optimizing them to the wireless world are the same.

The message envelope defines, among other parameters, how the message should be
routed. In the CASCOM architecture the message envelope is encoded using bit-efficient
envelope encoding defined by FIPA [FIP00c]. The encoding is similar to that of ACL
and gives similar results as the ACL encoding (see below).

The agent communication language defines the syntax and the semantics of the messages
agents are sending to each other. In the CASCOM architecture we use FIPA-ACL
encoded using bit-efficient syntax. Here we concentrate on the bit-efficient encoding
[FIP00a], which is especially suitable for wireless environments. In the bit-efficient
ACL, there are two primary ways to reduce the transfer volume over the wireless link:
data reduction and intelligent caching. First, ACL messages are encoded efficiently by

172

172



using one-octet codes for predefined message parameters and other common parts of
messages. This is a significant improvement compared to a simple string-based coding,
as it typically reduces extra overhead to half of the original. Furthermore, this
improvement is easy to implement and faster to parse than the string-based coding—
comparing bytes is typically much faster than comparing strings (see [He03] for details).
Figure 5 gives an example of the effect of different ACL encodings. As shown in Figure
5, the bit-efficient ACL encoding is the most efficient—even compressed string-based
representation produces larger output. Although the difference between bit-efficient and
compressed string-based encoding is insignificant, there is another advantage of using
the bit-efficient encoding; constructing and parsing bit-efficiently encoded messages is
faster. The main reason for this is that should a message be compressed using a general-
purpose compression algorithm, the message has to be parsed after the decompression in
order to create an appropriate Java object. In the bit-efficient encoding, this phase is
built-in into the parser. More detailed results of the bit-efficient ACL encoding can be
found in [HL02, He03].

Figure 5: The output size in bytes using different ACL encodings

In the CASCOM communication architecture, the message content is expressed using
FIPA-SL. This language does not have a bit-efficient syntax like the message envelope
or ACL. Therefore, in the CASCOM communication architecture, the message content is
compressed using a standard deflate algorithm. This gives good results if considering
only the output size. However, for compressing and decompressing somewhat significant
amount memory is needed, and thus it is not suitable technique for cases where amount
of memory is very limited. We are currently looking for less memory extensive
algorithms to compress the message content.

4.2 Messaging Gateway

Due to unreliable wireless connections, possible firewalls and NAT, the current JADE
message transport system has to be improved for mobile devices. Connection to mobile
devices can be lost in any time so message buffering is needed. As illustrated in Figure
6, devices are often in a private network (e.g., in most cases when using a GPRS
connection) and also many devices in a fixed network can be behind a firewall. For these
cases, there should be a gateway for agent platforms. The messaging gateway is an
optional component of the CASCOM communication architecture. It is only needed in

173

173



cases where mobile device has no public IP-address, but it can be used in other cases as
well.

The CASCOMMessaging Gateway is a buffer for messages going to the agent platforms
in mobile devices. The gateway does not address translations as the agent platforms
using the gateway are expected to use the address of the gateway. That is, the agents
situated in an agent platform in a private network will never use their private IP-
addresses as their transport addresses, but instead use the gateway’s address. Further, the
messaging gateway is totally transparent to agents. For the time being, the address of the
gateway has to be given as parameter to the CASCOM agent platform situated in a
mobile device‡. This way it can be made sure that using the gateway is fully invisible to
the agents, and the gateway does not have to parse ACL messages. The gateway
forwards the messages (both directions) based on information found on message
envelopes.

Figure 6: The CASCOM Messaging Gateway

Once the agent platform has established connection to the CASCOM Messaging
Gateway, the (HTTP) connection must be left open so that the gateway is able to send
messages to the agent platform which is behind a firewall. When the connection is
closed (by the platform or because of unreliable wireless connection), the gateway leaves
messages to the buffer waiting for the next time the connection is established. When the
connection is established again by the same agent platform, the gateway must know
whether it should deliver all the buffered messages or not. In the case the agent platform
has been restarted there is no need to send the buffered messages and they can be

‡ This could be implemented also using some service discovery protocol. However, since the Messaging
Gateway is an optional component of the CASCOM architecture, the implementation is kept as simple as
possible.

174

174



discarded. The information whether buffered messages should be delivered after
reconnection is given by the mobile agent platform when opening the connection.

The messaging gateway does not buffer mobile-originated messages. Platforms use their
own buffers for outgoing messages, but they send them through the gateway, which
routes them to the destination. However, a special protocol implemented using HTTP
headers makes sure that no message is lost or duplicated in the case of unexpected
wireless link disconnection.

5 Service Discovery

The main service discovery in the CASCOM infrastructure happens in higher layers of
the architecture [CAS06]. However, some support for it is also needed in the networking
layer. Actually, the service discovery in the networking layer considers mainly the “low-
level” service lookup in IP2P environments. This is realized by a directory system,
WSDir. Its main functionality is to let heterogeneous service descriptions be registered
and searched by certain clients. As such, it realizes a basic lookup function with basic
retrieval schemes. To this end, coarse-grained text or keywords are used. This allows a
pre-selection of services that subsequently will be used by agents in the service-
coordination layer.

There are several main requirements for the directory system. First, it should be easy to
invoke by any client. This led us to define a Web Service interface to the WSDir: it is a
universally accepted standard, it provides a well-defined method to use the directory, and
it allows for interacting with a heterogeneous set of clients. The sole requirement on the
part of the client is that it should be able to communicate over a web service interface.
Second, the nature of the applications to be realized requires the directory system to be
distributed. We mainly consider a geographical specialization of the directories, as for
the emergency assistance use case scenario (cf. Section 2). Finally, the construction of
the network should induce minimal overhead and should be scalable; also, the network
should be robust to changes in topology and the number of interactions with the system.

5.1 Service Discovery Agent

As the WSDir provides only Web Service interface and the CASCOM agents are using
ACL for communication, we decided to develop a service discovery agent (SDA). The
SDA receives service discovery requests from other agents and translates to Web Service
invocations to the WSDir. The SDA, however, is not only an intermediate between other
agents and WSDir. Especially, the SDA is coupled with a semantic matchmaker agent
(SMA) at the higher level of service coordination. The SMA can refine the selection of
semantic web services. The Service Discovery and Service Matchmaking functionalities
are considered separately for reasons of efficiency and flexibility (for example, in some
application domains the matchmaking functionality might not be necessary). The higher
level service coordination is outside the scope of this paper. Details can be found in
[CAS06]. Figure 7 depicts our service discovery architecture.

175

175



After the SDA has found a group of compatible services with a certain request, the SDA
has two possible courses of actions: the first one is to return the result to the requester.
The second one is that the SDA sends the discovered set of services to the SMA, as well
as the original request. These steps are alternatives that are triggered by the use (or not)
of the SMA. This means that the use of the matchmaker is not always required. For
example, when the request has no inputs/outputs and/or pre-conditions and effects, the
use of the matchmaker is not required, since its only task is to deal with these elements.
If the matchmaking is needed, the SMA tries to do the matching (with the non
elementary characteristics of the service) between the previously found descriptions
(sent by the SDA) with the requester’s specification. The obtained result is a set of
service descriptions that satisfy the requester’s needs. Finally, the SDA returns the
results to the original requester. The service registration is similar to that of the service
lookup, and thus not described here.

Figure 7: The service discovery process

5.2 Service Directories

A directory comprises a set of service entries which are managed by a collection of one
or more directory services. All service entries, including directory service entries, are
registered at a directory service as belonging to a specific directory. Such, directory
services can form an arbitrary organizational structure (peer-to-peer, hierarchy etc.).

As noted above, directory services provide a Web service interface to a repository that
holds service entries. The service entries in this store are all registered as belonging to a
certain directory. The directory service forms the atomic unit of the directory federation.
It allows clients to register, deregister, modify and search registrations in its repository.
These registrations include service descriptions of services offered by clients as well as
profiles of other directory service. By registering directory services in other directory
service stores, the system becomes federated.

Figure 8 visually summarizes the relationship between service entries, directories and
directory services. In the illustration, the directory service holds regular service entries
and a directory service entry belonging to a Hospitals directory as well as entries
belonging to an Insurers directory. Both directories are contained in the Body directory,
which in turn is contained in the all-encompassing “.” directory.

176

176



Directory services employ directory policies to regulate the operation of directories.
Policies are defined per directory service in the directory service profile and determine
the behavior of a specific directory. Two types of policies can be distinguished: First,
Pro-active policies are typically used for internal management of the directories. A
policy may be attached to a directory to establish the number of times per hour data is
propagated within the directory, how often old entries are removed and so on. Second,
reactive policies assign a behavior to combinations of directories and various operations
(register, search, modify, etc.). The policies are executed whenever a bound operation is
called.

Figure 8: Visual recapitulation of directory system concepts

From the consequent application of policies, the network topology emerges. Policies can
for example define how much entries can be registered per directory, which directories
can be searched by which clients, and which types of services will be accepted. Each
directory service can define its own policies or use one of the pre-defined policies. The
only requirement on the part of a policy is that it can be executed. A straightforward
example of a pre-defined policy is the child/sibling policy: this policy forwards all
operations to both the known children (directory services registered in the service store)
as well as its known siblings. The list of siblings is obtained by querying the parent
directory service at which it has registered itself.

6 Conclusions

In this paper, an innovative generic networking architecture has been proposed
supporting intelligent peer-to-peer mobile service environments. This architecture
includes agent execution environment for resource-poor mobile devices, support for
agent communication over wireless communication path, and service discovery

177

177



architecture. Service discovery in ensured through a federated directory system. All
these together build a solid basis for developing business applications for
mobile/wireless environments. Our main interest is to build an architecture that supports
pervasive health care applications.

Until now, we have implemented a prototype based on the presented networking
architecture, focusing on the emergency assistance scenario described. At the end of the
project, we will present with a fully fledged demonstrator for a concrete real-world
business application scenario.

References

[BCP03] Bellifemine, F.; Caire, G.; Poggi, A.; Rimassa, G.; Jade — A White Paper. EXP –in
search of Innovation (TiLab Technical Magazine). 3(3):20–31. September 2003.

[CAS05] CASCOM Consortium. CASCOM Project Deliverable D3.1: Use Case Scenarios. 2005
[CAS06] CASCOM Consortium. CASCOM Project Deliverable D5.1: Distributed Service

Directories for IP2P Environments. 2006.
[FIP00a] Foundation for Intelligent Physical Agents. FIPA ACL Message Representation in Bit-

Efficient Specification. Geneva, Switzerland. October 2000. Specification number
SC00069.

[FIP00b] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Protocol for
HTTP Specification. Geneva, Switzerland, Oct. 2000. Specification number XC00084.

[FIP00c] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Envelope
Representation in Bit Efficient Specification. Geneva, Switzerland, Nov. 2000.
Specification number XC00088.

[Hel03] Helin, H.: Supporting Nomadic Agent-based Applications in the FIPA Agent
Architecture. PhD. Thesis, University of Helsinki, Department of Computer Science,
Series of Publications A, No. A-2003-2. Helsinki, Finland, January 2003.

[HL02] Helin, H; Laukkanen, M.: Performance Analysis of Software Agent Communication in
Slow Wireless Networks. In (Luijten, R.; Wong, E.; Makki, K.; Park, E.K): Proceedings
of the 11th International Conference on Computer Communications and Networks
(ICCCN'02), pages 354–361, Miami, Florida, USA. October 2002.

[LTL02] Laukkanen, M.; Tarkoma, S.; Leinonen, J.: FIPA-OS agent platform for small-footprint
devices. In (Meyer, J-J.; Tambe, M.): Intelligent Agents VII, Proceedings of the Eighth
International Workshop on Agent Theories, Architectures, and Languages (ATAL-2001),
volume 2333 of Lecture Notes in Artificial Intelligence, pages 447-460. Springer-Verlag:
Heidelberg, Germany, 2002.

[MD00] Montenegro, G.; Dawkins, S.; Kojo, M.; Magret, V.; Vaidya, N.: Long thin networks.
Request for Comments 2757, Jan. 2000.

[SRP04] Šišlák, D.; Rollo, M.; Pěchouček, M.: A-globe: Agent platform with inaccessibility and
mobility support. In (Klusch, M.; Ossowski, S.; Kashyap, V.; Unland, R.): Cooperative
Information Agents VIII, pages 199–214, 2004.

178

178


