
Business Rule Verbalization

Terry Halpin

Northface University
Salt Lake City, USA

terry.halpin@northface.edu

Abstract: Business rules should first be specified at the conceptual level, using
concepts and languages easily understood by the business domain experts who are
best qualified to validate the rules. This paper focuses on the verbalization of static
business rules (i.e. constraints and derivation rules that apply to individual states of
the business), ignoring dynamic rules relating to state transitions and/or workflows.
We propose desirable language criteria for rule verbalization, and orthogonal
dimensions by which rule verbalizations may be classified, and illustrate these
general qualities with a wide variety of business rule examples, using model
fragments depicted graphically in Entity-Relationship, Object-Role Modeling and
Unified Modeling Language notations.

1 Introduction

In practical modeling of information systems, one often encounters business rules that go
beyond simple rules like multiplicity constraints. Although business rules may be
implemented in many ways, they should first be specified at the conceptual level, using
concepts and language easily understood by the business domain experts who are best
qualified to validate the rules. These subject matter experts understand the business
domain even if they are unfamiliar with technical notations used by professional
analysts.

Business rules come in many varieties, and may be specified using graphical and/or
textual languages. We regard a static business rule to be a constraint or derivation rule
that applies to each individual state of the business, taken one state at a time. This paper
focuses on the verbalization of static business rules, ignoring dynamic rules relating to
state transitions or workflows. The rule verbalization techniques and patterns are
illustrated using practical examples. While the main verbalization approach discussed in
this paper is based on extensions to Object-Role Modeling (ORM), many of the
techniques may be adapted to other popular modeling notations, including Entity
Relationship (ER), and Unified Modeling Language (UML) notations. For detailed
background on ORM, see [Ha01]. For detailed coverage of UML, see [RJB99, Om03a,
Om03b, Om03c]. Comparative reviews of ORM, ER, and UML are found in [Ha02a,
Ha02b].

Section 2 overviews language criteria and dimensions for business rule verbalization.
Section 3 illustrates these principles by verbalizing multiplicity constraints on single
binary associations. Section 4 considers verbalization of related constraints on n-ary

39

associations and multiple associations. Section 5 discusses verbalization of set-
comparison, ring, and other constraints. Section 6 considers verbalization of derivation
rules. Section 7 reviews the main contributions, and suggests areas for future research.

2 Criteria for Business Rule Verbalization

We begin with some terminology. A fact instance is a proposition taken to be true, and is
expressed by a declarative sentence (e.g. “The Island named ‘Honshū’ is part of the
Country named ‘Japan’.”), consisting of a predicate symbol (e.g. … is part of …)
applied to a sequence of one or more object terms (e.g. “The Island named ‘Honshū”’,
“The Country named ‘Japan’”). An object type is a kind of object, e.g. Island, Country. A
fact type includes predicate and object type(s) but not instances, e.g. Island is part of Country.
A fact-role is a part played by an object in a predicate. In the context of a predicate, a
fact-role is simply called a role. The number of roles in a predicate is called its arity.

Static business rules are best applied to a fact model that identifies the fact types of
interest to the business. Table 1 shows some fact types with arities from 1 to 4. Each role
corresponds to an object placeholder (depicted here as an ellipsis “…”) in the predicate.
Here predicates are displayed in mixfix notation, allowing object terms to be placed in a
sentence at any position. Higher order predicates (quinary etc.) are also possible.

Table 1 Examples of fact types of different arity

Fact Type Predicate Arity
Person smokes
Person was born in Country
Person played Sport for Country
Person introduced Person to Person on Date

… smokes
… was born in …
… played … for …
… introduced … to … on …

1 (Unary)
2 (Binary)
3 (Ternary)
4 (Quaternary)

Business rules may be specified graphically on a business model diagram, and/or
textually using a language for rule verbalization. In [Ha01, sec. 3.1], we suggested the
following criteria for evaluating the suitability of a conceptual modeling language:
expressibility (what can be expressed?); clarity (ease of understanding); simplicity and
orthogonality (avoid unneeded concepts, minimize inter-concept dependencies, allow
expressions wherever their values are legal); semantic stability (minimize the impact of
change); semantic relevance (ignore implementation details); validation mechanisms
(support ways for domain experts to validate the model); abstraction mechanisms
(provide ways of hiding detail); and formal foundation (logical grounding). For a textual
language used to express business rules, the following criteria seem to be the most
essential. The flexibility and localizability criteria are implied by the clarity criterion.

• expressibility the language is able to express a wide range of business rules
• clarity the rules are understandable by non-technical domain experts
• flexibility the language directly supports predicates of any arity
• localizability the language constructs are expressible in different native languages
• formality the rules are unambiguous, and should ideally be executable

40

Supporting predicates of any arity allows domain experts to verbalize the rules directly
in terms of the way they think. This makes it much easier for them to understand and
validate the rules. It is always possible to reformulate unary, ternary, and higher arity
predicates in terms of binary predicates, but this can make it harder for the subject matter
experts to comprehend the rules. Some rules are hard enough to get a grip on in the first
place. There is no excuse for imposing on the domain experts a binary straightjacket that
forces them to recast a fact type they would normally verbalize as a quaternary in terms
of a binarized equivalent (e.g. a binary nested within a binary nested with a binary).
Similarly, we should not force domain experts to recast unary facts such as Country ‘US’ is
large in terms of Boolean attribute assignments (e.g. US : Country.isLarge = True).

Once we accept that predicates of any arity must be supported, using natural
verbalizations, it follows that mixfix notation must be supported. In Table 1, the “…
smokes” predicate is prefix, and the “… was born in …” predicate is infix, but the “… played …
for …” and “ … introduced … to … on …” predicates require mixfix because they have more
than two object placeholders. Although prefix or postfix notation could be used, such as
PlayedFor(X, Y, Z), this would be unnatural for non-technical people.

Localizability provides yet another reason for mixfix notation, since even for binary
predicates, the verb-phrase need not occur in the infix position. For example, verbs are
usually placed last in Japanese, and are usually placed first in Tongan. Some years ago,
we specified a verbalizer component that is currently implemented in a database
modeling tool [Ha03]. The verbalizer automatically translates ORM graphical
constraints into English, as well as Japanese, German, and French in the localized
versions. In this paper, we extend and refine this original work in several directions,
focusing on business rule textual languages that are based on English.

Table 2 provides an overview of classification schemes for rule verbalization that we
devised based on our industrial modeling experience, where these dimensions proved to
be pragmatically useful in characterizing ways in which business rules may be textually
formulated for validation with domain experts.

An informal verbalization of business rules may be useful, so long as it is unambig-uous
to the domain expert who has to validate the rules. The RuleSpeak sentence templates
[RL01] provide one way to do this. To exploit the benefits of model-driven development
however, business rules should be expressed in a formal language, so that they can be
automatically transformed into executable code. The OSA model [EKW92, Em98]
supports high level, informal rules as well as formal rules in a predicate calculus
notation. Our approach instead uses a single language that is both formal and conceptual,
so that it can serve for communication and validation with domain experts, as well as
being executable. The rest of the paper focuses on formal, high level languages, and
discusses other dimensions (form, modality, style, and context) with the aid of examples.

41

Table 2 Classification schemes for rule verbalization

Dimension Choices
Form

Positive
Negative
Default

Modality

Alethic
Deontic

Style

Relational
Attribute

Context

Local
Global

Formality

Informal
Semi-formal
Formal

3 Multiplicity Constraints on Binary Associations

Figure 1 graphically depicts a binary relationship (orbiting) between two entity types
(Moon and Planet) using (a) the ER notation popularized by Richard Barker [Ba90], (b)
the UML notation, (c) the ORM notation, and (d) a simple Fact-model notation. Here the
fact model notation shows the binary fact type without constraints (these are specified
separately). The other notations display both the fact type and its associated constraints.
The constraints indicate that each moon orbits exactly one (at least one and at most one)
planet, and that a planet is orbited by zero or more moons.

Moon Planet
orbits / is orbited by

MOON an orbiter of

orbited by
PLANET

(a)

(b)

Moon Planet1* Orbits

5

(c)

(d)

Moon Planetorbits
is orbited by

Fig. 1 An n:1 association in (a) Barker ER, (b) UML, (c) ORM, and (d) Fact-model notation

To specify that each moon orbits at least one planet, both Barker ER and ORM use a
mandatory role constraint. Barker ER depicts a role as one half of a relationship line,
whereas ORM uses a role box. To indicate that a role is mandatory or optional, Barker
ER uses a solid or dotted line respectively. In ORM, a role is optional unless it has been
assigned a mandatory constraint (depicted graphically as a solid dot).
To indicate the n:1 cardinality of the Moon orbits Planet relationship, Barker ER uses a
single line end for “one” and crows-foot for “many”. ORM instead uses a uniqueness
constraint depicted as an arrow-tipped bar over the role(s) to which it applies. As shown
later, ORM allows populated fact tables to be associated with fact types, with each role
corresponding to a table column. A uniqueness constraint over a role (or role set)

42

indicates that each instance in the population of that role (or role set) is unique. The lack
of a uniqueness constraint indicates that an instance may occur there more than once.

Unlike Barker ER and ORM, the UML approach combines the separate concepts of
mandatory and cardinality/uniqueness constraints into a single multiplicity constraint
(e.g. ‘0..1’ for at most one, ‘1’ or ‘1..1’ for exactly one, and ‘0..*’ or ‘*’ for zero or
more).

Of the four approaches, only Barker ER and ORM provide standard support for
constraint verbalization. To enable association optionality and cardinality settings to be
verbalized, Barker recommends the following naming discipline for relationships [Ba90,
p. 3-5]. Let A R B denote an infix relationship R from entity type A to entity type B.
Name R in such a way that each of the following four patterns results in an English
sentence:

 Each A (must | may) be R (one and only one B | one or more B-plural-form)

Use “must” or “may” when the first role is mandatory or optional respectively. Use “one
and only one” or “one or more” when the cardinality on the second role is one or many
respectively. For example, the optionality/cardinality settings in Figure 1(a) verbalize as:

Each Moon must be an orbiter of one and only one Planet.
Each Planet may be orbited by one or more Moons.

This verbalization convention is good for basic constraints on infix binaries. If the user
follows the naming discipline, and pluralization can be automated (e.g. House to/from
Houses, Mouse to/from Mice), these rules may be regarded as formal and executable.
Overall however, the Barker ER approach is too restrictive, because it handles only
binary associations, and while it does include a few other graphical constraints, it
provides no rules for verbalizing these in a textual language. In contrast, ORM applies to
predicates of any arity, and covers many more kinds of constraint both graphically and
textually, with no need for pluralization.

Let’s see how an ORM textual language might cater for these constraints. The orbital
fact type is reproduced in Figure 2, along with another fact type about planets. Reference
schemes for each object type are shown in parenthesis, and sample fact tables are also
provided.

Moon
(Name)

Planet
(Name)

orbits / is orbited by

Radius
(km)has

Venus 6050
Mars 3095

Jupiter 71400

Phobos Mars
Deimos Mars

Io Jupiter
Io MarsCounter-example

Fig. 2 Fact types with satisfying and counter populations

43

The first three rows of the orbital fact table provide a significant fact population with
respect to uniqueness constraints: its first column values are unique, and its second
column contains duplicates, clearly showing the n:1 nature of the association. The
planetary radius table is only partly significant with respect to uniqueness constraints,
because its column values are unique for both roles, suggesting a 1:1 association. A
domain expert however can confirm that it is possible for two planets to have the same
radius.

The ORM approach encourages rule validation by verbalization and population. A
verbalization in positive form stresses what is required to satisfy the rule, so it can be
exemplified by satisfying fact population (a set of fact instances consistent with the rule).
A verbalization in negative form stresses what is required to violate the rule, so it can
tested using counter-examples that illustrate the rule being violated. The uniqueness
constraint on the orbital fact type may be verbalized in positive and negative forms thus:

Each Moon orbits at most one Planet. -- positive form
It is impossible that the same Moon orbits more than one Planet. -- negative form

The positive form of the constraint is illustrated by the satisfying population on rows 1-3
of the orbital fact table. The textual rule introduces the quantifiers each (∀), and at most
one (∃0..1), but leaves the fact type verbalization unaltered.

The negative form of the constraint is illustrated by the counter-example population on
rows 3-4, where the same moon (Io) orbits two planets (Jupiter and Mars). This duplicate
value in the first column violates the uniqueness constraint on that column. Use of
counter-examples is a powerful way to check whether a constraint really does apply.

The mandatory constraint on the first role of Moon orbits Planet may be verbalized thus:

Each Moon orbits some Planet. -- positive form
Each Moon orbits at least one Planet. -- positive form (alternative)
It is impossible that some Moon orbits no Planet -- negative form (long version)
No Moon orbits no Planet. -- negative form (short version)

A verbalization in default form states what is allowed in the absence of an explicit
assertion of a rule. For example, the absence of a uniqueness constraint on the second
role of Moon orbits Planet may be verbalized explicitly thus:

It is possible that the same Planet is orbited by more than one Moon. -- default

The population illustrates this possibility (Mars has two moons). The absence of a
mandatory constraint on the second role of Moon orbits Planet may be stated explicitly as
below. The combined population of the two tables in Figure 2 illustrates this possibility
(Venus has no moons).

 It is possible that some Planet is orbited by no Moon -- default

If a role has both a simple uniqueness and simple mandatory constraint, both constraints
may be combined in a single verbalization by using “exactly one” to abbreviate “at least
one and at most one”. For example, the constraints on the orbital fact type may be
succinctly stated thus: Each Moon orbits exactly one Planet.

44

Constraints on 1:1 binaries are verbalized using combinations of constraint
verbalizations already discussed. A many-to-many association is shown in Figure 3. In
Barker ER, this is verbalized as: Each Person may be a visitor of one or more Countries, and each
Country may be visited by one or more Persons. In ORM, this is depicted as a uniqueness
constraint that spans both the roles, as reflected by the sample population (only person-
country pairs are unique).

Person Country

(a)

PERSON COUNTRY
visited by

a visitor of

(b)

Person Country

(c)

**
Visited

t

Ann Jones AU
Ann Jones NZ
Tom Smith NZ

visited

Fig. 3 A many-to-many association in (a) ORM, (b) Barker ER, and (c) UML

The standard verbalization in ORM for this spanning uniqueness constraint is shown
below. This reflects the absence of a single role uniqueness constraint on the first role,
and the absence of a single role uniqueness constraint on the second role.

It is possible that the same Person visited more than one Country
 and that the same Country was visited by more than one Person.

While the above verbalizations clarify the many-to-many nature of the association, they
do not explicitly capture the further intention that person-country pairs must be unique.
In other words, the population of the association must be a set of person-country pairs,
not a bag (multi-set). For example, the spanning uniqueness constraint would be violated
if we added the pair “Tom Smith, NZ” as a fourth row of the fact table.

This further aspect of the constraint is usually left implicit, because it is assumed that the
populations of all primitive (non-derived) associations must be sets, not bags. If we wish
to make this assumption explicit for any given association, we may add a verbalization
to that effect. For our current example, this may be verbalized as follows.

Each instance of Person visited Country occurs only once.

As good modeling practice, any spanning uniqueness constraint should be checked with
the domain expert to confirm that a bag is not required. For example, a person may visit
a country more than once. If we wish to record whether (but not how often) a person
visited a country, then we may use the fact type Person visited Country without further
qualification. If however we wish to know how often a person visited a country, we must
modify the model. For example, we might objectify the association Person visited Country as
Visit, and then add a many-to-many, temporal fact type such as Visit began on Date.

45

4 Constraints on N-ary and Multiple Associations

While industrial ER is restricted to binary associations, both ORM and UML support n-
ary associations (n > 2). For example, Figure 4 depicts the ternary fact type Room at
HourSlot is booked for Course. The ORM model includes two uniqueness constraints, each
spanning two roles, as well as a satisfying population. The UML model includes
equivalent multiplicity constraints.

Room
(Nr)

HourSlot
(dhCode)

Course
(Code)

20 Mon 9 am CS100
20 Tue 2 pm CS100
33 Mon 9 am MA201
33 Fri 5 pm LG102
...

...at...is booked for...
roomNr

Room

(a) (b)

dhCode

HourSlot

courseCode

Course
0..1 0..1

*

Booking

Fig. 4 Uniqueness constraints on a ternary association in (a) ORM and (b) UML

The ORM uniqueness constraint spanning the first two roles of the association may be
expressed in positive form thus:

Given any Room and HourSlot
 that Room at that HourSlot is booked for at most one Course

Every constraint has an associated modality, determined by the logical modal operator
that functions explicitly or implicitly as its main operator. For a simple introduction to
modal logic, see [Gi00]. In practice, the modality is typically either alethic or deontic
(see Table 3). Logical negation may be used to obtain the usual equivalences (e.g. not
necessary ≡ possible, not obligatory ≡ permitted, not permitted ≡ forbidden).

Table 3 Alethic and deontic modal operators

Alethic Deontic
It is necessary that It is obligatory that
It is possible that It is permitted that
It is impossible that It is forbidden that

In positive verbalizations, the modality is often assumed, but may be explicitly
prepended. For the constraint just considered, we have:

It is necessary that -- alethic
given any Room and HourSlot
 that Room at that HourSlot is booked for at most one Course

It is obligatory that -- deontic

46

given any Room and HourSlot
 that Room at that HourSlot is booked for at most one Course

The deontic version indicates that the rule ought to be obeyed, while recognizing that the
constraint might be violated. Most business constraints are deontic in nature. Negative
verbalizations typically make the modality explicit. For example, the same constraint
may be verbalized thus:

It is impossible that -- alethic
the same Room at the same HourSlot
 is booked for more than one Course

It is forbidden that -- deontic
the same Room at the same HourSlot
 is booked for more than one Course

In Figure 4, two role pairs have a uniqueness constraint. The absence of a uniqueness
constraint on the other role pair (room, course) may be verbalized in default form thus:

It is possible that -- alethic
the same Room at more than one HourSlot
 is booked for the same Course

It is permitted that -- deontic
the same Room at more than one HourSlot
 is booked for the same Course

Suppose that we modify the schema fragment in Figure 4 by requiring that each course
has a room-hourslot booked for it. In ORM, this additional constraint may be specified
graphically by applying a mandatory role dot to the role played by Course, and
verbalized as follows (“some”, “a”, and “an” are alternatives to “at least one”).

For each Course
some Room at some HourSlot is booked for that Course

This constraint cannot be specified graphically in UML, because its multiplicity
constraint does not scale properly for n-ary associations. See [Ha02a] for a detailed
discussion of this and other problems with UML.

If the same object type plays more than one role in an n-ary association, the use of the
pronoun “that” in verbalizing a constraint may lead to ambiguity. For example, Figure
5(a) shows the quaternary association Person judged Person to have SkillLevel in Language. In
UML, this would typically be modeled using a ternary association class with a skill level
attribute, as shown in Figure 5(b).

47

Person
Skill
Level

Language

(b)

* *

*

Person Language

(a)

skillLevel

Judgement

... judged ... to have ... in ...

judge

candidate

Fig. 5 An association with more than one role played by the same object type

Applying the earlier verbalization pattern leads to ambiguous references for “that Person”.
In such cases, it is convenient to append numbered subscripts to distinguish the object
variables [BH97]. The constraint may now be verbalized clearly, as follows.

Given any Person1, Person2 and Language
 Person1 judged Person2 to have at most one SkillLevel in that Language.

We now turn to constraints that apply to multiple fact-roles. Figure 6 shows a model
fragment depicted in (a) Barker ER, and (b) ORM notations. Here, Room has a
composite identification scheme. Each room is identified by combining its local room
number with the building in which it resides. In Barker ER, this is captured by flagging
the room number attribute (with a “#”) and the room containment role (with a “|”) as
identifier components. In ORM, this is captured by the external uniqueness constraint
(circled “u”) over the relevant roles played by Building and RoomNr. UML has no
standard support for value-based identification (simple or composite), so is ignored for
this example. The external uniqueness constraint may be verbalized in positive form
thus:

For each Building and RoomNr
 there is at most one Room that is in that Building and has that RoomNr.

In negative form, with deontic modality, the same constraint verbalizes thus:

It is forbidden that
more than one Room is in the same Building and has the same RoomNr.

ROOM

* room nr
 * has window

BUILDING

* building nr
 o building name

in

the container
of

Room

Building
(Nr)

RoomNr

is in / includes

has /is of

u

Building
Name

has /is of

has a window

(a)

(b)

Fig. 6 Room has a composite identification scheme

48

Both UML and ORM allow associations to be objectified as object types. In Figure 7, the
association Country plays Sport is objectified as Play. This is called an association class in
UML. The external uniqueness constraint in Figure 7(a) captures the no-ties rule
expressed informally as a note in Figure 7(b).

Country Sport

Rank

u

plays

“Play !”

achieved

Country Sport

rank [0..1]

Play

* *

It is impossible for more than
one country to have the same
rank in the same sport

(a) (b)

Fig. 7 A no-ties constraint in (a) ORM and (b) UML

The constraint may be verbalized using earlier patterns (e.g. For each Sport and Rank, at
most one Country that plays that Sport achieved that Rank). However this pattern does
not generalize to all possible cases of objectification. In this and many other cases it is
convenient to use a more general pattern based on contextual specification that pre-
declares the context in which the constraint is to be interpreted. For example:

Context: Country plays Sport is objectified as Play.
 Play achieved Rank.

 Constraint: For each Sport, Rank combination
there is at most one Country.

5 Further Constraints

The ORM graphical notation covers many more kinds of static constraint than does ER
or UML. This section briefly considers verbalization of a few of these. Consider the
ORM model diagrammed in Figure 8. Here the “Oir” depicts an irreflexive constraint,
which may be verbalized as: No Movie is based on itself. The circled “⊆” denotes a subset
constraint: Each Movie that was reviewed by a Person also was directed by a Person. The circled
“×” depicts an exclusion constraint between the associations: No Person directed and
reviewed the same Movie.

Movie Person

was directed by / directed

was reviewed by / reviewed

⊆

°ir
is based on

[director]

[reviewer]

Fig. 8 Irreflexive, subset, and exclusion constraints

49

While ORM requires at least one reading for each fact type, it also allows fact-roles to be
named. In Figure 8, two role names are displayed in square brackets besides their role.
Up to now, all of our rules have been verbalized in relational style, using a reading for
the fact type (relationship type). Role names may be used to provide alternative
verbalizations in attribute style. Attribute style is especially useful for notations like ER
and UML, which express some fact types as attributes. The exclusion constraint above
may be verbalized in attribute style thus:

 For each Movie
 no director is a reviewer.

The subset constraint in Figure 9 runs from the set of advisor-country pairs
instantiating the serves-in association to the set of advisor-country pairs projected from a
schema path that conceptually joins the Language roles. This constraint may be
verbalized thus: Each Advisor who serves in a Country also speaks a Language that is used by that
Country.

Advisor
(EmpNr)

Language
(Name)

Country
(Code)

is spoken by
/ speaks

serves in

is used by
/ uses

⊆

Fig. 9 A join-subset constraint

6 Derivation Rules

Derivation rules may be specified to derive an object type or a fact type from other
types. For example, given the fact types City is in Country and City has Population we may
define the subtype LargeUSCity thus: Each LargeUSCity is a City that is in Country ‘US’ and has
Population >= 1000000. Figure 10 provides a simple example of a derived fact type in UML
and ORM. The uncle-of association is derivable, as indicated by a slash in UML and an
asterisk in ORM. The UML model specifies an attribute style derivation rule for this
association in the Object Constraint Language (OCL), which for once is readable. The
ORM model verbalizes the derivation rule in relational style. Using role names, the
ORM model may also verbalize the rule in attribute style thus: For each Person, uncle =
brother of parent.

50

Person

/UncleOf �

{ Person.uncle = Person.parent.brother }

parent child
0..2 *

*

* brother

sibling_with_brother

/uncle
**
/niece_or_nephew Person

is a brother of

is a parent of / is a child of

≤ 2

is an uncle of

*

* define Person1 is an uncle of Person2 as
Person1 is a brother of Person3

who is a parent of Person2

[uncle]

[parent]

[brother]

(a) (b)

Fig. 10 A derived fact type in (a) UML, and (b) ORM.

Attribute style derivation rules are especially useful for arithmetic derivation, as shown
in Figure 11.

NrVoters
(Nr) Seat

(Name)

Politician
(Name)

are on roll in

voted informally for

<< seeksvoted for
/ has

* For each Seat:
percentCounted = 100 * (sum(candidate.nrVotes) + informalVote)

 / nrOnRoll

[nrOnRoll]

Percent

[percentCounted]

… has … of votes counted *

[informalVote]

[candidate]

[nrVotes]

Fig. 11 Attribute style is usually best for arithmetic derivation rules

7 Conclusion

In this paper we proposed several criteria for verbalizing business rules, and illustrated
the these principles using verbalization patterns that enable a wide range of static
constraints and derivation rules to be specified in a natural, yet formal way, serving the
dual purpose of rule validation with domain experts while allowing constraint
enforcement code to be automatically generated from the high level verbalization.

In practice, far more complex business rules sometimes apply, in both static and
dynamic arenas. Space limitations preclude a detailed coverage of our research on
complex rules (e.g. advanced aspects of schema paths over n-ary and nested predicates),
but some of our recent work on complex rules may be found in [HW03]. A challenging

51

research objective is to extend the executable verbalization patterns to cover almost all
business rules that occur in typical business domains. In conjunction with Bloesch, we
developed a conceptual query language capable of expressing arbitrary first order
queries, with automatic code generation [BH97]. Query languages may also be used to
specify constraints and derivation rules. One future research objective is to unify aspects
of conceptual query technology with our work on rule verbalization, to help realize the
dream of very high level executable specifications in the business rules area.

Bibliography

[Ba90] Barker, R.: CASE*Method: Tasks and Deliverables. Addison-Wesley, Wokingham,

England, 1990.
[BH97] Bloesch, A; Halpin, T.: Conceptual queries using ConQuer-II. In (Embley, D.;

Goldstein, R. Eds.): Proc. 16th Int. Conf. on Conceptual Modeling ER'97, Los Angeles,
Springer LNCS 1331, 1997; pp. 113-126. Online at www.orm.net/pdf/ER97-final.pdf.

[EKW92] Embley, D.; Kurtz, B.; Woodfield, S.: Object-Oriented Systems Analysis: A Model-
Driven Approach. Prentice Hall, Englewood Cliffs, NJ, 1992.

[Em98] Embley, D.: Object Database Management. Addison-Wesley, Reading, MA, 1998.
[Gi00] Girle, R.: Modal Logics and Philosophy. McGill-Queen’s University Press, Montreal &

Kingston. 2000.
[Ha01] Halpin, T.: Information Modeling and Relational Databases. Morgan Kaufmann, San

Francisco, 2001.
[Ha02a] Halpin, T.: Information Analysis in UML and ORM: a Comparison. In (Siau, K Ed.):

Advanced Topics in Database Research, vol. 1, Idea Publishing Group, Hershey PA,
USA, 2002; pp 307-323.

[Ha02b] Halpin, T.: Metaschemas for ER, ORM and UML Data Models: A Comparison. In
(Siau, K Ed.): Journal of Database Management, vol. 13, no. 2, 2002; pp. 20-29, Idea
Publishing Group.

[Ha03] Halpin, T.; Evans, K.; Hallock, P.; MacLean, W.: Database Modeling with Microsoft®
Visio for Enterprise Architects. Morgan Kaufmann, San Francisco, 2003.

[Ha04] Halpin, T.: Constraints on Conceptual Join Paths. In (Krogstie, J.; Halpin, T.; Siau, K.
Eds.): Information Modeling Methods and Methodologies, Idea Publishing Group,
Hershey, 2004.

[HW03] Halpin, T.; Wagner, G.: Modeling Reactive Behavior in ORM. In: Conceptual
Modeling – ER2003, Proc. 22nd ER Conference, Chicago, October 2003, Springer
LNCS.

[Om03a] Object Management Group: UML 2.0 Infrastructure Specification, 2003. Online at:
www.omg.org/uml.

[Om03b] Object Management Group: UML 2.0 Object Constraint Language, 2003. Online at:
www.omg.org/uml.

[Om03c] Object Management Group: UML 2.0 Superstructure Specification, 2003. Online at:
www.omg.org/uml.

[RL01] Ross, R.; Lam, G.: RuleSpeak Sentence Templates: Developing Rules Statements
Using Sentence Patterns.. Business Rule Solutions, Online at
www.BRCommunity.com, 2001.

[RJB99] Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley, 1999.

[WK03] Warmer, J.; Kleppe, A.: The Object Constraint Language: Getting Your Models Ready
for MDA, Second Edition. Addison-Wesley, 2003.

52

