
Utilizing Successful Work Practice for Business
Process Evolution1

Ruopeng Lu, Shazia Sadiq, Guido Governatori
School of Information Technology and Electrical Engineering

The University of Queensland
Brisbane, Australia

{ruopeng, shazia, guido}@itee.uq.edu.au

Abstract

Business process management (BPM) has emerged as a dominant
technology in current enterprise systems and business solutions.
However, business processes are always evolving in current
dynamic business environments where requirements and goals are
constantly changing. Whereas literature reports on the importance
of domain experts in process modelling and adaptations, current
solutions have not addressed this issue effectively. In this paper,
we present a framework that utilizes successful work practice to
support business process evolution. The framework on one hand
provides the ability to use domain expert knowledge and
experience to tailor individual process instances according to case
specific requirements; and on the other, provides a means of using
this knowledge through learning techniques to guide subsequent
process changes.

1. Introduction

In modern enterprise information systems, workflow technology has been
extensively used to automate the coordination of business processes. Workflows
represent the organizational flow of control and information from one processing
entity to another [1,2]. Traditionally, workflow systems are designed to automate
business processes that contain repetitive procedures and can be modelled prior
to deployment. New requirements for workflow modelling have risen due to the
deployment of workflow systems in non-traditional domains such as
collaborative applications and highly dynamic processes that demand certain
level of flexibility in execution. It is essential that technology supports the
business to adapt to changing conditions, where different process models could
be derived from existing ones to tailor individual process instances.

1 This work is partly supported by the Australian Research Council funded Project DP0558854

UTILIZING SUCCESSFUL WORK PRACTICE FOR BUSINESS PROCESS EVOLUTION 59

An example can be found in customer inquiry management of a
telecommunication company, where inquiry logging and reporting procedures
are predictable and repetitive. However, response to individual inquiries and
subsequent tests and services performed are prescribed uniquely for each case,
but nonetheless have to be coordinated and controlled. Suppose that a number of
diagnostic tests, (say 5 tests, T1, T2, …T5), are available. Any number of these
tests can be prescribed for a given request, and in a given order. The supervising
engineer should have the flexibility to design a plan that best suits the customer
request. The knowledge that guides the design of inquiry response is implicit and
owned by domain experts, e.g., supervising engineer in this example. Most often
such decisions can only be made based on case specific conditions that cannot be
anticipated at design time.

The problem lies with the fact that some of the requisite knowledge is only
tacitly available, i.e., it is not found in corporate manuals, or policy documents.
This knowledge constitutes the corporate skill base and is found in the
experiences and practices of individual workers, who are domain experts in a
particular aspect of the overall operations. There is significant evidence in
literature on the difficulties in mapping process logic to process models [3]. With
the absence of explicit articulation, the complexity is increased manifold.

Furthermore, industry studies [4] show that 53% of the business process
management efforts go into defining the process requirements, while the process
modellers are typically business owners rather than domain experts. We believe
that this is a limitation in current solutions, and part of the modelling effort needs
to be transferred to domain experts who make design decisions based on (1) their
expertise and (2) instance specific conditions.

The aim of this paper is to provide a foundation for designing and
implementing a framework for harnessing successful work practice driven by
domain experts, and subsequently providing a means of using this knowledge for
business process design and evolution.

The rest of the paper is organised as follows. Section 2 will present the
building blocks of the modelling and execution framework. Section 3 will
discuss related work. In section 4, details of approach will be presented.
Conclusions drawn from this work will be presented in section 5.

2. Framework for Business Process Modelling and
Execution

Where as traditional workflow technology has primarily targeted automated flow
of control, we have argued in the above discussion that a degree of flexibility is
critical to cater for dynamic business environments. Providing a workable
balance between flexibility and control is indeed a challenge, especially if
generic solutions are to be offered. Clearly, there are parts of the process which
need to be strictly controlled through fully predefined models. There can also be

60 BUSINESS INFORMATION SYSTEMS – BIS 2006

parts of the same process for which some level of flexibility must be offered,
often because the process cannot be fully predefined due to lack of data at
process design time.

We propose a framework for business process modelling and execution that
attempts to achieve a balance between flexibility and control [5]. The framework
consists of two major components: (1) A constraint-based process modelling
approach, called Business Process Constraint Network (BPCN); and (2) a
repository for case specific process models, called instance template repository
(ITR). BPCN provides a platform for dynamic process modelling and execution.
While ITR provides a well-formed structure to store past process designs, as well
as an instrument to harness successful work practice for process evolution. These
are introduced below.

2.1. Basic Terminology

We consider a business process as consisting of a set of tasks, where a task is
either an atomic activity or a sub-process that contains one or more activities.
The process of extracting relevant facts from the business process logic and
representing them in a process model with language-specific syntax and
semantics is called process modelling. Typically, the process model is then
verified and validated in terms of semantic completeness and structural
correctness according to certain criteria [6]. The process model is then executed
in a runtime environment, where the process engine creates multiple process
instances, coordinates execution of tasks and handles runtime exceptions based
on the process model.

A process graph (figure 1) presents a typical graphical process model, where
coordinator nodes (ellipses) represent typical semantics [7]. We will be using
this notation to illustrate various examples in this paper.

A process instance is a particular occurrence of a business process. In our
framework, the notion of a process instance is two-fold, which we explain in the
next section.

Choice Merge

EndBegin Fork Synchronizer

Figure 1. Graphical modelling structure.

2.2. Framework Overview

In general, the requirements of process models are described by multiple aspects
[8] such as control flow, data flow, resource allocation and temporal properties

UTILIZING SUCCESSFUL WORK PRACTICE FOR BUSINESS PROCESS EVOLUTION 61

etc. Various aspects are intended to express the constraints under which the
business process can be executed such that the targeted business goals can be
effectively met.

We believe that there are certain types of processes, which would greatly
benefit from a modelling approach, in which a minimal number of essential
requirements (constraints) are captured in the process model. For example, in the
scenario of customer inquiry management (as discussed in section 1), a process
model can be specified (figure 2). RE, AS and LR represent the tasks of receive
inquiry, assess situation and log report respectively. Note that a part of the
process remains flexible. It contains a set of unstructured tasks (tests T1 to T5),
however, the exact execution order is determined by some domain experts at
runtime according to needs of specific cases. Trying to predict all possible
configurations in such a case would either be simply impossible, or at least not
be conducive to efficient (customized) response.

Figure 2. Process model for customer inquiry management.

As long as instances conform to the essential process requirements, they are
considered valid. In other words, instance-specific models can be designed at run
time, by domain experts, by utilizing their experience and freedom of practice as
long as the instance template does not violate the given constraints. The basic
premise is that for a class of business processes it is possible to specify a small
number of constraints, but allow for a large number of execution possibilities at
runtime.

Furthermore, although satisfying the same constraints, instances designed by
domain experts may vary significantly. Over time, the repository of such
instance templates can build into an immense corporate resource. We argue that
such a resource can provide valuable insight into work practice, help externalize
previously tacit knowledge, and provide valuable feedback on subsequent
process design.

The business process (or a part of the process) is modelled through the BPCN.
The result of the design and execution is retained in ITR in order to concretise
implicit process knowledge and generalise design preferences. The following
diagram (figure 3) illustrates the overall architecture of the framework.

62 BUSINESS INFORMATION SYSTEMS – BIS 2006

Design Validate Execute Retain

BPCN ITR

Process Instance

Choice Merge

EndBegin Fork Synchronizer

Executed Process Instances

Choice Merge

EndBegin Fork Synchronizer

Generalise

Preferred Work Practices

Figure 3. Framework overview.

2.3. Business Process Constraint Network

BPCN has been developed to formalise the problem of flexible business process
design [9]. The rationale of the BPCN approach is to provide a descriptive way
to build models for business processes where complete process cannot be
prescribed at design time. BPCN captures the tasks in a business process, their
properties, and the process constraints applicable to the business process. In
BPCN, business process semantics is extracted and transformed into a set of
process constraints served as process requirements that must hold for all process
instances. Such constraints are minimal and conflict-free, which are represented
in a way that is readable by human and supports analysis and validation for
correctness. BPCN uses constraint satisfaction techniques to model process
constraints, as well as to determine constraint network consistency. The process
model, instead of being explicitly prescribed at design time, is constructed at
runtime and validated against the process constraints.

BPCN is essentially a design approach, but is supported by an execution
environment in which process instances can be individually specified according
to specific needs, but still conform to process constraints, e.g., a particular
configuration of tests prescribed by a service plan. We refer to these individually
tailored process instances as instance templates. This conformance is
guaranteed through constraint validation algorithms [9]. The execution
environment allows the generation of potentially a large number of customized
instance templates, each of which has been constructed with the help of a domain
expert utilizing expert knowledge as well as case-specific requirements.

Figure 4 presents the overall BPCN approach for business process modelling
and execution. The main processes of BPCN are as follows:
1. The process model is defined including the BPCN specification.
2. The process model is verified and the BPCN is checked for consistency.

UTILIZING SUCCESSFUL WORK PRACTICE FOR BUSINESS PROCESS EVOLUTION 63

3. The definition created above is uploaded to the process engine for execution.
A (default) instance template of the process model is created for execution.

4. The available process activities of the newly created instance are assigned to
performers through work lists and activity execution takes place as usual, until
the instance needs to be dynamically adapted to particular requirements
arising at runtime.

5. Runtime user (dynamic instance builder) may decide to change the instance
template.

6. Instance template must be verified and validated against the constraints of
BPCN.

7. Newly defined (or revised) instance template resumes execution.

Process
Modelling Tool

Constraints
Validation

Engine

Process
Verification

Engine

Process
Enactment

Engine

Worklist
Manager

Process
Designer

Dynamic Instance
Builder

Workitem
Performers

2,6

1

6

3

4

Applications /
Users Creating

Process Instances

4,5

4

5

5
7

6

Figure 4. Summary of the BPCN approach.

2.4. Instance Templates Repository

The ITR is a structure for storing instance templates. A case is referred to as an
instance template stored in the instance template repository. The instance
template repository can also be also called the case base. The main contribution

64 BUSINESS INFORMATION SYSTEMS – BIS 2006

of this paper is the management of the ITR, specifically its role in utilizing
successful work practice for business process evolution.

It is important to note that the way that domain experts reason about the
situation during process modelling cannot be truly reconstructed using
computational techniques. However, the purpose of the ITR is to somehow
extract the knowledge and reasoning that led to a particular design. We argue
that these design decisions are embedded in various process properties e.g.,
process data values. If a significant number of instance templates have been
designed in a similar way, then this is an indication of a preferred (and likely
successful) work practice. However, this raises a number of questions relating to
process properties, similarity measures, template frequencies, and the need for an
overall technology that effectively provides these functions for ITR management.
These questions are briefly introduced below.

The first question relates to the schema design of instance templates, that is
what process attributes need to be stored and how in order to assist future
reasoning. Secondly, there is the issue of the indexing structure of ITR, which
defines how the templates are organized such that update and retrieval operations
can be effectively performed. Thirdly, we need a similarity measure of two
instance templates that provides evidence for cases matching. Finally, the
update algorithm specifying the process of populating ITR, as well as
generalising successful work practices.

We collectively refer to the design of the ITR, the approach to update it, as
well as the techniques devised for generalising successful work practices from it
as the ITR framework.

The answers to the above questions constitute the design goals of our instance
template repository and will be addressed in section 4 where the detail approach
of ITR is presented. The solutions to some of these questions are analogous to
another problem-solving approach, which is Case-Based Reasoning (CBR).
Accordingly, in section 3 we will discuss the background of case-based
reasoning, as some aspects of the ITR framework are based on CBR. Some
workflow modelling approaches based on case-based reasoning will also be
presented.

3. Related Work

The difficulty in mapping of domain specific knowledge to machine readable
representations is widely recognized in literature. This is a hard problem in
general and has been addressed in process modelling through various
approaches, e.g., through modular approaches [8] where process logic is divided
into different perspectives (informational, functional, organisational etc.);
through language expressibility analysis in workflows [10]; and through
comprehensive methodologies [3].

In this paper, we approach this problem through user’s perspective, by
providing a mechanism to push successful work practice preferences into process

UTILIZING SUCCESSFUL WORK PRACTICE FOR BUSINESS PROCESS EVOLUTION 65

specification. This problem actually translates to finding the “best” practice for a
given scenario.

There are several techniques that address similar problems of knowledge
acquisition and learning. Case-Based Reasoning (CBR) is one such approach,
that we have found to link closely to our problem. CBR is a problem-solving
paradigm from the Artificial Intelligence (AI) community, which utilises specific
knowledge of previously experienced problems and solutions. By definition, a
case is a piece of contextualised knowledge fundamental to the reasoning goals
[11]. A new problem is solved by adapting similar past cases to meet new
demands. Moreover, CBR also supports incremental, sustained learning, as new
experience is retained when a new problem has been solved, which provides
references for future problems. CBR has been proven to be useful in weak theory
domains and system with a large number unstructured and experiential
knowledge [12,13]. Interested readers can refer to [11-13] form a formal
treatment of CBR.

Our approach applies certain concepts from case based reasoning by
following the general design guidelines of case representation and repository
(section 4.1), as well as adapting the indexing and case matching techniques
(section 4.1– 4.3).

There are a number of recent proposals for workflow modelling approaches
based on case-based reasoning techniques [14-17], which have demonstrated the
possibilities to utilise CBR techniques to achieve workflow modelling goals.
However, there are still many shortcomings in those approaches that needed to
be improved. Firstly, the solution proposed by CBR is only as good as the cases
it collects, since the past cases are the only knowledge a CBR system possesses.
Thus, workflow models kept in the system needed to be sensible and domain
specific. Secondly, because index is important, especially for efficient case
retrieval and update in large case bases, a proper organisation of case memory is
also highly desirable in CBR-based workflow systems. Lastly, a precise
definition of similarity is needed if effective case matching is required.

4. Approach

In this section, we present the detail approach to design and implement of the
instance template repository.

4.1. Schema for Instance Templates

When a process instance completes execution, the template that governs the
instance (as designed through BPCN) is stored in the ITR. The schema of
instance template repository defines the structure and data content according to
which instance templates are stored.

Ideally, the schema should include all descriptive information taken into
account during template design [11]. The fundamental goal of ITR is to extract

66 BUSINESS INFORMATION SYSTEMS – BIS 2006

preferred work practices, more specifically to generalise the conditions
contributing to the preference. The descriptive information in instance templates
are the properties of business processes. These properties can be divided into two
levels, instance level and task level. In our approach, we classify instance level
features into temporal aspect (process execution duration), control flow aspect
(ordering dependencies between process tasks e.g., tasks executed in parallel or
in sequence etc), and data aspect (values of workflow relevant data2). Task level
features include resource aspect (resource allocated to certain tasks).

We now give the formal definition of the instance template schema.
An instance template I is defined by a tuple<Id, G, R, D, T>, where
– Id is the identifier of instance template I (i.e., names),
– G = <N, F> is a direct acyclic graph (DAG), where N is the set of nodes

and F is the set of arcs (edges) NNF u� , where the arcs correspond to
flow relations. The set of node is partitioned into a set of task nodes and a
set of coordinators.

– },...,{ 1 kRRR is a finite set of resource instances allocated to I.

– },...,{ 1 lDDD is a finite set of workflow-relevant data items related to I.

– },...,{ 1 nttT is a finite set of tasks. ! ��� ��
iiiiii ttrntTt ,,,, , where ni is

the name of the task ti; ri�R is the resource instance allocated to task ti;
�
it and �

it are the times when task ti started and finished execution.

Execution duration duri of ti is given by duri = || �� � ii tt .
Duration of an instance template I is the sum of execution durations of all its

tasks. i.e., ¦

n

i idurIDuration
1

)(.

The instance template repository ITR is the set of all instance templates, ITR=
{I1,…,Im}.

The above definition can be illustrated by the following example. In the
following figure, we provide three instance templates I1, I2 and I3. The templates
are intended to represent particular test setups in the customer inquiry
management scenario as introduced in Figure 2.

2 Workflow relevant data is used by a Workflow Management System (WfMS) to determine the

state transitions of a workflow instance, which may be made available to a subsequent activity or

another process instance and thus may affect the choice of the next activity to be chosen [1].

UTILIZING SUCCESSFUL WORK PRACTICE FOR BUSINESS PROCESS EVOLUTION 67

instance templates I1
Priority = Urgent

{John}

{John}

{John}

{Ken}

{Amy}

(a)

T4
-
= 8.00am

T4
+

=8.05am
T5

-
= 8.15am

T5
+

=8.25am

T1
-
= 8.05am

T1
+

=8.10am

T2
-
= 8.05am

T2
+

=8.15am

T3
-
= 8.05am

T3
+

=8.10am

{John} {John} {John}

{John}

{Tim}

instance templates I2
Priority = Normal

T1
-
= 8.50am

T1
+

=8.55am

T4
-
= 8.55am

T4
+

=9.00am

T5
-
= 8.55am

T5
+

=9.10am

T2
-
= 9.12am

T2
+

=9.15am
T3

-
= 9.15am

T3
+

=9.25am

(b)

instance templates I3
Priority = Urgent

{John}

{Ken}

{Amy}

{Ken} {Ken}

T1
-
=10.00am

T1
+

=10.05am

T2
-
=10.00am

T2
+

=10.10am

T3
-
=10.00am

T3
+

=10.07am

T4
-
=10.08am

T4
+

=10.20am

T5
-
=10.20am

T5
+

=10.30am

(c)

Figure 5. (Part of) Execution graphs of instance template (a) I1, (b) I2 and (c) I3.

I1, I2 and I3 are stored in ITR according to the schema definition, as shown in
table 1 and 2.

68 BUSINESS INFORMATION SYSTEMS – BIS 2006

Table 1. Instance level schema of instance templates.

Id T (asks) G(raph) R(esources) D(ata) Duration

1 {T1,T2,T3,T4,T5} <N,F> {John, Ken, Amy}
{Priority =

urgent }
25min

2 {T1,T2,T3,T4,T5} <N,F> {John, Tim}
{Priority =
normal}

35min

3 {T1,T2,T3,T4,T5} <N,F> {John, Ken, Amy}
{Priority =

urgent }
30min

Table 2. Task level schema of instance templates.

Id n t- t+ r
1 T4 8.00am 8.05am John
1 T1 8.05am 8.10am Ken
1 T2 8.05am 8.15am Amy
1 T3 8.05am 8.12am John
1 T5 8.15am 8.25am John

2 T1 8.50am 8.55am John
2 T4 8.55am 9.00am John
2 T5 8.55am 9.10am Tim
2 T2 9.12am 9.15am John
2 T3 9.15am 9.25am John

3 T1 10.00am 10.05am Ken
3 T2 10.00am 10.10am Amy
3 T3 10.00am 10.07am John
3 T4 10.08am 10.20am Ken
3 T5 10.20am 10.30am Ken

4.2. Indexing the Instance Templates

While having a populated instance template repository is the first step towards
capturing the preferred/successful practices, a major issue is the subsequent
retrieval of such practices. How can we identify precedents of similar instance
templates against a new one? How can we retrieve them if similar situations arise
such that this past experience can be utilised? As the number of instance
templates in ITR can be potentially very large, a linear scan for all instances in
search for a few “similar” cases is not preferable. These issues contribute to the
indexing problem. An index essentially serves as identifiers for instance
templates sharing some common features, e.g., have been allocated the same set
of resources.

UTILIZING SUCCESSFUL WORK PRACTICE FOR BUSINESS PROCESS EVOLUTION 69

We first define some essential terms that we will refer to. These terms follow
the general convention as given in [11]. A descriptor is an attribute-value pair
used in the description of an instance template. Descriptors can be of any
properties or combination of properties of instance templates. For example, a
simple descriptor for an instance template is (Duration, 25min). Dimension
refers to the attribute part of a descriptor. The dimension of the abovementioned
example is the temporal perspective of a business process since duration refers to
the period of time taken to execute the process instance. Instance templates can
be one or more dimensions. A particular descriptor for a given case is also said to
be a case feature.

In our approach, a hierarchical organisation is used to index cases. A case is
indexed by features from multiple dimensions. The collection of all features is
called the description of a case. The index structure in our approach contains
descriptors in four dimensions, namely control flow perspective, resource
perspective, data perspective and performance metric perspective.

Control Flow (structural) patterns define the way a workflow management
system would order and schedule workflow tasks and it is the primary aspect of a
process model, which builds a foundation to capture other aspects of workflow
requirements [7]. The execution graph describes the control flow patterns of an
instance template, which discriminates instance templates by the topological
properties of their execution graph. E.g., (in figure 6) instance templates I1 and I2

can be partially distinguished by the control flow pattern of task {T4, T5}.
Descriptor value {T4, T5}-Serial indicates tasks T4, T5 were executed in serial in
instance template I1, while in parallel in I2. Another control flow feature of I1 is
task T1, T2 and T3 are executed in parallel.

Control Flow

{T1, T2, T3}
Parallel

{T4,T5}
Parallel

{T4, T5}
Serial

Case 1: I1 Case 2: I2Case 3: I3

Figure 6. Control flow features.

Resource is another important aspect in business process which generally
refers to how resources are represented and utilised in business processes. The
resource dimension of ITR index concerns with the resource instances allocated
to execute the instance templates. Figure 7 shows the index structure of the
resource dimension for I1 and I2. This gives an overall resource specification for
the templates. Note however that resource aspect may constitute complex
specifications, beyond a simple overall list [18].

70 BUSINESS INFORMATION SYSTEMS – BIS 2006

Resource

{John, Ken, Amy} {John, Tim}

Case 1: I1 Case 2: I2Case 3: I3

Figure 7. Resource features.

Workflow relevant data which may affect design decisions for instance
templates can be used as data dimension features in ITR index. Figure 8 shows
the data index structure for I1 and I2.

Data

Priority = urgent Priority = normal

Case 1: I1 Case 2: I2Case 3: I3

Figure 8. Data features.

The performance metric dimension uses quantitative scales to discriminate
instance templates based on their execution duration. These may include absolute
values, ranges, or temporal relations. Figure 9 shows the index structure for I1

and I2.

Performance Metric

Duration =
[0min ~ 30min]

Duration >
30min

Case 1: I1 Case 2: I2Case 3: I3

Figure 9. Performance metric features.

The description of a case is the union of all features for this case. For example,
the description of I1, I2 and I2 are shown in table 3 and 4:

UTILIZING SUCCESSFUL WORK PRACTICE FOR BUSINESS PROCESS EVOLUTION 71

Table 3. Description for I1 and I3.

Descriptor
Control Flow {T1, T2, T3}-parallel
Control Flow {T4, T5}- serial
Resource { John, Ken, Amy }
Data Priority = Urgent
Performance Metric Duration = [0min ~ 30min]

Table 4. Description for I2.

Descriptor
Control Flow {T4, T5,}-parallel
Resource {John, Tim}
Data Priority = Normal
Performance Metric Duration > 30min

Figure 10 shows the overall index structure for I1 and I2. The index is a tree-
like structure consists of four types of nodes: feature node, description, case node
and exemplar node. Feature nodes are in top level which point to one or more
descriptions. A description points to a case node or an exemplar node. An
exemplar node points to multiple case nodes.

An important concept in the index structure is exemplar. A case becomes an
exemplar if there are one or more cases having exactly the same description as it
does. An exemplar is generalised as a preferred work practice when the
number of cases in this exemplar exceed the given threshold value (e.g., say 10
cases). Typically, this value is specified by domain experts. This is further
described in the section on repository update.

Figure 10. Overall index structure.

72 BUSINESS INFORMATION SYSTEMS – BIS 2006

The algorithm for inserting new cases into ITR is given in figure11. The input
to the algorithm is a new case and its description.

1. for each existing description in the index
2. compare with the description of the new case
3. if no same description exists
4. create a new description node
5. create a new case node under the description node
6. else // there exist such description
7. if case node underneath
8. Replace case node into exemplar node
9. Create a new case node under the exemplar node
10. else // exemplar node underneath
11. increase the threshold counter
12. end if
13. end if

Figure 11. Insertion algorithm.

4.3. Similarity Measures

The ITR is constantly being updated with executed instance templates. We need
to determine whether a new instance template I’ is sufficiently “similar” to the
stored instance template I. Similar instance templates are stored together and
once we have a sufficiently large number of such instance templates, we can
generalise them as a preferred work practice. The process of determining
similarity between two instance templates I’ and I is called matching. To
compute the degree of match, two main issues must be considered [11]:
x the degree of match along each dimension, and
x he importance of each dimension

The similarity matching in our approach endorses exact matches along the
control, resource and data dimensions. If a numerical value (real numbers
between 0 to 1) is assigned to each feature to indicate the degree of match, then 1
indicates exactly matching features and 0 otherwise. That is, the control flow
features of two instance templates can be either exactly matching each other
(e.g., {T1, T2, T3} executed in parallel in both I and I’), or otherwise not
matching at all (e.g., {T1, T2, T3} executed in parallel in I but sequentially in I’).
At this stage, we do not consider partial matching within the dimension.
Similarly, for resource and data features, two cases match if the set of resource
instances (or workflow-relevant data) are the same, otherwise not. Lastly, we
measure the degree of match of performance metric features by measuring the
distance between two values on a qualitative scale. If two values are within the

UTILIZING SUCCESSFUL WORK PRACTICE FOR BUSINESS PROCESS EVOLUTION 73

same qualitative region (e.g., Duration = [1hr ~ 5hr]), then they are considered a
match and can be assigned 1, otherwise 0.

We use an aggregate matching function to determine the overall similarity of
two cases. For the purpose of illustration, the importance of each dimension is
assigned an equal value initially. Let F be the set of all features of the process
instance I, we define function Sim: FuFo{0,1}, which determines the similarity
of two features and returns the similarity score 0 or 1. The overall similarity sim
of instance template I and I’ is given by:

)),((
1

1

'
i

m

i
ii WFFSim

m
sim x ¦

where m is the number of features of I’,
iF and '

iF are corresponding features of I

and I’ respectively, Wi is the weight of feature
iF and '

iF . A new case I’ is said to

be exactly matching the base case I if and only if the overall similarity sim equals
to 1.

For example, supposed a new case I’ having the following description (table 5)
is to be matched with the base case I1.

Table 5. Description of base case I..

Descriptor
Control Flow {T1, T2, T3}-parallel
Control Flow {T4, T5}-serial
Resource { John, Ken, Amy }
Data Priority = Urgent
Performance Metric Duration > 30min

The two control flow features match each other, thus each having the
similarity score 1. Similarly, the resource and data dimensions also match each
other respectively, again having the similarity score 1. However, the
performance metric dimensions do not match, as duration of I1 is between [0min
~ 30min], and the duration of I’ is > 30min, hence having score 0. The overall
similarity is (each dimension having equal weight, i.e., Wi = 1 for all i):

8.0)1011111111(
5
1

 x�x�x�x�x sim

Hence I’ is not exactly matching I1. However, in certain circumstance, when
exact matching is not essential or improbable, a threshold value for similarity can
be defined (e.g., 0.8) for partially matching cases. In this sense, I1 and I’ match
each other because the overall similarity score reaches the threshold value 0.8.
Furthermore, some dimensions can be prioritised by assigning a higher weight
than the others. In order to do so, the weights must be adjusted properly such that
the overall similarity score is always between 0 and 1. For example, if in some
business process resource feature is more important than performance, the
weight for resource features can be given a higher number (e.g., 1.5), while the
weight for performance metric is reduced (by 0.5). The overall similarity of I1

and I’ is 0.85, which still qualify as matching cases.

74 BUSINESS INFORMATION SYSTEMS – BIS 2006

4.4. Repository Update Algorithm

The process of inserting new instance templates and checking against preference
threshold constitutes repository update. The update algorithm presented below
(figure 12) is adapted from [11], which takes the new case as input, produces
preferred work practice as output, if the number of similar cases in the repository
exceeds a predetermined threshold.

1. Assess situation, compute index values (description of the new case)
2. Search for matching cases
3. Insert new case in proximity of accessed cases, update index if

necessary
4. Check against threshold, if exceeded generalise cases as preferred

work practice, update index if necessary

Figure 12. Repository update procedure.

Index selection procedure determines the way the case should be indexed by
extracting features from the case and computing the index values. In our
approach, the description of the new case is computed by extracting relative
information form the instance template according to a preference list of features
designed by domain experts, which covering the four dimensions (control, data,
resource, performance) of process features. Insertion algorithm (as shown in
figure 11) uses the description to insert the case appropriately into the
organisational structure of template repository. The organisational structure is
reorganized if necessary (when creating a new description, when creating a new
exemplar and when an exemplar is generalised as a preferred work practice).
When the number of matching cases under an exemplar exceeds the preference
threshold as a result of the insertion, the exemplar is generalised as a preferred
work practice. The process model (or part of) is updated to reflect the preferred
workflow practice.

5. Conclusions and Future Works

In this paper, we have presented an approach for harnessing implicit process
knowledge found in successful work practice from a flexible process modelling
and execution framework, and using the acquired knowledge for guiding
subsequent process design and evolution. The main contribution of this paper
relates to the design of functions to manage the instance template repository. The
proposed functions are well grounded in known successful techniques in
literature. The proposed functions address all aspects of the requirements for ITR
management, namely design of the ITR, effective indexing, similarity matching

UTILIZING SUCCESSFUL WORK PRACTICE FOR BUSINESS PROCESS EVOLUTION 75

and consequent repository update. However, we anticipate several interesting
and challenging extensions to our work, notably in extending the design of the
template schema, and more advanced similarity measure that that allow for
partial matching within specific dimensions.

6. References

1. Workflow Management Coalition, Interface 1: Process Definition Interchange,
Process Model. 1998.

2. W. Sadiq and M.E. Orlowska. On Correctness Issues in Conceptual Modeling of
Workflows. in 5th European Conference on Information Systems (ECIS `97). 1997.
Cork, Ireland.

3. A.W. Scheer, ARIS - Business Process Modeling. 3ed. 2000, Berlin, Heidelberg, New
York: Springer.

4. Delphi Group, BPM 2005 Market Milestone Report. (2005) URL:
http://www.delphigroup.com/research/whitepapers.htm.

5. S. Sadiq, W. Sadiq, and M.E. Orlowska, A Framework for Constraint Specification
and Validation in Flexible Workflows. Information Systems, Elsevier Science, 2005.
30(5): p. 349 - 378.

6. W. Sadiq and M.E. Orlowska, Analyzing Process Models using Graph Reduction
Techniques. Information Systems, 2000. 25(2): p. 117 - 134.

7. W. Sadiq and M.E. Orlowska. On Capturing Process Requirements of Workflow
Based Business Information System. in 3rd International Conference on Business
Information Systems (BIS '99). 1999. Poznan, Poland: Springer-Verlag.

8. J S. Jablonski and C. Bussler, Workflow Management - Modeling Concepts,
Architecture and Implementation. 1996: International Thomson Computer Press.

9. R. Lu, S. Sadiq, V. Padmanabhan and G. Governatori. Using a Temporal Constraint
Network for increased flexibility in Business Process Execution. in Seventeenth
Australasian Database Conference (ADC2006). 2006. Hobart, Australia.

10. van der Aalst, W.M.P., A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 2003. 14(1): p. 5-51.

11. J. Kolodner, Case-Based Reasoning. 1993: Morgan Kaufmann Publishers.
12. A. Aamodt and E. Plaza, Case-based reasoning: foundational issues, methodological

variations, and system approaches. AI Communications, 1994. 7(1): p. 39--59.
13. D.B. Leake ed. Case-Based Reasoning: Experiences, Lessons & Future Directions.

1996, AAAI Press/The MIT Press.
14. B. Weber, S. Rinderle, W. Wild and M. Reichert. CCBR-Driven Business Process

Evolution. in 6th International Conference on Case-Based Reasoning, ICCBR 2005.
2005. Chicago, IL, USA: Springer.

15. T. Madhusudan, J.L. Zhao, and B. Marshall, A case-based reasoning framework for
workflow model management. Data Knowledge Engineering, 2004. 50(1): p. 87-115.

16. J.H. Kim, W. Suh and H. Lee, Document-based workflow modeling: a case-based
reasoning approach. Expert Systems with Applications, 2002. 23(2): p. 77 - 93.

17. B. Weber, W. Wild, and R. Breu. CBRFlow: Enabling Adaptive Workflow
Management Through Conversational Case-Based Reasoning. in 7th European
Conference ECCBR 2004. 2004. Madrid, Spain: Springer-Verlag.

76 BUSINESS INFORMATION SYSTEMS – BIS 2006

18. N. Russell, A.H.M. ter Hofstede and D. Edmond, Workflow Resource Patterns. 2005,
Centre for Information Technology Innovation, Queensland University of
Technology: Brisbane.

