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Tool Support for Model Transformations: On Solutions

using Internal Languages

Georg Hinkel1 and Thomas Goldschmidt2

Abstract: Model-driven engineering (MDE) has proven to be a useful approach to cope with todays
ever growing complexity in the development of software systems, yet it is not widely applied in
industry. As suggested by multiple studies, tool support is a major factor for this lack of adoption.
Existing tools for MDE, in particular model transformation approaches, are often developed by small
teams and cannot keep up with advanced tool support for mainstream languages such as provided
by IntelliJ or Visual Studio. In this paper, we propose an approach to leverage existing tool support
for model transformation using internal model transformation languages and investigate design de-
cisions and their consequences for inherited tool support. The findings are used for the design of an
internal model transformation language on the .NET platform.
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1 Introduction

While in the past, increasing complexity of software systems has been tackled by an in-

creasing abstraction of the programming language, it seems like the abstraction level of

modern programming languages can hardly be raised without losing general purpose ap-

plicability. Therefore, in recent years, many domain-specific languages (DSLs) [Fow10]

have been proposed that offer a raised abstraction level at the price of limited expressive-

ness.

The usage of such domain-specific language requires a specification how these languages

are executed. A popular approach for this is to map a domain-specific language to a tar-

get platform by a transformation. Since such a transformation determines the execution

semantics of the source languages instances, model transformations are sometimes called

the ‘heart and soul’ of model-driven approaches that should be supported by dedicated

languages [SK03].

This has lead to a variety of model transformation approaches [CH06] incorporating high-

level abstractions like the composition of model transformations into rules describing the

transformation for a particular model element. While these languages produce more con-

cise, more understandable and sometimes even more performant (cf. eg. [GR13]) model

transformations than general purpose languages, the model-driven approach is still not
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widely adopted in industry and the question is why. Multiple studies [Sta06; Moh+09;

Whi+13] suggest that a major factor in this decision is the tool support, particularly also of

model transformations given their importance in model-driven approaches. Recent studies

[Moh+13] suggest that the tool support is still not satisfactory.

But as the model-driven approach is not widely adopted, relatively few resources are spent

to improve the tools, at least in comparison to IDEs for mainstream languages like IntelliJ

or Visual Studio. These tools have a massive user base and thus much more resources are

spent for the improvement of the tools. Furthermore, many model transformation tools

are maintained by researchers with few incentives to implement in principle long-known

tool concepts in their model transformation tools, simply because of the lack of insights

generated by these mostly laborious tasks.

Furthermore, as Meyerovich suggests [MR13], many developers do not appreciate to switch

their primary programming languages and do so only if there is a significant amount of

code they can reuse or if management requires them to do so. This is reasonable since

such a change often makes valuable knowledge of particular technologies superfluous. Fur-

thermore, similar concepts are sometimes implemented in slightly different ways, causing

subtle bugs. As an example in the world of model transformations, the difference between

is-kind-of and is-type-of in OCL often causes confusions for developers not confronted

with it on an everyday-basis.

A promising approach to tackle this problem of 1. general purpose languages with the lack

of model transformation concepts on the one side and 2. dedicated model transformation

languages with lacking tool support on the other is to combine both worlds using an inter-

nal DSL. To gain best tool support, the model transformation language should be hosted

in a mainstream general-purpose language such as Java or C#. This allows to combine

high-level abstractions for model transformations with advanced tool support.

However, so far internal transformation languages do not exist for all often used general-

purpose languages. This raises the problem how to design an internal transformation for a

language so far not covered and how to implement this transformation DSL with respect

to tool support.

In this paper, we tackle this problem as we extract our experience with the design of the

NMF Transformation Language (NTL)[Hin13] regarding design for tool support reuse.

We discuss the design alternatives how to map model transformation concepts (in partic-

ular transformation rules) to code artifacts in an internal DSL and explain limitations and

consequences. We then describe briefly how these design decisions are implemented in

NTL.

In the remainder of this paper, we first present related work in Section 2. Section 3 dis-

cusses how transformation rules can be embedded in general-purpose object-oriented pro-

gramming concepts aiming for optimal tool support reuse. Section 4 explains our imple-

mentation in the internal model transformation language NTL. Finally, we conclude the

paper in Section 5.
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2 Related Work

There exists a variety of model transformation approaches, surveyed and summarized for

example by Czarnecki et al. [CH06]. In the remainder of this section, we concentrate on

those implemented as internal DSLs.

A language that has been used as host language for model transformation several times is

Scala [GWS12; KCF14] . Scala has not as many users as Java or C# but still advanced tool

support is available. However, the language adoption problem remains, i.e. fewer develop-

ers know Scala than Java or C#.

Surprisingly, the most often used mainstream languages to the best of our knowledge have

hardly been used as a host language for model transformation yet. Next to NTL and its

close relative NMF Synchronizations [Hin15], we are only aware of two approaches using

Java [TL12] which is rather focussed on pattern matching and SDMLib [Zün+13], an

internal DSL for the Fujaba tool using a method chaining syntax.

In this paper, we discuss how an internal model transformation language can be con-

structed specifically for the inheritance of tool support, but DSLs have been used in a

number of approaches for a multitude of different rationales, including the ease of devel-

opment [BH11], type safety [GWS12] or language adoption [Hin+15].

3 Implementing Transformation Rules with respect to Tool Support

This section discusses the implications of different ways to represent transformation rules

in the object-oriented design aiming specifically to gain optimal tool support for model

transformations. Our discussion is based on strongly-typed multi-paradigm programming

languages such as Java or C# as host languages where there is rich tool support available.

3.1 Editing Support

According to a study on the usage of the Eclipse IDE with 41 Java developers, the ba-

sic editing operations like delete, copy, cut and paste are upon the most commonly used

editing commands [MKF06]. These commands are supported by any editor. However, the

study showed that also more sophisticated tools were often used, indicating that they raise

productivity. The most often used tool support beyond the basic commands was code com-

pletion that was used by every developer, making up in the average 6.7% of all executed

commands. This study was made in 2006 and code completion has been improved by

learning from examples, frequency or mined associations [RL08; BMM09]. While many

model transformation tools support a basic code completion listing all available members

in alphabetic order, more advanced code completion is usually limited to large mainstream

IDEs.

Code completion requires strongly typed environments since in this case the tool knows

what methods are available for a given object. Thus, the signature of a transformation rule
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must be known to the compiler. This can be achieved either when the transformation rule

is represented by a method or by turning the transformation rule signature into generic

type parameter. The problem with the representation as a method is that it is very hard

to decide when to create a trace entry. Transformation rules like ATL, ETL and QVT-O

solve this problem by dividing the transformation rule execution into phases. In SIGMA

which represents transformation rules as methods, the problem is solved by allowing only

a single transformation phase specified by the user.

The approach of turning a transformation rule signature into generic type parameters is

more flexible, but there are multiple possible implementations. The difference between

these implementations is the artifact that represents a given transformation rule. Generic

type parameters can be created for methods or classes. In case of generic parameters of

methods, each transformation rule would be a call of a generic transformation rule method

that creates the transformation rule, taking in additional configuration such as different

phases of the transformation.

1 var state2place = TransformationRule <State , Place >(
2 createOutput: (state , context) => ...,
3 transform: (state , place , context) => ...
4 );

List. 1: Representing transformation rules as method calls

An example how the transformation of states of a finite state machine to places of a Petri

net looks like when transformation rules are implemented as method calls is shown in

Listing 1. In this listing, we assume an optional context parameter that can be used

for tracing purposes. The example uses named parameters which are not available in all

languages (and usually optional where they are available). Other options include method

chaining syntaxes. An example of these languages is SCALAMTL, as method chains have

a suitable syntax in Scala.

The representation as inheritance means that there is a generic transformation rule class

that is inherited from for each transformation rule, passing the type signature again as

generic type parameters. Here, different phases of a transformation rule can easily be rep-

resented by different methods of the class which the transformation rule has to override.

1 class State2Place : TransformationRule <State , Place > {
2 Place CreateOutput(State state , Context context) { ... }
3 void Transform(State state , Place place , Context context) {...}
4 }

List. 2: Representing transformation rules as classes

The representation of transformation rules as classes with a certain inheritance relation

is sketched in Listing 2. Here, the concept of a transformation rule is implemented in a

generic class which is inherited from. The transformation phases are represented as over-

ridden methods.

The design decision whether to implement transformation rules as method calls or as

classes has several important consequences. While the syntax of the method calls contains
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less syntactic boilerplate and is thus more concise in terms of lines of code, the latter ver-

sion using inheritance has the important advantage that being types, transformation rules

are reflected in metadata. This has advantages for visualization as we will discuss in the

next section. Furthermore, an object as the result of a method call can only be referenced

once it has been created while a class can be referenced regardless of the order in the code

(in most languages). This is problematic when the abstract syntax (cf. Fig. ??) contains

a cross-reference to transformation rules, when traces are explicit. Thus, for example in

SCALAMTL, the traces are implicit and cannot be made explicit.

3.2 Navigation Support

A large proportion of development activities is devoted on the analysis of existing code

and navigation through it [MKF06]. However, the navigation support of the mostly used

search commands (searching for references to a selected element or its definition) can be

derived independently of the transformation rule representation, if there is a representation

as a code element at all (as opposed e.g. to pure naming conventions).

However, Rentschler et al. have shown that a visualization of a model transformations

structure aids the navigation and is thus helpful for the maintainability of model transfor-

mations [Ren+13]. A similar visualization is getting common for general-purpose object-

oriented code visualizing the usage of members within a class or the usage of classes

within a package, as for example with Code Maps in Visual Studio. This analysis is based

on metadata, i.e. classes, methods and their interrelations based on the methods’ bodies.

Objects as results of method calls are not part of this metadata since they are runtime arti-

facts and cannot be predicted at compile-time in general. As a consequence, code visual-

izations based on this metadata is not available when transformation rules were represented

in method calls.

For internal languages, inherited visualization is of particular importance. Unlike exter-

nal languages, they are merely guidelines how to use a framework but these guidelines

are not enforced by the host language compiler3. As a consequence, static analysis like

visualization specifically created for the internal language is of limited applicability. For

analyses that look at the big picture like visualizations of the entire transformation, this

means that it is hard to create something above the inherited visualization support. Alter-

natively, dynamic visualization as supported by SDMLIB are a viable approach, but are

hard to integrate in the development environment and laborious to develop.

For the implementation of transformation rules as types as outlined above, the usage of

a transformation rule is the same as the usage of this type. Therefore, visualization tech-

niques to show dependencies in object-oriented programming can be used to visualize the

structure of model transformations. An implementation of transformation rules as method

cancels the possibility of inherited visualizations.

3 Technologies like the modular compiler Roslyn give internal languages the chance to enrich the host language

compiler
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4 The NMF Transformations Language (NTL)

This section describes the NMF Transformations Language (NTL), the concrete syntax

of the model transformation framework of NMF. The language uses C# as host language

and is able to describe model transformations from and to arbitrary runtime objects. The

implementation is part of NMF and thus available as open-source4.

As we are aiming for a comprehensive transformation language, we represent transfor-

mation rules as classes that inherit from a common generic transformation rule class and

pass in their signature as generic type parameters (cf. Section 3). The different phases of

the transformation rule (cf. Section ??) are specified by overriding methods from the base

class. Thus, transformation rules in NTL exactly look like sketched in Listing 2 except for

some syntactic boilerplate: In C#, overriding methods must repeat the entire signature of

the base method accompanied by the override keyword.

1 public class FSM2PN : ReflectiveTransformation {
2 public class State2Place : TransformationRule <State , Place > { ... }
3 }

List. 3: A transformation in NTL

The assembly of a model transformation of transformation rules is done by adding the

transformation rule as public nested types of the transformation class which in turns in-

herit from ReflectiveTransformation. An example is presented in Listing 3. As a

consequence, the declaration of the transformation rule and its registration with the trans-

formation coincide, decreasing maintenance efforts.

1 public class State2Place : TransformationRule <State , Place > {
2 protected override RegisterDependencies () {
3 CallMany(Rule <Transition2Transition >(),
4 selector: s => s.Outgoing ,
5 persistor: (p,transitions) => p.From.AddRange(transitions));
6 }
7 }

List. 4: Specifying dependencies in NTL

The specification of dependencies for a transformation rule is sketched in Listing 4. De-

pendencies are created in a dedicated method RegisterDependencies (see line 2) which

is run by the transformation engine at initialization of the transformation.

Unlike transformation rules, dependencies themselves are merely uninteresting in code

visualization. Furthermore, dependencies need not to be cross-referenced. Therefore, we

represent them as method calls in a dedicated function of transformation rules. The at-

tributes of dependency elements of the abstract syntax are simply passed as method call

arguments. In line 3, such a call is made creating a dependency of the State2Place rule to

Transition2Transition for each outgoing transition of a state in the state machine (line 4).

The resulting transitions are then added to the From reference of the Petri net place which

is the transformation result of the current state (line 5).

4 http://nmf.codeplex.com
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The entire finite state machine to Petri nets transformation can be found in [Hin13]. We

abbreviate it here for space limitations.

5 Conclusion

Despite the improvements in terms of productivity, Model-driven engineering still lacks

an industry adoption. In this paper, we have proposed an approach how this tool support

problem can be solved by internal model transformation languages by exploring the design

alternatives how model transformation rules can be represented in object-oriented design.

We have shown how this discussion has lead to the development of NTL.

There is no unique way of implementing transformation rules in an object-oriented lan-

guage. The implementation choices are trade-off decisions. An implementations of trans-

formation rules as methods or method calls lead to a more concise syntax with less syntac-

tic boilerplate but yield restrictions. Implementations as methods restrict the transforma-

tion language to a single operational phase in transformation rules and method calls make

explicit tracing hard and cancel inherited visualizations based on metadata. An implemen-

tation alternative without these shortcomings at the price of a less concise language is the

implementation as classes inheriting from a common transformation rule class.
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