
Index Challenges in Native XML Database Systems

Henrik Loeser1, Matthias Nicola2, Jana Fitzgerald2,

1: IBM Deutschland Research & Development
Schönaicher Str. 220, D-71032 Böblingen

2: IBM Silicon Valley Lab.
555 Bailey Ave, San Jose, CA 95123, USA

Email: hloeser@de.ibm.com, {mnicola, jfitzge}@us.ibm.com

Abstract. Today, more and more enterprises process XML data, many of them
already in XML database systems. Once systems start to grow in size,
scalability becomes an issue. One of the core operations during insert
processing is the index maintenance. Typical relational systems only have few
indexes per table, however, XML database users already look at creating
hundreds of XML indexes per XML column. A similar situation is present
during query processing when many indexes are present which the system can
choose from and has to combine them for optimal performance. This creates
new challenges for the database system – unknown in the traditional relational
world. In this paper, we discuss those index challenges and possible solutions.

Keywords. XML, Indexing, Database Systems, Scalability, Performance

1 Introduction

Today, more and more enterprises process XML data. That data comes from different
sources and is often managed by separate applications and stored in separate
databases. There are also scenarios where XML data with a very high degree of
variability is stored in a single database or even a single XML column. This creates
challenges for native XML database systems. In this paper, we focus on the

challenges related to maintaining XML indexes in insert-intensive applications.

The majority of existing work on XML indexes focuses on query performance and not
on insert performance. In fact, the majority of research papers that propose XML
index structures do not evaluate the cost of building and maintaining those indexes.
They typically use a query-only workload to evaluate the query performance only.
However, real-world XML applications often consist of a mix of read and write
operations, and even a moderate amount of insert, update and delete operations can
adversely affect overall system performance if the index structures are heavy and
require costly maintenance.

508



2 Henrik Loeser, Matthias Nicola, Jana Fitzgerald

In section 2, we first describe typical XML usage patterns in real-world applications,
characteristics of popular industry standard XML formats, and the resulting index
requirements. Then we describe a specific application scenario – financial application
logging – and the index challenges that it creates. In section 3 we explain how XML
data can be indexed in DB2 and how optimized index processing can address the

challenges posed by the application logging scenario. Section 4 presents a
performance evaluation of different approaches for maintaining XML indexes. We

conclude the paper with a summary in section 5.

2 XML Index Requirements in Real-World Application Scenarios

In this section we discuss common characteristics of XML applications and how these

characteristics frequently require the use of a large number of indexes.

2.1 XML Representation of Business Objects

XML is commonly used as a format for business objects, or messages that represent
or transport these business objects. Common examples include purchase orders,
trades, customer records, sales records, patient records, claim forms, and other
business artifacts. In many cases these business objects can be very diverse and
variable and it requires a large number of attributes to model them. A classic example
is customer demographics such as age, geographical location, marital status, ethnicity,
income range, profession, favorite newspaper, favorite sport, holiday preferences,
hobbies, current car, and many other attributes. Another example is product
characteristics such as color, size, weight, length, volume, material, water resistance,
power requirement, resolution, operating temperature, adapters, display type, battery
capacity, and many more. A business with a diverse set of products can easily require
hundreds or several thousands of attributes to model their product portfolio. However,
any particular product typically only has a subset of these attributes, often between 10
and 100. Such data is also known as having sparsely populated attributes.

Examples of such diverse and feature-rich products include electronics,
telecommunication services, and financial investment products. It’s easy to see that a
similar richness in attributes exists in many other industries as well, such as patient
records in health care or tax forms in government.

Such rich application scenarios and business requirements have existed long before
the emergence of XML and are not fundamentally new. In fact, they have frequently
posed challenges in relational database modeling. One such problem is that the

number of attributes might exceed the maximum row length or the maximum number
of columns in a relational table. Sometimes this can be addressed by splitting the

attributes over multiple tables and multiple rows. However, this often leads to a less
intuitive database design and additional un-natural normalization. This in turn makes

509



Index Challenges in Native XML Database Systems 3

inserting and querying the business data more challenging for application developers
or business reporting analysts.

Another problem with large numbers of attributes is that the set of attributes typically
changes over time. This is the case whenever products, services, or business processes
change, i.e. all the time. In many companies, modifications to relational schemas,
such as adding or dropping columns in a table, are strictly regulated and can require
lengthy approval processes. It is not uncommon that this slows down the introduction
of new products or services. It can also delay or even prevent the availability of new
insights from enriched business reports.

A potential but undesirable “solution” for dealing with evolving and large sets of
attributes is the use of name-value pairs. This approach is often implemented as a
relational table with three columns (id, name, value). In this design the attributes
are not expressed as column names, but as values in the column “name”. This
approach has significant inherent drawbacks, including:

• It’s very difficult and often impossible to define business rules and constraints
for Name/Value Pairs. This is because the meaning of the entries in the column
“value” changes from row to row.

• For the same reasons, the column statistics that usually aid relational optimizers
in the selection of good access plans suddenly have a different meaning. Hence

optimizing complex queries for name-value pair data is often challenging.
• Business objects are now represented in a form that is no longer understood by

business experts. Hence, writing queries against name-value pair data is
complex and often requires many self-joins. Reporting queries with many
predicates prove to be particularly difficult.

• Name-value pair tables handle all data as strings (text). Since the value
column can contain arbitrary data values, it cannot be typed as integer, decimal,
date, or timestamp. This also means that any indexes and comparisons treat the

data values as strings. If you search for cars with a price greater than "5000",
you will also find cars with prices such as “600” or “900”, because these strings
are greater than the string “5000”. You can solve this with appropriate cast
operations in your queries, but those often preclude the use of indexes.

XML allows for a very natural solution of these problems and for a much more
intuitive representation of business objects. A key feature of XML is that XML
elements and attributes can be optional. If certain properties do not apply to a
particular business object, the corresponding elements and attributes are simply
absent, and not even represented by NULL values. This means that there does not
need to be a predefined and reserved storage location for every attribute for every
business object. This allows for a more compact representation and intuitive

representation of business objects that is also easier to exchange between applications
or organizations.

For these reasons, XML is being adopted in practically every industry to model
business objects that have large and evolving sets of sparsely populated attributes.

510



4 Henrik Loeser, Matthias Nicola, Jana Fitzgerald

Companies in every industry have launched consortia to define and standardize XML
Schemas for the representation and exchange of data in their industry [3].

For example, the world’s leading financial companies have developed more than a
dozen XML vocabularies to standardize their industry’s data processing [8]. FpML
(Financial Products Markup Language), FIXML (Financial Information Exchange),
SwiftML, IFX, MISMO (Mortgage Industry Standards Maintenance Organization),
OFX, and XBRL (Extensible Business Reporting Language) are among the most
popular. FIXML is an industry-standard XML Schema for trade-related messages
such as trade capture reports, buy/sell orders, and many others [7]. The FIX protocol
is used by more than 150 leading financial companies worldwide. The XML version,
FIXML, has been developed to improve extensibility, application layer independence,
message validation, and robustness. FIXML also enables straight-through processing,
which reduces operating costs and improves the quality and timeliness of information
[2].

The FIXML schema defines a very large number of optional elements and attributes.
It consists of 41 XML Schema documents and contains 1310 type definitions, 619
element declarations, and 2593 attribute declarations. The vast majority of those are
optional and only a small subset of them are present in any given instance document.
Table shows that other industry standard XML Schemas define similarly large

numbers of types, elements, and attribute.

Version Types Elements Attributes XSD Files
ACORD XMLife_2.16.01 1369 9378 1275 4
ARTS 1.0 - 3.0 4825 6305 2011 32
CDISC 00-9-03 98 84 71 1
FpML 4.2 686 1867 196 23
FIXML 4.4 1310 619 2593 41
HL7CDA 3 1953 945 477 6
IRS1120 2006v3.3 3415 11591 2632 600
MISMO 2.3 - 2.4 2899 1087 13733 31
MCJE/NIEM 1 415 936 46 7
OTA 2003/5 27293 24893 43141 234
STAR 5.0.4 5846 77319 625 192
TWIST 3.1 1016 2314 20 19
UBL 2 682 2665 253 43
UNIFI 1.01 - 2.01 5082 9747 127 71
XBRL 10/25/2006 1858 2847 383 45

Table 1: Characteristics of Selected Industry Standard XML Schemas

Even if many of the defined elements and attributes are used rarely, when they occur
they do carry significant business information. To find and exploit this business
information and to gain valuable insight from it, it is a common requirement to define

511



Index Challenges in Native XML Database Systems 5

XML path indexes for a large number of these elements and attributes. In specific
applications we have seen requirements to index anywhere from a dozen to a few
hundred selected elements and attributes. At the same time, simply indexing all
elements and attributes is an undesirable approach due to its significant overhead for
insert, update, and delete operations.

2.2 A Concrete Scenario: Financial Application Logging

We have recently worked with several companies in the finance and insurance

industry who have brought up requirements for financial application logging. Their
requirements were remarkably similar and describe a recurring usage scenario for
XML databases. In this section we describe the concrete requirements of one specific
company. To protect their identity we simply call them XYZ Bank in this paper.

Overview
The internet banking system at XYZ Bank is required to log every event in any of
their internet banking applications. Events include clicks that take a user to a new web
page or dialog, entry of user data, as well as every click that initiates a banking
transaction. This “logging” happens across a set of diverse applications such as
checking accounts, loans, investment management, and others. Currently, these

applications write "log entries" into a relational database table. This table contains
columns for the application id (INTEGER) and a timestamp (TIMESTAMP) as well
as a VARCHAR column that contains the actual log entries in a proprietary string
format. This string format contains a concatenation of dozens of individual values.
This format was chosen because the information captured in the log entries can vary
widely from one event to the next. It’s the number of different types of events as well
as the diversity of the banking applications which lead to hundreds of possible
attributes that can potentially occur in an event. However, any particular instance of
an event only carries a few dozen attributes.

The purpose of the application logging includes the support of troubleshooting and
problem resolution as well as auditing and compliance regulations for certain
applications. Each log entry (event record) contains a fixed set of “header” fields,
such as user ID, application ID, session ID, date, and timestamp. These fields exist for
every log entry and can easily be stored in fixed relational columns. However, the

body of each log entry is highly variable and application dependent, and cannot be

mapped to a reasonable relational database schema. Additionally, different application
owners require autonomy and flexibility in deciding what information to include in
the log records. They need to be able to change existing applications or introduce new
applications at any time without causing schema changes in the logging infrastructure.

The Problem
The key problem is that the variable part of the log entries (VARCHAR) is hard to
query with adequate performance. Current relational database technology does not
allow easy indexing of individual pieces of strings in a VARCHAR column. The

applications that read this data typically use SQL "LIKE" predicates on these

512



6 Henrik Loeser, Matthias Nicola, Jana Fitzgerald

VARCHAR values. This results in limited queryability, limited index usage, and sub-
optimal performance.

The Desired Solution
The IT department at XYZ Bank has decided to use XML as the new data format for
the event records. The benefits of XML for this scenario include that XML tags allow
proper labeling of all data fields in a log entry, easy extensibility whenever
applications add or change certain fields in the event records, and the ability to index
and query individual elements and attributes in the log records.

The Challenge
The application logging workload is very insert heavy. There are approximately 10M
to 20M inserts in a 24-hour day, with peak insert rates of 500 events per second. The

XML documents that represent the events are 4kb to 20kb in size. The documents
have a "header" with identical structure for every document, and a "body" which is
highly variable. Due to the variability, XYZ Bank requires a very large number of
XML indexes (at least 100). Many of these indexes contain entries for only a few
percent of the rows in the table, some indexes less than 1%. Hence, although the

number of indexes is large, many indexes are quite small compared to the data. This is
because unlike relational indexes, XML indexes in DB2 contain zero, one, or multiple
index entries for each document (row), depending on how often the indexed path
exists in a particular document. Nevertheless, due to the large number of indexes, the

cost of maintaining these indexes during the high insert rate was a key concern for
XYZ Bank.

There will be no offline maintenance window for this system since the logging of the

internet application has to run 24 x 7. Applications that read the data for
troubleshooting and auditing purposes have to support at least 100 users who expect
query response times of 1 sec or less. However, the query rates are significantly lower
than the insert rates.

In the following we describe how the insert and indexing requirements of this
scenario can be fulfilled.

3 XML Insert Processing and Index Maintenance

In this section we review the XML index support in DB2 for Linux, UNIX and
Windows and discuss different strategies for maintaining XML indexes efficiently.

3.1 XML Indexes in DB2

Native XML databases and XML-enabled databases have employed different
approaches towards indexing XML data, often as a consequence of the different XML

513



Index Challenges in Native XML Database Systems 7

storage approaches1. Some vendors have chosen to use a “shred and index all”
approach where the XML data (stored in a large object in various forms) is first
mapped into relational side tables and then either partially or fully indexed in these

tables [6]. This can potentially lead to problems caused by the additional processing
effort, database logging overhead, and additional space consumption. Hence we

believe that a “shred and index all” approach is not an efficient solution to the

performance and indexing requirements of the application logging scenario and would
not scale to the required database size.

In DB2 a different approach to XML indexing was chosen. Users can index selected
elements and attributes and avoid the additional overhead for indexing data items that
don’t need to be indexed. In DB2, an XML index is created by specifying an XPath-
like expression called XMLPATTERN that identifies the nodes to be indexed. The

specified pattern expression can contain namespace declarations similar to XQuery
prolog. It can also contain wildcards and the descendant-or-self axis.

Figure 1 shows how an index on the applicationID element within an event’s
header is created. The values are represented as numbers because the data type

DOUBLE is chosen for the index. DB2 allows for the creation of XML indexes with
different data types [5]. DB2 does not attempt to derive the data type from an XML
Schema because an application may not have an XML Schema or may store
documents for different XML Schemas in the same column.

CREATE INDEX appIDidx ON appLogs (log)
GENERATE KEY USING XMLPATTERN
'/event/header/applicationID' AS SQL DOUBLE

Figure 1: Example of an XML Index Definition in DB2

When a CREATE INDEX statement is issued, the syntax is checked, including the

XMLPATTERN syntax. Then the index metadata is stored in the system catalog and
the physical index structures, including metadata on their own for runtime use, are
created on disk in the index object. It is noted that every index stands by itself and no
combined metadata for all indexes on a table or column is available. This creates
additional challenges as we will see later.

1 It is also worth noting that not all of the so-called “native XML storage” techniques would
support the financial application logging scenario. The reason is that XML schema flexibility
is required, i.e., the ability to store any well-formed XML document without knowing its
schema in advance. Systems that use optimized shredding of XML into (object-) relational
structures either need the XML schema to generate more efficient mappings or have to
employ a general and less efficient mapping approach.

514



8 Henrik Loeser, Matthias Nicola, Jana Fitzgerald

3.2 Differences to Relational Index Maintenance

In relational database systems it is a possible technique to chain the existing indexes
in a linked list per table. The reason is that during insert, delete and possibly update
operations every single index that is defined on a table needs to be maintained. For
every index, one key needs to be processed for every row. Thus, walking over a chain
of indexes is a straight-forward way of processing the index maintenance for all
affected indexes.

The situation is quite different with XML indexes in DB2. If the path defined by the

XMLPATTERN does not exist in a given document, no key for that specific index is
produced. Hence, an insert or delete of the document does not affect this index. While
the insert or delete of a relational requires all relational indexes for the table to be

updated, the insert or delete of an XML document may affect only a subset of the

defined indexes. This is a significant difference. If a very large number of indexes is
defined, as in the application logging scenario described earlier, it is critical for
performance to efficiently identify the subset of indexes that need to be updated when
a new document of unknown structure is being inserted.

If the XMLPATTERN defined by the index exists exactly once in a given document,
the index will have one index entry for that document. If a document contains
multiple occurrences of the indexed path, then multiple keys are processed for a
single index as a result of an insert or delete operation. Update operations may or may
not affect the defined XML indexes, depending on whether the indexed paths are
modified or not.

What is even more different for maintaining XML indexes is how the index keys are
produced. For relational data the entire row is present at once. Additionally, a
relational row has a given size and a fixed number of fields and fits into a data page.
Thus, keys can be easily extracted from the row and one index key per index can be

generated. XML documents are variable in nature and in the absence of a schema
their structure is not known until parsed. XML documents are parsed and the resulting
data is often available token by token, or in smaller or bigger chunks. Additionally,
XML documents can be large and can span many data pages. A naïve implementation
might first receive and insert the entire document, and then navigate the document to
extract all required index keys. However the two-step process must be avoided for
performance reasons. Instead, index keys need to be obtained concurrently with the

data processing. More precisely, index keys need to be generated while the XML
document is being parsed and formatted into the data pages. This process needs to
work in a streaming fashion, so that index entries and data pages are produced for the

“beginning” of a large document while the “end” of the document has not been
reached and the full structure and size of the document is still partially unknown.

In order to find the relevant parts of the document, the different XLMPATTERNs are
applied to the document. For relational data the indexed columns are clearly identified
as part of the index definition. But, the definition of XPath-based indexes over XML
data can contain * and // in the XMLPATTERN. This means that the exact location of

515



Index Challenges in Native XML Database Systems 9

the index key values is not always known in advance. For example, while the index
definition in Figure 1 uses a fully-specified path, a database administrator could have

used any of the XMLPATTERNs shown in Figure 2. And Figure 2 is not even an
exhaustive list of all possible XMLPATTERNs that include the applicationID
element.

//applicationID
/event/*/applicationID
/event//applicationID
//header/applicationID
//*/applicationID
//header//applicationID

Figure 2: Other Examples of XMLPATTERNs for an XML Index in DB2

Maintaining indexes that are defined with wildcards and descendent-or-self axis
require finding and extracting relevant index key data from the XML documents. This
adds to the complexity of index maintenance and can have impact on the scalability
and performance.

3.3 XML Index Maintenance Strategies

In this section, we first discuss general requirements for efficient XML index
maintenance and then describe two possible approaches. Subsequently we look into
techniques for improving one of the described approaches in order to meet very high
performance and index requirements such as in the application logging scenario.

Chaining vs. Trees
For the decision about how to best manage indexes over XML data, some key
requirements as well as overall system architecture need to be taken into account. For
the design, the following general principles apply:

• The design and code should be kept simple, so that it can be maintained and
is less prone to bugs.

• The memory consumption of the data structure needs to be carefully
considered as databases can have thousands of tables and indexes, as well as
hundreds or thousands of concurrent insert, update and delete transactions.

• As index maintenance is critical to the insert, update and delete performance,
it needs to perform and scale well.

In addition, a balance between setup and execution costs needs to be kept as we will
explain in the following. Every index is an object of its own, including some

metadata, and only at runtime of an insert, update or delete operation the set of
participating indexes can be determined. It is only at this time that combined metadata
for the participating indexes can be computed, e.g., to optimize the actual index

516



10 Henrik Loeser, Matthias Nicola, Jana Fitzgerald

maintenance2. We can therefore distinguish between a runtime preparation/setup
phase for index maintenance and its actual execution. Because of the large variety of
XML documents and formats that DB2 strives to supporting, it is not possible to
assume that either only very large or only very small documents are processed.
However, we do observe that applications that process large numbers of small
documents (less than 50kb) are a lot more common than applications that process
large documents (multiple or even hundreds of MB). Additionally, many applications
require high insertion rates. Therefore, it makes sense to optimize for small to
medium-sized documents. This means that setup costs for performing the index
maintenance for a single document should be kept small as the runtime part will be

small as well.

Critical for the performance of XML index maintenance is to efficiently identify the

subset of indexes that are affected by the insertion of a new document. This requires
matching of the XMLPATTERNs in the index definitions against the nodes of an
incoming XML document. When considering data structures for this process, trees
come to mind. The paths from all XMLPATTERNs of all indexes that are defined on
the XML column could make up the branches in a pattern tree with some nodes
having attached actions (generate key). The actions could be both on leaf and non-leaf
nodes as it is possible to index both /event/header (atomize the entire subtree)
and /event/header/applicationID. It is possible to navigate this pattern
tree in parallel with and based on the current context of the inserted document. To
give an example, with the insertion of a root element event, the context pointer
would move to the node event in the tree. When a child element header and later
applicationID is seen, we first move to header, then to applicationID in
the tree. The attached action to applicationID would direct us to generate an
index key for the index in Figure 1.
Such a tree can provide very good runtime performance because the current context of
the incoming document immediately determines the indexes to be maintained. In
contrast to it, the setup costs to create such a tree are high and the integration of
patterns with wildcards would make it complex to handle. For each step of every
pattern some processing is needed to construct the tree because the tree is assembled
from all patterns which need to be inserted into the tree, step by step resulting in the

tree’s nodes. Wildcards would either need to be expanded with all possible
combinations or handled separately.

Another approach is similar to the handling of relational indexes, i.e. to manage index
information on a dedicated chain, i.e., a linked list. For every node of the incoming
document, the chain would be traversed and every index pattern compared to the

current node. Because indexes are already chained in DB2, the setup cost is minimal.
The downside is that the run time cost is high and on the order of n × m, where n is

2 We distinguish between index metadata in the catalogs – seen by the user – and that metadata
stored in the index object’s header (b-tree) itself. For performance reason only the metadata
from the index object, not from the catalog is used which might not be obvious.

517



Index Challenges in Native XML Database Systems 11

the number of indexes and m the number of nodes in the incoming document. In the

following we discuss techniques to reduce this run time cost.

Starting from the Leaves
To determine whether an index key needs to be generated we have to check whether
the XMLPATTERN matches the current node and its path. This could be done in an
ongoing fashion top-down, similar to the pattern tree, or bottom-up for the currently
processed node. In the bottom-up approach, we first check the last step in the pattern
against the current node’s name. If it matches, the node’s parent is checked against
the parent step in the pattern and so forth till the root is reached and we have a match.

Since DB2 internally uses 32 bit integer values (stringIDs) to encode node names, the

comparison of the names is fast. Because the most common case is a non-match of the

current node, the pattern checking usually is only a single integer comparison per
index and node (as opposed to comparing entire paths). However, considering the

potentially large number of nodes per document and the required number of indexes,
the effort per document is still high.

Late In, Early Out – Aggregated Path Information
When looking at applications and their XML documents we observe that usually only
leaf nodes are indexed because they are the nodes where relevant business data is
located in a document tree. This observation can be used to speed up index
maintenance because for any given node in the document the system only needs to
check for index matches if there are any XMLPATTERNs of the same depth. During
the index definition at DDL time the database system can analyze the XPath regarding
its minimum and maximum level and for the presence of wildcards.
For the path /event/header/applicationID both the minimum and
maximum path level is 3 because it is an absolute path. For the path
/event//applicationID the minimum level is 2 and the maximum is the

largest supported document depth, which is 125 in DB2.

At runtime, when the information for all present indexes is available and the

environment for index maintenance is being initialized, the aggregated minimum and
maximum path level across all participating indexes can be computed. Later, during
the actual insert processing when a document is parsed, we only need to check for
matching indexes if the current node of the document is within the minimum and
maximum level of the defined indexes.

Given that many XML documents fan out over the first few levels and that wildcards
are rarely used in indexes –at least for first steps in a pattern– we can avoid index
processing for those levels with our “Late In, Early Out” strategy. We start as late as
possible (minimum) and try to get out of path matching as early as possible
(maximum).

518



12 Henrik Loeser, Matthias Nicola, Jana Fitzgerald

4 Performance Evaluation

If only few indexes are present – typically up to 20 in environments with only one

document type per XML column – then the above described strategy based on index
chaining with some of the discussed performance enhancements works fine and has a
good balance between setup costs and runtime costs. However, it will not scale well
for the extreme use case with possibly hundreds of indexes.

Test Scenario:

Since the actual XML data of the financial application logging scenario was not
available to us in sufficient quantities, we designed a test scenario that exhibits similar
characteristics. This test scenario is based on the open-source benchmark TPoX [9]
which simulates a financial online brokerage scenario. It exercises XML inserts and
XML index maintenance (among other things). The TPoX data set includes data
compliant with FIXML, the XML implementation of the Financial Information
eXchange (FIX) standard which contains hundreds of optional attributes and
elements. These characteristics as well as document sizes ranging between 1KB and
20 KB in size make TPoX a suitable substitute to mimic the insert and index
requirements that we found at XYZ Bank.

For our tests we defined different numbers of indexes (60, 110, 160, and 210), such
that for any given document there are always 10 indexes that match nodes in the

document, plus 50, 100, 150, or 200 indexes that do not match any nodes in the

document. The number of non-matching indexes is the variable aspect in our
experiments.

Each of the matching indexes requires an update after each document insert, whereas
any non-matching index does not need to be updated during a document insert. Using
the multi-user TPoX insert workload, we executed tests in which 100 concurrent users
inserted 7000 documents each, i.e. 700,000 documents total. The TPoX workload
driver captures the throughput in inserts per minute as well as other statistics [4].

Test equipment and configuration
Tests were run on the following hardware:

• Processor: 4 dual-core 1.9 GHz POWER5 processors
• Memory: 32 GB
• Operating System: AIX v5.3
• Storage: 32 external disks spread over two DS4700 disk array

subsystems with a capacity of 72 GB per disk

4.1 Simple Index Chaining

In a first set of tests we measured the performance of the simple chaining approach
(described in the beginning of section 3.3) with the “Late in, Early out” enhancement
applied. The results for different numbers of indexes are shown in Figure 3.

519



Index Challenges in Native XML Database Systems 13

The vertical bars in Figure 3 show the throughput in inserts/min for different numbers
of non-matching indexes. Not surprisingly, the highest insert throughput of 96,463
inserts per minute was achieved for the smallest number of indexes, i.e. just 10
indexes which match nodes in every document. Then we increased the number of
indexes so that for any given document there are 50, 100, 150 or 200 indexes that did
not match nodes. For the largest number of indexes the insert throughput was reduced
by 41% to 56,615 inserts per minute. The percentage by which the throughput is
reduced is shown by the curve in Figure 3. The throughput reduction is caused by
increasing CPU consumption to compare nodes of the incoming XML documents
against the chained list of XML indexes.

Clearly, for a very insert-intensive scenario such as the financial application logging,
the performance overhead of the large number indexes is not acceptable. Thus, further
optimizations are required to meet the performance requirements.

Figure 3: Insert Performance relative to the number of Indexes (simple index
chaining approach)

4.2 Multi-level Chaining

The pattern tree approach discussed earlier is expected to meet the performance

requirements for the runtime execution part. The reason is that at runtime we would
move up and down in the tree based on the context of the incoming XML data. Non-
matching indexes impact the navigation slightly because they add additional choices

520



14 Henrik Loeser, Matthias Nicola, Jana Fitzgerald

when moving to a child node in the tree and contribute to the overall size of the

pattern tree. However, during the runtime setup when the metadata from the physical
objects can be combined, the more patterns are added to such a tree during this phase,
the more time it takes. Thus, pattern trees are not our preferred choice as they don’t
keep the desired balance between setup and execution costs.

We mentioned earlier that we found chains to work well for a small number of
indexes. In situations where a large number of indexes is required, documents are
typically highly variable and the elements and attributes that need to be indexed are
distributed across several different levels in the documents. We can use this
observation to split the index chain and manage it in smaller chunks. Thereby, we can
get back to the short chains which are efficient and meeting the simplicity
requirement. One obvious way of splitting up the index chain is by the matching
level, i.e., the document depth that the XMLPATTERN of an index definition points to.
For every possible level, in DB2 up to 125 levels, we maintain a separate chain. In the

application logging scenario the documents vary in structure and depths with a typical
maximum depth of 10 to 15, with indexed nodes being located anywhere from level 2
to 15. This means that the list of indexes is split into 14 chains. To account for
indexes with * and //, the chain for level 0 is used and is always checked. Level 0 can
be used for this special purpose because it does not contain any other indexes. The

multi-level chain design is illustrated in Figure 4. Additionally, the “Late in, Early
out” optimization is used to process the chains.

Figure 4: XML Index lists for each path level

Performance results
With the new approach of managing the indexes in separate chains for each path level
we repeated the insert performance tests. As illustrated in Figure 5 the maximum
overhead of index maintenance is reduced to 6%. Also for more moderate numbers of
non-matching indexes, such as 50, the impact of indexes that do not match nodes in
every document is as low as 2%. What is also visible is that even the case with zero
non-matching indexes benefits from the separation.

521



Index Challenges in Native XML Database Systems 15

Figure 5: Insert Performance relative to the number of Indexes (multi-level
chaining approach)

5 Conclusions and Outlook

In this paper, we discussed the special requirements coming from novel XML-based
database application – application logging. It poses special requirements towards
native XML database systems because of the mix of all kinds of different XML
documents that are stored in a single XML column. In order to support search
performance indexes need to be defined for the different document types. This leads
to the presence of sometimes multiple hundred XML indexes, something unknown
from the relational world. Because application logging is an insert-driven application
the question is how the scalability is impacted by so many indexes. As we have

shown in this paper, both the performance requirements as well as the design
principle of simplicity and maintainability can be met with an approach that is based
on what is done in the relational world, index chaining. We have extended this to
multi-level chaining and enhanced how and when the index patterns are matched
against the currently processed document. With these techniques DB2 scales well in
this rather extreme application scenario.
The application logging does not only create challenges for the indexing in native

XML database systems, but also for the storage components. The log data from
dozens or hundreds of application generates a tremendous amount of XML data that
needs to be processed – inserted first and after a retention period moved out of the

522



16 Henrik Loeser, Matthias Nicola, Jana Fitzgerald

database system again. The size of the storage structures, the size of the generated
database transaction logs, and many more factors impact the scalability. We therefore
are looking forward to meeting those challenges by continuously improving XML
storage and indexing technologies.

References

[1] Balmin, A. et al.: On the Path to Efficient XML Queries, 32nd International Conference
on Very Large Databases, September 2006.

[2] Chicago Mercantile Exchange: “The Business Case for FIXML”, 2004,
http://www.cme.com/files/BusinessCaseFIXML.ppt
http://www.cme.com/clearing/cm/stan/index.html

[3] Malaika, S.: Get started with Industry Formats and Services with pureXML, IBM
developerWorks, http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0705malaika/

[4] Nicola, M., Kogan, I., Schiefer, B.: An XML Transaction Processing Benchmark, ACM
SIGMOD Conference , June 2007.

[5] Nicola, M., Van der Linden, B.: Native XML Support in DB2 Universal Database,
International Conference on Very Large Data Bases (VLDB), 2005.

[6] Pal et al.: Indexing XML Data Stored in a Relational Database, International Conference
on Very Large Data Bases (VLDB), 2004.

[7] The Financial Information eXchange Protocol, FIXML 4.4 Schema Specification
20040109, Revision1 2006-10-06
http://www.fixprotocol.org/specifications/fix4.4fixml

[8] XML on Wall Street, Financial XML Projects, http://lighthouse-partners.com/xml

[9] XML Database Benchmark, Transaction Processing over XML (TPoX),
http://tpox.sourceforge.net/

523



IT-Infrastrukturen für flexible, service-orientierte
Anwendungen - Ein Rahmenwerk zur Bewertung

Stephan Buchwald1, Thomas Bauer1 und Rüdiger Pryss2
1Abteilung für Daten- und Prozessmanagement, Daimler AG,

{stephan.buchwald, thomas.tb.bauer}@daimler.com
2Institut für Datenbanken und Informationssysteme, Universität Ulm

ruediger.pryss@uni-ulm.de

Zusammenfassung: Service-orientierte Architekturen (SOA) sind in vielen Unterneh-
men ein zwar noch entstehendes, aber bereits auch sehr wichtiges Thema. Ein entschei-
dender Aspekt jeder SOA stellt die Standardisierung der IT-Infrastruktur des Unterneh-
mens dar. Dadurch sparen Unternehmen Kosten, da sie die IT-Anbieter leichter aus-
tauschen können. Ferner reduziert sich durch Standardisierung der Wissensaufwand
bei der Softwareentwicklung und die Funktionalität der IT für die Fachanwender wird
so vereinheitlicht. Dies bedeutet, dass für jede im Unternehmen benötigte Funktiona-
lität ein Produkt ausgewählt werden muss, das dann für IT-Applikationen als Imple-
mentierungsplattform fest vorgegeben ist (bzw. eine kleine Anzahl unterschiedlicher
Produkte ggf. verschiedener Hersteller). Obwohl für eine solche Entscheidung die po-
tentiell relevanten SOA-Komponenten bekannt sein sollten, gibt es in der Literatur kei-
ne systematische und produktunabhängige Darstellung und Bewertungsgrundlage von
IT-Infrastrukturen für eine SOA. Da jedes Unternehmen unterschiedliche Anforderun-
gen an die Flexibilität einer SOA hat, ist zudem eine Betrachtung unterschiedlicher
Ausbaustufen der einzelnen SOA-Komponenten sinnvoll. Die Anforderungen der Un-
ternehmen erstrecken sich von mehr Funktionalität für die Benutzer bis hin zu mehr
Funktionalität bei der Prozesssteuerung. Darüber hinaus sollen Kosten infolge red-
undanter Implementierungen vermieden werden. Aus diesem Grund betrachtet dieser
Beitrag Komponenten einer SOA ebenso wie eine Darstellung ihres Zusammenspiels
in einer IT-Gesamtinfrastruktur. Der Fokus liegt auf Geschäftsprozessen, die geeignet
durch IT-Applikationen unterstützt werden sollen.

1 Einleitung

Ein entscheidender Erfolgsfaktor für Unternehmen ist ihre Anpassungsfähigkeit auf Ände-
rungen ihrer Umgebung [MRB08, Rei00, RMRD04, RMR07]. Diese Fähigkeit wird zum
Wettbewerbsvorteil, wenn die jeweiligen Anpassungen schneller und kostengünstiger rea-
lisierbar sind als bei Konkurrenten. Um diesen Vorsprung zu erreichen, wird die gefor-
derte Informationstechnologie (IT) immer mehr zum Schlüsselfaktor. Unternehmen haben
erkannt, dass die geforderte Anpassungsfähigkeit mit monolithischen IT-Systemen nicht
realisierbar ist. Um Anpassungen dennoch durchführen zu können, wurden im Laufe der
Zeit zahlreiche Technologien und Methoden in den Unternehmen etabliert. Diese wurden
eingesetzt, um die Abläufe zwischen den IT-Systemen abzubilden und damit die Integra-
tion zu ermöglichen.

524



Das kontinuierliche Anwenden neu entwickelter Technologien, mit dem Ziel der Integra-
tion von IT-Systemen, führte zu immer komplexer werdenden Unternehmenslandschaf-
ten. Die Komplexität ist in der Nutzung unterschiedlicher Integrationslösungen begründet,
was zu intransparenten Abläufen geführt hat [RD00]. Erschwerend kommt hinzu, dass
zusätzlich zur fehlenden Transparenz der Abläufe im eigenen Unternehmen auch die Be-
ziehungen mit Partnern immer komplexer werden. Um dennoch die Transparenz dieser
komplexen Abläufe zu erhöhen, werden diese losgelöst von den IT-Systemen dokumen-
tiert, d.h. auf einer fachlichen Ebene. Dies bildet auch die Grundlage für Optimierungen.
Diese Abläufe stellen die fachlichen Anforderungen dar, die von den IT-Systemen erfüllt
werden müssen, um die Geschäftsfähigkeit des Unternehmens sicherzustellen.
Das Problem der Anpassungsfähigkeit resultiert aus der Notwendigkeit zur effizienten
Abbildung der fachlichen Anforderungen, repräsentiert durch die Abläufe im Unterneh-
men, auf die IT-Systeme. Die fachliche Sicht muss sehr viel stärker betont werden als
bisher. Dazu werden die Fachanwender des Unternehmens häufiger in die Anpassung der
IT-Systeme einbezogen. Die bisher lang andauernden Software-Entwicklungszyklen wer-
den durch diese Maßnahme kürzer, da Änderungen des Fachanwenders gezielter in die IT
überführbar sind. Aus diesen Gründen müssen die fachliche und technische Sicht eines
Unternehmens enger aufeinander abgestimmt werden.
Getrieben durch diese Erkenntnis versuchen Unternehmen ihre vorhandene Systemland-
schaft service-orientiert auszurichten [Erl05]. Aus fachlicher Sicht beschreibt ein Service
eine Funktionalität, die im Unternehmen angeboten oder verwendet wird. Die Einführung
von Services und dazu notwendiger Technologien und Methoden führt zu einer service-
orientierten Architektur (SOA). Darunter versteht man ein Architekturparadigma, welches
das Modellieren von Services, das Ausführen von Services sowie das Kapseln von Funk-
tionalität durch Services und die service-orientierte Softwareentwicklung unterstützt. Hier-
unter fallen vor allem die Ausrichtung der IT an fachlichen Anforderungen und die schnel-
le Reaktion auf (geänderte) fachliche Anforderungen. Darüber hinaus bilden Service-
Prinzipien wie Kapselung, lose Kopplung, standardisierte Schnittstellen, Auffindbarkeit,
Wiederverwendbarkeit und Autonomie von Services die Basis für eine SOA [Erl05].
Wesentlich für die Realisierbarkeit dieser Funktionalitäten ist eine standardisierte, service-
orientierte IT-Infrastruktur. Diese beinhaltet funktionale Komponenten zur Modellierung
von fachlichen Anforderungen und deren Abbildung auf IT-Systeme. Die IT-Infrastruk-
tur muss so gestaltet sein, dass die genannten SOA-Prinzipien umgesetzt werden können.
Um die fachlichen Anforderungen abzubilden, werden Geschäftsprozesse modelliert, die
die Abläufe im Unternehmen beschreiben [RD00]. Änderungen an Geschäftsprozessen
müssen gestützt durch die IT-Infrastruktur flexibel auf die Implementierung abgebildet
werden können. Sowohl die Geschäftsseite (z.B. Änderungen von gesetzlichen Rahmenbe-
dingungen) als auch deren fachliche Umgebung (z.B. organisatorische Umstrukturierung)
lösen Änderungen aus. Außerdem können Änderungen durch die Umgebung der Imple-
mentierung (z.B. dem physischen Ort der Service-Implementierung) initiiert werden.
Um Unternehmenslandschaften und deren IT-Systeme möglichst flexibel in einer SOA be-
treiben zu können, ist eine IT-Infrastruktur notwendig, welche die dafür geeigneten Kom-
ponenten verwendet. Obwohl Hersteller, Gremien und Autoren zahlreiche SOA-Produkte
und -Konzepte beschreiben, gibt es keine konzeptionellen und plattformunabhängigen
Betrachtungen von Komponenten sowie deren Funktionalität und Zusammenspiel. Des-

525


