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Abstract: Energy efficiency in databases is an emerging topic. Our research prototype
WattDB dynamically adjusts the number of active servers in a cluster to the current
workload to achieve energy proportionality. In this demo, we give insights in the
partitioning process and WattDB’s reaction to workload changes by live-presenting a
monitoring GUI. The whole process and the resulting configuration are visualized to
give immediate feedback, how the cluster would react.

1 Introduction

Today’s server hardware is not energy proportional; at low utilization, hardwareÐmainly

main memory and storage drivesÐconsumes a significant amount of power. Hence, about

half of the maximum server power is already going to waste when idle. Scaling systems

automatically down when idle, thus preventing high idle power consumption, is the main

focus of today’s servers to provide better energy efficiency. However, this is not enough to

approximate energy proportionality.

With cloud computing, elastic systems have emerged that adapt their size to the current

workload. While stateless or lightweight systems can easily increase or reduce the number

of active computing nodes in a cluster, a database faces much more challenges due to the

need of high interactions among the nodes and fast reachability of all DB data.

Similar to cloud-based solutions, we hypothesize that a cluster of nodes may adjust the

number of active (power-consuming) nodes to the current demand and, thus, approximate

energy proportionality. Based on these observations, we developed WattDB, a research

prototype of a distributed DBMS cluster, running on lightweight, Amdahl-balanced nodes

using commodity hardware. The cluster is intended to dynamically shrink and expand

its size, dependent on the workload. Reconfiguring a cluster to dynamically match the

workload requires data to be moved from node to node to balance utilization. Yet, copying

data is time-consuming and adds overhead to the already loaded cluster. But reducing

both, time and overhead, is crucial for an elastic DBMS.

In this demo, we present our recent and ongoing work with WattDB. To give a better

understanding of the internal process of balancing and decision making, we show some

insights of our DBMS.
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2 The WattDB Approach

Traditional clustered DBMSs do not dynamically adjust their size (in terms of the num-

ber of active nodes) to their workload. Hence, scale-out to additional nodes is typically

supported, whereas the opposite functionality, shrinking the cluster and centralizing the

processingÐthe so-called scale-inÐ, is not. Recently, with the emergence of clouds, a

change of thinking occurred and dynamic solutions became a research topic. To test our

hypothesis of an elastic, energy-proportional DBMS, that dynamically scales out and back

in and that supports SQL query processing with ACID properties, we developed WattDB.

The smallest configuration of WattDB is a single server, hosting all database functions and

acting as endpoint to DB clients. This server is called master node. DB objects (tables,

partitions) and query evaluation can be offloaded to arbitrary nodes in the cluster to relieve

overloaded nodes, but the master will always act as the coordinator and client endpoint.

To run queries on a cluster of nodes, distributed query plans are generated at the master

node. Except data access operators which need local access to the database’s records,

all query operators can be placed on remote nodes. Running query operators on a single

node does not involve network communication among query operators, because all records

are transferred via main memory. In contrast, distributing operators implies shipping of

records among nodes and, hence, introduces network latencies. Additionally, the band-

width of the Gigabit Ethernet, which we are using for our experiments, is relatively small,

compared to memory bandwidth.

The master node is coordinating the whole cluster. It is globally optimizing the query

plans, whereas regular nodes can locally optimize their part of the plan. Furthermore, it

takes nodes on- and offline and decides when and how DB tables are (re)partitioned.

Every node is monitoring its utilization: CPU, memory use, network I/O, and disk utiliza-

tion (storage and IOPS). Additionally, performance-critical data is collected for each DB

partition, i. e., CPU cycles, buffer page requests, and network I/O. With these figures, we

can correlate the observed utilization of cluster components to (logical) DB entities.

The master checks the incoming performance data to predefined thresholdsÐwith both

upper and lower bounds. If an overloaded component is detected, it will decide where to

distribute data and whether to power on additional nodes and resume their cluster partic-

ipation. Similar, underutilized nodes trigger a scale-in protocol, i. e., the master will dis-

tribute the data (processing) to fewer nodes and shutdown the nodes currently not needed.
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In WattDB, we provide different policies regarding the scale-out behavior. First, each node

in the cluster stores data on local disks to minimize network communication. If storage

space of a node is in short supply, DB partitions are split up on nodes with free space. In

this way, it tries to keep the I/O rate for each storage disk in a certain range. Underuti-

lized disks are eligible for additional dataÐeither newly generated by INSERT operations

or migrated from overloaded disks. Utilization among storage disks is first locally bal-

anced on each node, before an allocation of data from/to other nodes is considered. Third,

each node’s CPU utilization should not exceed the upper bound of the specified threshold

(80%) for more than short utilization spikes. As soon as this bound is violated on a node

for longer than one minute, WattDB first tries to offload query processing to underutilized

nodes.1 If the overload situation cannot be resolved by redistributing the query load, the

current data partitions and their node assignments are reconsidered. When a partition caus-

ing the overload is identified, it is split according to the partitioning scheme applied, where

affected segments are moved to other nodes [SH15]. For underutilized nodes, an inverse

approach is needed. A scale-in protocol is initiated, which quiesces the involved nodes

from query processing and shifts their data partitions to nodes currently having sufficient

processing capacity.

Similar rules exist for network and memory utilization, e. g., if the working sets of the

transactions become too big for the DB buffer, repartitioning is triggered. The master

makes decisions based on the current workload, the course of utilization in the recent

past, and the expected future workloads [KHH12]. Additionally, workload shifts can be

user-defined to inform the cluster of an expected change in utilization.

WattDB utilizes a rather simplistic DB schema with logically partitioned tables. A ta-

ble is a purely logical construct in WattDB. Its metadata (column definitions, partitioning

scheme) is maintained on the master node. Each table is composed of k horizontal par-

titions, each belonging to a specific node, responsible for query evaluation, data integrity

(logging), and access synchronization (locking). Each partition contains 1 to m segments

(of 32 MB), which are physical units of storage. Each segment is located on a local disk

to reduce access latencies. Partitions are by default index-organized [Sea00] w. r. t. the

primary key and can be supported by additional, secondary indexes. Fig. 1b clarifies these

terms and their relationships.

To facilitate speedy rebalancing, we have implemented physiological partitioning [SH15]

to be able to quickly repartition the cluster in case of workload imbalances. With phys-

iological partitioning, each segment is a self-contained subpartition, including a defined

primary-key range. The partition’s metadata only stores a list of segments with their re-

spective primary-key ranges. Therefore, segments can be detached from one partition and

copied to another node, with minimal impact to query processing. Since segments are self-

contained, no outside references need to be changed during rebalancing, except updating

metadata in the partition and on the master. We have experimentally verified the advan-

tages of physiological partitioning vs. other approaches and conclude that our system is

well-suited for an elastic DB cluster. Yet, details about the repartitioning process inside the

master node cannot be discussed here [SH15]. In this demo, we exhibit how physiological

partitioning allows the master to quickly rebalance the cluster.

1This works well for operators like SORT, GROUP, and AGGREGATE.
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(a) Power consumption (b) Partitioning and utilization

Figure 2: Graphical user interface

3 Demo Description

We are going to present how partitioning in WattDB works and how workload changes

trigger rebalancing of DB partitions. We put up a GUI, showing the live status of the clus-

ter (via remote connection). Demo visitors will see the hardware state of the nodes, i. e.,

whether they are online or offline, and their corresponding power consumption. Addition-

ally, a predefined DB schema with its tables and partitions is sketched. The assignment of

partitions to nodes and the current utilization of nodes and partitions is also visible. Hence,

the GUI will show both, the underlying hardware as well as the DB layout on top.

Users will be able to alter the workloads by increasing or reducing utilization of tables and

partitions. The new workload profile is sent to WattDB, where the master node will then

trigger rebalancing. The audience can see, how the cluster rebalances, moves data, and po-

tentially splits and merges partitions to adjust to the modified workload. The master node

will power up additional nodes, if necessary, which will affect overall power consumption.

Likewise, superfluous nodes are shut down and the outcome is visible on the GUI.

Since rebalancing data is time-consuming and we do not expect visitors to wait several

minutes, the master nodes does not send out actual rebalancing commands to the nodes.

Instead, only the process on the master node is depicted, showing how WattDB’s decision

process works and what partitions are deemed candidates for rebalancing. Hence, the

audience will be able to see the reaction of the cluster almost instantaneously.
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