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Abstract: OpenID is a user-centric and decentralized Single Sign-On system. It en-
ables users to sign into Relying Partiesby providing an authentication assertion from
an OpenID Provider. It is supported by many leading internet companies and there
are over a billion accounts capable of using OpenID. We present a security analysis
of OpenID and the corresponding extensions and reveal several vulnerabilities. This
paper demonstrates how identity information sent within the OpenID protocol can be
manipulated, due to an improper verification of OpenID assertions and no integrity
protection of the authentication request.

1 Introduction

The web applications’ de facto standard is the ”username/password” authentication over
an TLS/SSL [DA99, FKK96] secured connection. However, this mechanism is an unac-
ceptable solution for the internet today, because it leads to several security problems, the
number of usernames and passwords to remember being the worst. It leads to forgotten
passwords, resulting in the need of a password renewal over e-mail and/or low-entropy
passwords, which are easy to remember (and easy to guess as well). In order to solve
these problems, Single Sign-on systems have been introduced and their goal is to authen-
ticate a user only once and obviating the need of re-authentication. A prominent player
on this field is OpenID [FRHH07]. It authenticates a user against a web application us-
ing an authentication assertion gained by a trusted third party. The biggest supporters of
OpenID count Google, Microsoft, Yahoo, MySpace, Verisign, GMX/Web.DE or France
Telecom and this provides for a solid user-base of more than a billion OpenID-capable
users worldwide. Besides, many companies already support OpenID authentication, in-
cluding Facebook, Sears, KMart or LiveJournal.

2 Related Work

Microsoft Passport has been analyzed by Kormann and Rubin [KR00] and several weak-
nesses have been found. They are based on redirecting the user to a bogus Passport server,



either by deploying a fake merchant site and luring unsuspicious users to this site (e.g.
through phishing attacks) or actively by attacking the DNS or modifiying a response from
a legitimate service provider. The bogus server may act as a proxy and thus obtain the
user’s credentials. Microsoft Cardspace - the successor of MS Passport - was analyzed
by Gajek, Schwenk, Steiner and Chen [GSSX09], who were able to steal a user’s secu-
rity token and subsequently impersonate him. SAML, an XML-based standard also used
widely to encorporate Single Sign-On, was analyzed by Groß [Gro03], who intercepted
the authentication token from a referer tag by redirecting the user to a server under the
adversary’s control. His analysis led to a SAML revision, which was later proven by Groß
and Pfitzman [GP06] to be also vulnerable. Pfitzman cooperated with Waidner [PW03] on
an analysis of another SAML based Single Sign-On system - the Liberty Single Sign-On
protocol - and found similar flaws.

OpenID has not yet been examined with respect to security thoroughly. Eugene and
Vlad Tsyrklevich [TT07] presented several OpenID Authentication 1.0 related attacks
at the Black Hat USA 2007 Conference and pointed out phishing and unauthenticated
Die-Hellman Key Exchange as the biggest shortcomings of OpenID. Shakir James [Jam]
analyzed Web Single Sign-On Systems in his report and again identified phishing as the
major security issue regarding OpenID and called attention to the lack of security related
material in the documentation of the OpenID Suite. Newman and Lingamneni [NL08]
have conducted an attack which results in the victim being logged in at the Relying Party
as an adversary (Session Swapping). This is possible due to the lack of any bond between
a positive authentication assertion from the OpenID Provider and the victim’s User agent.
Barth, Jackson and Mitchell [BJM08] proposed a mechanism to mitigate this attacks by
a secret token validation technique, where the Relying Party generates a fresh nonce at
the start of each protocol flow, stores it in the user’s browser-cookies and simultaneously
appends it to the authentication request. The OpenID Provider returns the nonce in the
authentication response. The user’s cookie must match the nonce in this response in order
for the User to become authenticated at the Relying Party.

3 OpenID Authentication 2.0

3.1 OpenID Roles

• The User is an entity wanting to authenticate against a Relying Party with his digital
identity.

• The Identifier is generally a url, representing the User. It points to a resource, which
holds information such as the User’s OpenID Provider url, version of OpenID which
the OpenID Provider is compatible with etc.

• The Relying Party is an entity accepting an assertion from an OpenID Provider,
representing a digital identity of a specific User.

• The OpenID Provider or Identity Provider (interchangeable terms) is responsible
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for authenticating the User against a Relying Party, therefore it is the trusted third
party on which the User as well as the Relying Party rely. In order to do so, the User
must authenticate against the OpenID Provider first and so prove his digital identity.
This identity is then used to sign-in the User at the Relying Partyby accepting a
security assertion from the OpenID Provider.

• The Identifier host is the host, where the Identifier-describing resource resides.

3.2 How does OpenID work?

OpenID is a suite of protocols, which enables users to authenticate against multiple web
applications (Relying Parties) using only a single identity. In order to do this, the user
must create such an identity at an OpenID Provider of his choice, link this identity to any
Relying Party and use it afterwards as a key, proving his identity at the Relying Party.
The concept of identity linking (shown in Figure 1) is a mechanism to create a trust re-
lationship between the Relying Party and an OpenID Provider. Afterwards, the Relying
Party recognizes the user by his OpenID Provider-identity. The OpenID Provider-identity
is transported to the Relying Party in form of an assertion from the OpenID Provider.

User Agent

Authentication Layer

username/password

Relying Party

RP

internal assets

Identity Provider

[ OP authentication ]
username/password

infocard

client certificates

no authentication

Note: here the user authenticates
with his OpenID Identity

Figure 1: The OpenID Authentication Concept

A typical OpenID Authentication 2.0 Protocol Protocol flow corresponds to Figure 2 and
runs as follows:

1. OpenID Authentication 2.0 Protocol Protocol is initiated by the User by requesting
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the Relying Party’s site.

2. The Relying Party responds with its login page presenting an input field for an Iden-
tifier.

3. The User enters his Identifier and submits the login page form, i.e. requests OpenID
Authentication 2.0 Protocol.

4. The Relying Party performs discovery upon the received Identifier i.e. retrieves the
data resource held at an Identifier’s url and

5. subsequently receives metadata representing the User and his OpenID Provider.

6. Based upon metadata from the previous step, the Relying Party requests an associa-
tion from the OpenID Provider, i.e. requests to exchange a shared secret.

7. The OpenID Provider responds with a shared key, which is encrypted (either using
HTTPS as transport protocol or using Die-Hellman Key Exchange).

8. The Relying Party then redirects the User to the OpenID Provider by sending a
HTTP(S) response with the redirect header pointing to the OpenID Provider’s end-
point.

9. The User is presented with a login form at the OpenID Provider.

10. The User fills out the login form and submits it, hence authenticating against the
OpenID Provider.

11. The OpenID Provider verifies the User’s credentials and, if these are valid, redirects
the User to the Relying Party along with the authentication result (MAC-protected
by the previously established shared key). Again, this is done using a HTTP(S)
redirect with the ’Location:’ header pointing to the Relying Party’s endpoint. The
assertion in this request to the Relying Party indicates the login success from the
OpenID Provider and the MAC ensures the integrity of the response.

12. According to the OpenID Provider’s response, the User is either authenticated against
the Relying Party or presented with an adequate error message.

The transport protocol used in OpenID Authentication 2.0 Protocol flow is either HTTP or
HTTPS (HTTP used within a TLS/SSL secured channel). Independent of the method
used (POST, GET), OpenID facilitates a key-value representation of its payload, e.g.
”openid.claimed id = http : //sovo.myopenid.com” or ”mode : error”. We refer
to such pairs as OpenID parameters. OpenID uses HTTP 302 status codes to redirect the
user from the Relying Party to the OpenID Provider and vice versa. An example (based
on Figure 2) of such redirection is given in the following listing:

1. The user initiates a HTTP request in step 3.

2. The user obtains a response to this request in step 8, comprising the HTTP 302
status code as well as the ”Location:” header set to the desired destination, while the
OpenID parameters are a part of the URL in this header.
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Figure 2: Typical OpenID Protocol Flow

3. The user requests the URL contained in the ”Location:” header from step 8.

An analog procedure is used to redirect the user back to the Relying Party. The security
of OpenID messages can be divided into transport layer security (i.e. either using HTTP
or HTTPS) and message level security (e.g. message authentication codes or MACs). A
MAC is a hash-value generated over a specified list of parameter values xor-ed with the
shared secret (pre-established in steps 6 and 7 in Figure 2), thus providing integrity of
the OpenID message. Due to compatibility with specific OpenID flows which are not
discussed in this paper, the only message in the whole OpenID flow, which is secured by
the MAC, is the message from step 11 (see Figure 2).

3.3 Extensions

The basic OpenID parameters, which are compulsory and neccessary in any valid asser-
tion, form the minimum (later also refered to as ”void”) assertion representing a posi-
tive or negative result of authentication at the OpenID Provider. However, OpenID al-
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lows for extra identity information, such as email, name, date of birth and even self-
defined parameters. These are facilitated through so called extensions. These can be ap-
pended to the compulsory parameters via a mechanism very similar to XML namespaces.
Whereas standard parameters are key-value pairs in the form ”[openid-prefix].[parameter-
name]=[parameter-value]”, e.g. ”openid.identity=fooname.fooprovider.com”, extensions
must be defined first by a namespace of the form ”[openid-prefix].[openid-extension-
alias]=[extension-url]”. For instance, a namespace may be set by ”openid.ns.sreg =
http : //openid.net/extensions/sreg/1.1” as is the case with OpenID Simple Reg-
istration Extension 1.0 [HDR06], and any parameters within this extension can be fur-
ther addressed with help of the previously defined alias, e.g. ”openid.sreg.email =
my@example.email”. Whereas OpenID Simple Registration Extension 1.0 can be used
to send only a small set of predefined attributes, OpenID Attribute Exchange 1.0 [HBH07]
allows to send custom attributes, which makes OpenID very flexible.

4 OpenID Security Analysis

In this section, we discuss several shortcomings that exist, if HTTP endpoints are used at
the Relying Party and the OpenID Provider, though the User experiences HTTPS indica-
tors at both of these parties.

4.1 Wrong Approaches on Transport Security

The endpoints of many OpenID Providers or Relying Parties are strictly HTTPS based.
The problem is, if they are addressed via HTTP, they simply redirect the request to the
HTTPS equivalent and proceed with the protocol flow (see Figure 3). This section com-
prises the dangers of such a workaround. The User’s Identifier is responsible for the
OpenID Provider’s endpoint. In general, the User is given his identifier by the OpenID
Provider, hence the OpenID Provider is overall responsible for the HTTP/HTTPS na-
ture of its endpoint. Furthermore, the Relying Party sending an authentication request
to the OpenID Provider is responsible for the return to parameter representing the Rely-
ing Party’s endpoint, where the User will later be redirected to. If both of these endpoints
are HTTP URLs, then both of the User’s redirects (steps 8 and 11 in Figure 2 or 9 and 15
in 3) are subject to forgery. The fact, that both of these parties may only allow commu-
nication over a TLS/SSL secured channel yields a false impression of security from the
user’s point of view.

The individual steps (of which 8,9 and 14,15 represent the redirects) represent the follow-
ing workflow:

1 The User visits http://www.plaxo.com and klicks on the Sign in link.

2 The User receives a response redirecting him to
https://www.plaxo.com/signin?r=/events.
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Figure 3: Reducing complexity to HTTP

3 The User chooses to sign in with OpenID, inserts his OpenID Identifier, and subse-
quently submits the form.

4,5 The Relying Party receives the User’s meta-data and searches for the corresponding
OpenID Provider.

6,7 An association must be made prior to exchanging a secret. This is done only once
and left out in later iterations of the protocol flow.

8 The User receives a response within a secured channel, i.e. using the HTTPS proto-
col, with the location header pointing to http : //www.myopenid.com/server?openid.assoc
..., i.e. the unsecure HTTP protocol.

9,10 The initial request at the OpenID Provider is a HTTP request, hence resulting in
another redirect advising the User to move to HTTPS.

11-14 The User inserts his credentials in a form and, in case he successfully authenti-
cated against the OpenID Provider, he gets redirected back to the Relying Party
with the authentication result (assertion) attached as GET parameter in the ”Loca-
tion” header.

15 The User evaluates the ”Location” header from the previous response, containing the
HTTP Endpoint of the Relying Party, and gets redirected there by the User agent.
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In Figure 3, the authentication request (represented by the steps 8 and 9) can be modi-
fied after the User follows the redirect command (step 9). The authentication response
(steps 14 and 15) can be modified as well (step 15). In Figure 4, we have stripped the
communication up to these redirects. The two disctinct paths still represent a problem for
a potential attacker, as he would need to attack these messages at two distinct network
nodes. However, if we think of the User as a network node, which uses a gateway (e.g. an
internet provider), both of these redirects may share several nodes on their way. If any of
these shared nodes is attacked, then both of these redirects are susceptible to forgery as the
information within is transported in plaintext. From the User’s point of view, this attack
is hard to detect, because it represents the standard OpenID flow and the User actually
observes all neccessary HTTPS indicators.

Identity Provider

Relying Party

RP

User Agent

TLS/SSL

TLS/SSL

89

14 15

Figure 4: Reducing complexity to HTTP with emphasis on redirects

The topic discussed in this section does not present a threat on its own, it rather provides a
perfect fundament for actual attacks discussed in the following sections of this document
(i.e. Parameter Injection and Parameter Forgery).

4.2 Parameter Injection

In this section, we exploit the message level security mechanism of OpenID - MAC. With
respect to MACs, the two most important OpenID parameters are openid.sig, rep-
resenting the authentication code itself, and openid.signed, containing the hashvalue
computed over all parameters and xor-ed with the pre-established shared key. The OpenID
Authentication 2.0 Protocol Specification states, that if a positive assertion (meaning the
User authenticated successfully) is received by the Relying Party, it must not be accepted
until it is verified first. Any successful verification must satisfy, among others, the con-
dition that ’the MAC of the assertion is valid and all required fields are MAC-protected’.
Hence if a parameter is not defined as required (speaking of which, none of the identity-
related extension parameters are required) and is not listed in openid.signed, it is
automatically subject to forgery. In other words, appending arbitrary unused parameters to
a MAC-protected message does not invalidate the assertion’s MAC and the message stays
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intact and valid in the eyes of the Relying Party.

The MAC-protected parameters are all part of the value of the ”openid.signed” parameter.
Based on this parameter, we have the following options (examples make use of the OpenID
Simple Registration Extension 1.0):

• parameter: ”openid.signed=...sreg.nickname,sreg.email,sreg.fullname...”

– changing the ”openid.sreg.email” value in this setting would lead to a MAC
verification missmatch, thus leading to an invalid assertion

– however, appending the date of birth by appending the parameter ”openid.sreg.dob”
would keep the MAC intact, leading to a valid assertion

Parameters returned to the Relying Party are affected by the Relying Party’s request. The
request contains a list of parameters, which should be returned by the OpenID Provider
(e.g. ”openid.sreg.required=...”).
The OpenID Simple Registration Extension 1.0 states, that the ”openid.signed” list con-
tained in the following response must include the returned ”sreg” parameter names and
that the Relying Party bears responsibility of how to behave in case of missing required
or additional unrequested parameters. As a consequence, the Relying Party may accept
unsolicited parameters either as part of a normal behaviour, or as an implementation er-
ror. In fact, the attacker does not care which of both behaviours is the case, as long as
such parameters are accepted. In the next section, we show how we can use such ”op-
timistic” behaviour to manipulate parameters, which have explicitely been requested and
are MAC-protected.

4.3 Parameter Forgery

In the ’Parameter Injection’ Section, we have shown how we can append our own param-
eters to the OpenID Authentication 2.0 Protocol response in the authentication phase. The
problem, however, was that we were not able to append parameters which already were a
component of the response, because they were part of the MAC and hence any modifica-
tion would lead to a MAC-verification mismatch. Therefore we were only able to inject
unused parameters. In the parameter forgery attack, we go a step further by removing
parameters from the list of requested parameters ergo leaving it ”void”. As a result, in
combination with parameter injection, we can modify any parameters we want, of course
with the exception of obligatory OpenID Authentication 2.0 Protocol parameters, which
must always be part of the MAC (marked as required in the specification).

Parameter Forgery is based on the fact, that although the OpenID Authentication 2.0
Protocol responses in the authentication phase are MAC-protected by the OpenID Provider,
the request does not include any MAC and is therefore prone to forgery. The integrity of
a request is in general secured either by the transport layer (using HTTPS) or not secured
at all. In many scenarios, however, the integrity is naively achieved through the usage of
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”semi-effective” HTTPS redirects, which do not take care of the integrity thoroughly, e.g.
if the redirect is HTTPS, but the destination ’Location:’ header url inside is HTTP. Such
a redirect is only secure on the way from the Relying Party to the User, but not further.
Under such circumstances, there is no integrity on the transport layer and since there is no
integrity at the application layer, any adversary acting as ’man-in-the-middle’ may modify
the requests.

The reason why the whole request modification effort is performed is actually modify-
ing the response by injecting parameters. According to a property of a modern identity
metasystem - ’minimal disclosure’ - the OpenID Provider should protect its User’s pri-
vacy by returning only those parameters which it has explicitely been asked for, hence
the OpenID Provider must check the request for requested parameters (this is not postu-
lated by the OpenID Authentication 2.0 Protocol specification explicitely, but it is gen-
erally the case). These parameters are usually requested in two ways: as part of the
openid.sreg.required field, meaning that these parameters are needed to success-
fully sign in the User, or they are listed in the openid.sreg.optional field, mean-
ing they are desired, but the Relying Party does not rely on them to be returned from the
OpenID Provider (on that matter, one can similarly attack any other OpenID extension, e.g.
OpenID Attribute Exchange 1.0). It then depends on the OpenID Provider how it copes
with such requested parameters, but if a parameter is not part of the ’required’ or ’optional’
field, it should not be sent (of course with the exception of the assertion-relevant required
parameters, which are sent always, but generally do not contain any of the User’s private
data). There is a direct relationship (the response-parameters dependend on the request-
parameters) between the ’required’ and ’optional’ fields in the request and the returned
fields in the response.

That being said, demanding no privacy-relevant parameters in the request inevitably
leads to sending no privacy-relevant data in the response, ergo ”no parameters asked”
means ”no parameters returned”. In such cases, only the basic assertion, specifying that
the User has either successfully signed into the OpenID Provider or not, is sent back to the
Relying Party.

The reason why such ’void’ assertions may be very interesting for an adversary lies in
the ’Parameter Injection’ attack. If we strip the request of any demands (no parameters
marked as required or optional), then there is no reason why an OpenID Provider would
send any extra data back to the Relying Party (see Figure 5). Consequently, the OpenID
Provider ends up sending a ’void’ assertion leaving all OpenID User relevant data vulner-
able to the parameter injection. The adversary is then feasible to change almost anything.

We can use this along with modifying the extension parameters. Besides some extensions,
which are solely informative and provide only data retrieval methods, OpenID also allows
special extensions, which enable the Relying Parties to store data at the OpenID Provider.
This way, the severity of this attack grows, because changing such parameters may affect
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Figure 5: Parameter Forgery combined with Parameter Injection

the OpenID Provider and all Relying Parties therefrom.

5 Conclusion & Future Work

We have provided a description and analysis of the OpenID Single Sign-On protocol and
its extensions. The model of OpenID seems to be a suitable Single Sign-On solution for
the Internet of today. It has remarkable usability properties and the concept of extensions
makes it very flexible. Besides that, giving the control in the user’s hands with such a high
grade of decentralization rises its popularity significantly. Unfortunately, there are a lot of
drawbacks and OpenID has not yet learned from the mistakes of the past.

We have shown that an adversary is able to change arbitrary OpenID extensions’ parame-
ters. We recommend that Relying Parties accept only MAC-protected parameters and more
importantly - protect the authentication requests with a MAC too. This becomes even more
critical when OpenID Attribute Exchange 1.0 is used, due to its ability to change identity
information at the OpenID Provider.
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Although OpenID has a great potential, but yet again, a working protection against identity
theft as one of the biggest challenges of browser-based Single Sign-On systems remains
still unsolved.
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