
An MTM based Watchdog for Malware Famishment in

Smartphones

Osman Ugus and Dirk Westhoff

Department of Computer Science, Hamburg University of Applied Sciences (HAW)

Berliner Tor 7, 20099, Hamburg

{osman.ugus, dirk.westhoff}@haw-hamburg.de

Abstract: Due to their various wireless interfaces, a continuously increasing number
of fishy Apps, and due to their raising popularity, smartphones are becoming a promis-
ing target for attackers. Independently of the point of entrance, malwares are typically
attached to an App to perform their malicious activities. However, malware can only
do harm on a smartphone if it is executed. We thus propose a malware prevention ar-
chitecture for smartphones that exploits App signatures, process authentication during
their creation, and process verification during their execution and scheduling. The pro-
posed security mechanism will allow a smartphone to run only those Apps which are
classified as trusted (i.e., signed Apps) and which are not modified after their installa-
tion. The trust derived from the App signatures and a Mobile Trusted Module (MTM)
is propagated through the processes until their execution via process authentication.
The MTM serves as a trust anchor for our malware famishment in smartphones. This
work presents our solution conceptually. We will soon start with a proof of concept
implementation and a performance study using a software based MTM emulator.

1 Introduction

Companies are increasingly considering to migrate from conventional mobile phones to

the new smartphone generation. This would allow their employees to make phone calls,

read company emails, and pursue their works with customized Apps from one device e.g.,

while being on a business trip. Today’s smartphones are equipped with various inter-

faces such as GSM/UMTS, WLAN, BT, and NFC. Due to possible security exploits via

these interfaces, smartphones are much more vulnerable to a bunch of attack vectors than

conventional mobile phones [NKZS10]. Malwares are typically attached to an App and

perform their malicious activities whenever that program is executed. Once malware is

uploaded to a smartphone via one or another channel and may get sufficient access rights,

sensitive company information may eventually be revealed. Thus, company administrators

will only consider smartphones as a part of the company’s network topology, if the use of

the above described services on smartphones comes with a moderate level of security risk,

if at all.

As it is not always feasible to protect all channels against possible threats, we propose

the following approach for protecting a smartphone against incoming malware and ma-

251



licious Apps1: we simply allow malicious code to reside on the smartphone. However,

it is our objective to prevent the malicious code from execution. The prevention of ex-

ecution is achieved via App signatures, process authentication during their creation, and

process verification during their execution and scheduling during assigning CPU slots to

processes. The hash of Apps which are allowed to run on the smartphone are signed by

a Mobile Trusted Module (MTM). Then, only those Apps which are intact and classified

as trusted by the MTM are executed. Furthermore, we allow a creation of a new process

only if the process which initiates the creation is trusted. The trust is extended from the

first process init() whose trust is assured by the MTM via Message Authentication

Codes (MAC) and the verification of the signature of Apps being executed. Finally, we

modify the scheduler such that it assigns to a process CPU if it was authenticated during

its creation. All other running processes are rigorously forbidden to receive CPU slots.

Note that such a harsh security policy perfectly fits to the use case in which companies

equip their employees with smartphones but want to have a strict control over all software

legitimately running on the device. To establish a chain-of-trust we assume that an MTM

can be used as a trust anchor. We believe that, although at this point in time no concrete

MTM is available, in the near future smartphones will be equipped with such hardware

components. For our proof of concept implementation, we plan to use a software based

MTM implementation [EK11] based on the TPM emulator [SSM11].

The remainder of this work is organized as follows: Section 2 provides related work on

the use of MTM for smartphone security, Section 3 introduces our MTM based watchdog

architecture, Section 4 provides a security evaluation, and finally this article is concluded

in Section 5.

2 Related Work

The Mobile Trusted Module (MTM) [MTM10] is a security module that provides a root-

of-trust for integrity measurement in mobile devices. Integrity measurement is the collec-

tion of platform characteristics that affect the trustworthiness of that platform and putting

digests of those metrics in the MTM. The integrity measurements are stored in immutable

locations called Platform Configuration Registers. Transitive trust is used to extend the

trust to the system states and program code that are not in the MTM. For this reason,

the integrity measurement starts from a well-know state whose digest is known to the

MTM such as a power on self-test. A chain of trust over the system is established by

applying the transitive trust between the states by an Integrity Measurement Architecture

(IMA) [SZJvD04].

SELinux [SEL09] ensures Mandatory-Access-Control (MAC) as an additional access con-

trol to the conventional Discretionary Access Control (DCL) for Linux. SELinux uses

policies to allow access between objects and subjects. Policy-reduced integrity measure-

ment architecture (PRIMA) [JSS06] is an IMA Architecture based on SELinux. Other

IMA solutions that are not specific to smartphones include [NAZA09, LWPM07].

1Security is provided if the vulnerability/attack is already known in advance.

252



An attestation mechanism using an MTM for smartphones (Android) was recently pro-

posed in [NKZS10]. As there is no hardware implementation of the MTM for smart-

phones available yet, the authors used in their work a software implementation emulating

the MTM. The MTM is used for measuring the integrity of the system and reporting it

to a remote attestation entity. The integrity measurements are performed at the operat-

ing system level and at the application level which allows to detect malicious Apps and

any modification made by a malware on the classes loaded on the platform. The integrity

of the system is verified by a remote attestation entity by comparing the signed integrity

measurements (i.e., hash values of the Apps and system classes) received from the MTM

with the hash values that the system in a trustworthy state must have. Thus, this approach

allows a remote entity to detect if a smartphone is infected by a malware and the Apps

installed on the smartphone are intact. However, it provides no countermeasure to pre-

vent the execution of malware. Since continuously remote monitoring the integrity of a

smartphone is not a realistic option, the attacker has sufficient time to perform malicious

activities on the smartphone between two attestation phases and before a preventive action

is taken. On the contrary we propose a mechanism that detects any modification in the

system and immediately prevents the smartphone from running modified code.

3 MTM based Watchdog Architecture

Since our approach is based on processes and scheduling under Linux-kernel on top of

which Android is built, we briefly introduce it [BC00]. A process is an instance of a pro-

gram in execution. Every process is identified by a unique integer called the process ID

(pid). Scheduling manages switching between processes and selecting a new process to

run. A process switch is performed when the time slice (i.e., quantum) of the active

process expires. The scheduler selects the process with the highest priority to run

whenever it performs a process switch. The process priority is dynamically updated by

the scheduler for a fair CPU share between all processes. All the information related to

the scheduling is stored in the process descriptor whereas three parameters in a process

descriptor are of particular importance for this work: need resched, priority, and

counter. The need resched field is set to invoke the scheduler when the timer in-

terrupt terminates. The priority field determines the likelihood of a process for CPU

assignment from the scheduler. The counter is the CPU time left to the process before

its quantum expires. The relevant data structures for the process descriptor are the process

tabular (PT) and the various process control blocks (PCB). For each running process, the

PT contains a link to its process descriptor which contains the process’s relevant informa-

tion for storing respectively reloading it when the scheduler initiated context switching.

When a malicious process is detected, the MTM based watchdog proposed in this work

sets the need resched field of the current process and assigns the priority and

counter fields of a malicious process to minimum to block it from execution.

For a smartphone that eventually accommodates malware we propose to control i) the

execution of Apps such that only trusted Apps signed by the MTM are executed. Any

modification made on an App is detected when it is started, hence, modified Apps are

253



prevented from running on the system. We propose to extend ii) the scheduler such that

only authenticated processes (i.e., those created from a trusted process) receive CPU slots.

Additionally, and as a pre-requisite to the extension of the scheduler, iii) we authenticate

the processes during their creation. The root of trust for authentication is derived from

the verification of App signatures and the verification of the platform’s integrity provided

by the MTM. The proposed means ensure a preventive malware protection at a different

granularity and performance level. Verifying the integrity of Apps via digital signatures

will ensure that only trusted Apps which are not modified after their installation will be

executed on the system. Authenticated processes will ensure that although malware is

present it will never receive CPU slots and thus cannot behave maliciously. Our three

steps approach requires the establishment of a trust anchor for App signatures and process

authentication. Storage of a signing key in an immutable location of the MTM and its

availability to only authorized entities will build up the trust anchor for the App signatures.

The transitive trust and the sealed key storage offered by the MTM will build up the trust

anchor for the process authentication.

3.1 Assumptions

The proposed malware famishment approach relies on the following four assumptions:

1. The programs fork(), execve(), and the Completely Fair Scheduler (CFS)

from Linux are extended to be interfaced with the proposed security modules to

perform the required verification steps described in Section 3.3. We call them

fork++(), execve++(), and CFS++ from now on.

2. The MTM provides the integrity of the system up to the first process init() run-

ning in the system. This includes particularly the verification of the security modules

described in Section 3.3. This can be achieved by storing the hash values of those

modules into the MTM and by verifying them during the booting.

3. All processes running on the system are derived from init() via fork++() and

execve++() calls. The only way of assigning CPU cycles to a process is the sched-

uler CFS++.

4. The MTM is bootstrapped by its owner administrating it. That is, the keys for en-

cryption and authentication are generated and sealed2 in the MTM (See Section 3.2).

Moreover, the administrator of the smartphone (e.g., the company) let the MTM

sign the Trusted App List for the Apps allowed to run on the smartphone (See Sec-

tion 3.3).

2The MTM releases the content of a sealed storage only if the system is in a predefined status. The status can

be checked by attesting the integrity of some system files. We note that this approach is used in the TPM based

file encryption systems such as BitLocker Drive Encryption [BIT11].

254



3.2 Key Management

The proposed security architecture relies on the following keys and security primitives:

• Encryption key: the encryption key (Kenc) is a symmetric key used for encrypting

and decrypting the Trusted App List. It is sealed in the MTM and released if the

platform passes the integrity check during the booting.

• Authentication key: the authentication key (Kmac) is a symmetric key and used to

compute the Message Authentication Code (MAC) of process IDs (pid). It is also

sealed in the MTM and released if the platform passes the integrity check during the

booting. Kmac is shared between the Process Authentication Module (PAM) and the

Process Verification Module (PVM). PAM is used by fork++() to authenticate the

pid of processes before their creation with MACs. PVM is used by execve++()
and CFS++() to verify the pid of processes before their execution.

• MTM ownership key: the MTM ownership key (Kmtmauth) is a shared secret be-

tween the MTM and its owner administrating it. The owner of the MTM stores this

key outside of the MTM and uses it to let the MTM perform operations requiring

authentication such as signing or generating sealed encryption and authentication

keys.

• MTM signature key: the MTM signature key is a RSA public key pair. The private

part of the key (Privsig) is known only to the MTM. This key is never revealed

outside of the MTM and signature generations with it are performed within the

MTM. Signing a data with this key requires authentication with the MTM using

Kmtmauth. The public part of the signature key (Pubsig) is stored on the platform.

It is used to verify signatures generated by the MTM using Privsig.

3.3 Security Modules

The Android architecture with the additions required for realizing the proposed security

mechanism is depicted in Figure 13. The Android runtime is composed of the imple-

mentation of the core libraries e.g., for the Java programming language and the Dalvik

Virtual Machine (DVM) which executes each App with a separate instance. The DVM

uses the Linux kernel for low level functionality such as memory management and pro-

cess scheduling [AND11]. The following security modules need to be implemented in the

kernel space: App Verification module (AVM), Trusted App List (TAPL), Process Authen-

tication Module (PAM), Process Verification Module (PVM), Trusted PID List (TPIDL),

and the MTM. Please note that in this work we do not describe how these modules are

3We note that the proposed security concept relying on application signatures, process authentication and

verification can be employed in any system based on Linux. However, due to interfaces required for communi-

cating with the MTM and computing hash of application files, the implementation would vary depending on the

concrete system architecture.

255



implemented. Instead we purely focus on the functionality that should be provided by

them.

Figure 1: Android architecture with the proposed security extension.

MTM : The main task of the MTM module is to verify the integrity of the platform

during the booting and to store encryption, authentication, and the private signature keys

(Kenc, Kmac, and Privsig) in its protected locations. For checking the platform integrity,

the MTM compares the hash of the important system modules such as AVM, PAM, and

PVM with a snapshot of the last trusted state during the booting. The MTM releases the

sealed keys Kenc and Kmac when the integrity of the verified modules and configuration

files are intact.

Trusted App List (TAPL) : TAPL is the list of hash values of the trusted Apps encrypted

with using Kenc and signed with using Privsig. The hash values are signed individually

while the encryption is over the whole TAPL. Kenc is revealed to the AVM during the

startup when the MTM detects no tampering with the platform’s integrity. TAPL is de-

crypted at system’s startup and encrypted again at system’s shutdown. Hash values of

Apps stored in the TAPL allow to detect any modification made on the Apps after their

installation. Signing them allows the administrator to set the list of Apps which are al-

lowed to run on the system. Hence, declaring an App as trusted requires the knowledge of

Kmtmauth which is needed to let the MTM sign the hash value of the new App. Kmtmauth

is known only to the administrator of the smartphone and the MTM.

App Verification Module (AVM) : The AVM verifies the trustworthiness of an App be-

fore its execution in the Dalvik Virtual Machine (DVM). This is done by checking whether

the hash value of the App being run exists in the TAPL. The App is executed if the hash

value is in the list, otherwise it is terminated. The DVM incorporates this module to exe-

cute only allowed Apps. More specifically, during loading the App, the hash of the App

is computed and compared with the signed value in the TAPL. As the hash value of an

App changes in case it is altered, any modification on it is detected and the execution of

256



the App is terminated. The AVM decrypts the App Hash List every time it is loaded at

system startup and encrypts it while the system is shutting down using Kenc. The reason

of encryption is to block the system from running any App whenever a tampering with the

system is detected. This is true as the App verification would fail always as long as TAPL

is encrypted. The decryption key Kenc is revealed only if the system’s integrity is verified

by the MTM.

Trusted PID List (TPIDL) : TPIDL is the list of pids authenticated with Kmac which

is released upon the integrity verification of the platform by the MTM. TPIDL contains

the pid and MAC pairs for each process running on the system which are computed by

PAM as described below.

Process Authentication Module (PAM) : The PAM is used by fork++() to authenti-

cate pids during a process cloning. We note that the authentication key Kmac is a sealed

key in the MTM and released by the MTM only if the system modules are not altered. This

is required to achieve protection against malwares e.g., faking the verification of a process

authenticity. The pid of a new created child process is authenticated by computing the

keyed hash value of the pid via HMAC using the key Kmac. The keyed hash values are

stored in the TPIDL.

Process Verification Module (PVM) : The PVM is used by execve++() and CFS++

to verify the authenticity of pids. More specifically, execve++() checks if the pid of

a process is authenticated and stored in the TPIDL before executing it. Similarly, CFS++

assigns a process CPU slots if its keyed hash value is available in the TPIDL. Otherwise,

the CFS++ prevents the process from receiving CPU by setting the priority of that process

to the minimum.

3.4 Establishing the Trust Anchor

The proposed security architecture relies on the MTM as a trust anchor. More specifically,

the trusted Apps are signed with a private key which is known only to the MTM. The

security of process authentication and verification used by fork++(), execve++(), and

CFS++ is based on the sealed key storage. The authentication key is released and available

within the platform only if the platform’s integrity is intact.

3.5 Building up the Chain-of-Trust

Every Android App is executed in an instance of the Dalvik virtual machine (DVM) with

its own Linux process. The Apps are loaded via the PathClassLoader [NKZS10]. The

DVM starts a process from the underlying Linux kernel to run the App when any compo-

257



nent of the App is executed [AND11]. The first process started in Linux is init() whose

trustworthiness is ensured by the MTM. The chain-of-trust is extended from init() to

the Appt to be run. The trust is propagated through the processes via fork++() and

execve++() calls which are used to start a new process in Linux. The system call

fork++() initiates a child-process from a running process whenever a new process is

started. This child process is a clone of the father with a different pid. The system call

execve++() overwrites the functionality of this new child process (formerly created with

fork++()) by still holding the old pid. This is the moment at which the functionality

of App is started. To maintain the chain-of-trust we propose the following: each time the

PathClassLoader loads an App, the signature and the integrity of the App is veri-

fied with AVM via App’s signed hash value stored in the TAPL. Moreover, each time the

system call fork++() is executed, the resulting pid is authenticated with PAM and writ-

ten in the TPIDL. Finally, the pids are verified with PVM when they are processed with

execve++() and CFS++.

3.5.1 Application Verification

The PathClassLoader is utilized to load an App for execution in the DVM. The AVM

module can be hooked into the App loader such that the signed hash value of the App

stored in the TAPL is checked with the AVM. The execution of the App is continued only

if the signature is valid and the hash of the App4 being run is equal to the signed hash value

stored in the TAPL:

IF (verify(sighashApp
, Pubsig) == fail OR

TAPL -> hashapp != hash(app)) THEN // performed by AVM

terminate ELSE

execute app by continuing with fork++() and execve++() calls

This verification with AVM ensures that the platform runs an App if it is classified as

trusted in the TAPL and not altered after its installation.

3.5.2 Process Cloning

The system call fork++() is the first method called to create a child process while execut-

ing a task in Linux. Let pidp and pidc denote the process IDs of the parent process (i.e.,

the fork++() is called from) and the child process (i.e., the clone of the parent process).

The execution is terminated, if the parent pidp is not authentic (i.e., its keyed hash value is

not in the TPIDL). Otherwise a child process with a different pid is created and its keyed

hash value is written in the TPIDL:

IF(TPIDL -> hmacpidp
!= hmac(pidp, Kmac)) THEN // performed by PVM

terminate ELSE

pidc = fork++() AND TPIDL <- hmac(pidc, Kmac) // performed by PAM

4The hash value is computed over the AndroidManifest.xml file defining the permissions required by

the App, and the .dex file containing the actual application code stored in the /system/app folder.

258



This operation ensures that a clone of a process is created iff the process being cloned (i.e.,

initiating the fork++() call) itself is trusted. We note that the authenticity check for the

very first process init() is skipped, as its authenticity is ensured by the MTM.

3.5.3 Process Execution

The system call execve++(app, ...) is called to fill the content of the child process with

the functionality of the App desired to run. Let pidc denote the process ID of the child

process (i.e., a clone of the parent process) on which execve++(app, ...) is called. The

execution is terminated, if the pidc is not authentic or the verification of this application

fails. We note that the system call execve++(app, ...) is invoked only if the App passes

the verification step when it gets loaded via PathClassLoader as described in Sec-

tion 3.5.1. If the application verification fails, neither fork++() nor execve++(app, ...)
is invoked and the execution of the App is terminated5:

IF(TPIDL -> hmacpidc
!= hmac(pidc, Kmac)) // performed by PVM

terminate ELSE

execute execve++(app, ...)

This operation ensures that an App is always run by a trusted process and this is allowed

iff the App being run is verified by AVM.

3.5.4 Process Scheduling

Whenever the scheduler CFS++ is invoked to perform a process switch, it checks if the

pid of the process, which is to run according to its priority, is authentic (i.e., its keyed

hash value is stored in the TPIDL). The keyed hash value of the pid existing in the TPIDL

ensures that the process belonging to that pid is trusted. Thus, the CFS++ assigns the CPU

to the process. Otherwise, the process is not trusted and the CFS++ sets the priority and

the counter of that process to zero to block it from execution:

IF(TPIDL -> hmacpid != hmac(pid, Kmac)) THEN // performed by PVM

assign CPU to pid ELSE

pidpriority = 0 AND pidconter = 0

This operation ensures that non-authenticated processes receive no CPU from the sched-

uler.

3.5.5 Process Termination

A process termination requires deleting all hmacpid values belonging to that process from

the TPIDL. Thus, the system functions of Linux for terminating processes such as kill()

need to be extended with this functionality.

5The verification of the App before its execution can also be performed in execve++() by comparing its hash

value with the signed hash value stored in the TAPL similar to the Application Verification. The implementation

would require to provide execve++() with an interface that enables it to access the App files stored in the

/system/app folder over which the hash value is computed.

259



4 Security Analysis

In order to evaluate the security of the proposed solution, we need to define an attacker

model describing the capabilities of attackers. We focus in this work only those capabilities

which would obviously break the security of the proposed approach and analyse how our

security solution resists against them. The attacker can execute a malicious application on

the proposed secure architecture if she can

1. modify the system functions fork++(), execve++(), and the scheduler CFS++

without being detected such that security evaluations are skipped;

2. cheat the established chain-of-trust

App→AVM→process→PAM→pid→PVM→execution;

3. modify the signed hash values of trusted Apps stored in the TAPL;

4. let the MTM sign data with the private signature key Privsig;

5. use the system calls to modify PCBs in a way that she overwrites executable code

of a trustworthy pid with malware (e.g. enforce an execve behavior without calling

execve++());

We analyse now how the proposed architecture resists against these threats.

Threat 1: The integrity of the security modules and the extended system functions such

as fork++(), execve++(), and the scheduler CFS++ are verified by the MTM during

the booting. The MTM releases the decryption key used for decrypting TAPL and the

authentication key used for process authentication only if the integrity of those modules is

intact. Hence, the attacker needs to break the security of the MTM for sealed storage and

integrity check. However, this is not feasible according to MTM’s specification.

Threat 2: The hash values of Apps signed with Privsig are stored in the TAPL. AVM

compares the hash value of the App with the signed value from TAPL before contin-

uing with its execution via fork++(), execve++() calls. Hence, the attacker should

forge the signature for the hash value of the malicious App that she wants to execute

on the platform. However, as Privsig is only known to the MTM, this is computation-

ally infeasible if a secure signature mechanism such as RSA is employed. Moreover, all

processes running on the system are derived from system function calls (fork++ and

execve++) starting from the trusted process init(). That is, the rest of the trust-chain

process→PAM→pid→PVM→execution during the creation of a process relies on

the trustworthiness of the system functions and the process authentication and verification

with PAM and PVM. The attacker cannot forge the trustworthiness of the system func-

tions and the secrecy of the authentication key according the Threat 1. The attacker cannot

break the trust-chain for a creation of a new process according the Threat 3.

Threat 3: The last chain of the trust during the creation of a process is execve++(). The

attacker can break the trust-chain if (i) she can forge the function execve++() without

being detected or (ii) she can provide a malicious App (App′) with h(App′) = h(App),

260



where App is a trusted application stored in the TAPL or (iii) she can overwrite the hash

value of a trusted App stored in the TAPL. According to Threat 1, (i) is not possible. (ii)

is not feasible when a second pre-image resistant has function is used. Finally, (iii) is not

feasible as the hash values stored in the TAPL signed with the private signing key Privsig
which is only known to the MTM.

Threat 4: Only the owner of the key Kmtmauth is enabled to let the MTM sign a data with

the private signature key. Since only the administrator owns this key it is not possible for

malware to generate a signature for a malicious App.

Threat 5: To not allow an attacker with privileged access rights to maliciously overwrite

the PCB respectively the whole TaskStruct containing links to the executable and state

we also propose to hold a digest of the whole PCB, belonging to the above pid from

an execve++() call. However, the PCB is changing with each context switch, and, even

worse, selected fields for a fair scheduling like e.g. priority and qualitywill change

even at a higher frequency than at context switching frequency. For this reason we pro-

pose a compromise by which only selected fields of each PCB are hashed and stored into

a TPCBL. Such PCB fields do not change over the lifetime of a PCB. Thus, at PCB gen-

eration in particular the fields pid and programcode (and not the instruction counter)

are hashed an stored within the TPCBL. This list is created and used in similarity to the

TPIDL within fork++(), execve++() and CFS++.

5 Conclusions and Outlook

The work at hand is conceptual work on an MTM based watchdog for malware famishment

in smartphones. Besides OS related processes only such processes are allowed to be cre-

ated and started which stem from a digitally signed App with a signature key stored within

the MTM. Moreover, by managing the process cloning, process execution and eventually

even the process scheduling with the help of the trusted lists TAPL, TPIDL and TPCBL our

approach even controls the allocation of CPU slots such that only authenticated processes

receive CPU slots. This harsh security policy perfectly fits to smartphone use cases in

which companies or other organizations want to equip their employees with smartphones

running only dedicated software. We will soon start with a proof of concept implemen-

tation and a performance study of our malware famishment watchdog based on an MTM

emulator.

6 Acknowledgments

The work presented in this paper was supported by the German BMB+F SKIMS project.

The views and conclusions contained herein are those of the authors and should not be in-

terpreted as necessarily representing the official policies or endorsements, either expressed

or implied, of the SKIMS project, or the BMB+F.

261



Bibliography

[AND11] The Developer’s Guide, Android 3.0 r1. developer.android.com, Web Page,
http://developer.android.com/guide/index.html, March 2011.

[BC00] D.P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly Book, First
Edition, 2000.

[BIT11] BitLocker Drive Encryption. Microsoft, http://msdn.microsoft.com/en-us
/windows/hardware/gg487306, 2011.

[EK11] J-E. Ekberg and A. Kylänpää. MTM implementation on the TPM emulator. Available
at http://mtm.nrsec.com/index.html, 2011.

[JSS06] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: policy-reduced integrity measurement
architecture. In the 11th ACM symposium on Access control models and technologies
(SACMAT’06), pages 19–28, Lake Tahoe, California, USA, June 2006.

[LWPM07] P.A. Loscocco, P.W. Wilson, J.A. Pendergrass, and C.D. McDonell. Linux kernel in-
tegrity measurement using contextual inspection. In the 14th ACM workshop on Scal-
able trusted computing (STC’07), pages 21–29, Alexandria, Virginia, USA, November
2007.

[MTM10] TCG Mobile Trusted Module Specification. Specification Version 1.0, Revision 7.02,
TCG Mobile Phone Work Group, April 2010.

[NAZA09] M. Nauman, M. Alam, X. Zhang, and T. Ali. Remote Attestation of Attribute Updates
and Information Flows in a UCON System. In the 2nd International Conference on
Trusted Computing (Trust’09), pages 63–80, Oxford, UK, April 2009.

[NKZS10] M. Nauman, S. Khan, X. Zhang, and J-P. Seifert. Beyond Kernel-level Integrity Mea-
surement: Enabling Remote Attestation for the Android Platform. In the 3rd Interna-
tional Conference on Trusted Computing (TRUST’10), Berlin, Germany, June 2010.

[SEL09] Security-Enhanced Linux. National Security Agency (NSA),
http://www.nsa.gov/research/selinux, 2009.

[SSM11] M. Strasser, H. Stamer, and J. Molina. Software-based TPM Emulator. Available at
http://tpm-emulator.berlios.de, 2011.

[SZJvD04] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a TCG-
based integrity measurement architecture. In the 13th conference on USENIX Security
Symposium (SSYM’04), pages 16–16, San Diego, CA, USA, August 2004.

262


