
A Reference Architecture for
Semantic Content Management Systems

Fabian Christ, Benjamin Nagel

s-lab - Software Quality Lab
University of Paderborn

Warburger Str. 100
D-33098 Paderborn
fchrist@s-lab.upb.de
bnagel@s-lab.upb.de

Abstract: Content Management Systems (CMS) lack the ability of managing seman-
tic information that is part of the content stored in a CMS. On the other hand, a lot
of research has been done in the field of Information Extraction (IE) and Informa-
tion Retrieval (IR), respectively. Additionally, the vision of the Semantic Web yields
to new software components that make semantic technology usable for application
developers. In this paper, we combine IE/IR concepts with the technologies of the
Semantic Web and propose a new family of CMS, called Semantic CMS (SCMS),
with advanced semantic capabilities. We provide a reference architecture for SCMS
and prove its value along two implementations. One implementation was created as
part of the Interactive Knowledge Stack research project and another one in a one-year
student project exploring the design of an SCMS for the software engineering domain.

1 Introduction

The growing importance of an efficient content management is omnipresent in nearly each
aspect of daily business. The challenges posed by the raising amount of content are well-
known [AL99] and are becoming greater due to the high availability of content from vari-
ous sources like the Internet. Through this, more and more unstructured content needs to
be handled and therefore aggravate the management of content by Content Management
Systems (CMS).

Addressing these challenges, the “Semantic Web Wave” [LHL01] brought up several tech-
nologies that enable the definition of semantics as machine-readable metadata, termed
“semantic metadata”. Recent approaches [Sar08], like named-entity recognition, clus-
tering and classification use the foundations and facilitate the automatic enrichment of
content with semantic metadata. The semantic metadata allow the automatic structuring

This work has been part-funded by the European Commission under grant agreement FP7-ICT-2007-3/ No.
231527 (IKS - Interactive Knowledge Stack).

)&$

135

Presentation & Interaction

Semantic Lifting

Knowledge Representation
& Reasoning

Persistence

Figure 1: The four layers of an SCMS

and thereby the further processing like searching or filtering. In addition, these metadata
enable the reasoning of new knowledge based on the content.

Summarizing the research trends of the last years, several technological foundations and
algorithms have been developed to face the challenges of efficient content and knowledge
management. On the other hand, only little attention has been paid to the integration of
these approaches from a software engineering perspective. The integration of semantic
functionalities has significant impact on the architecture. The CMS architecture has to
be extended in comparison to traditional CMS, because the storage and processing of
semantic metadata in a semantic CMS (SCMS) needs to be considered. Furthermore,
concepts for reasoning and knowledge extraction need to be integrated and the controlling
of their processing must be handled.

The authors participate in the Interactive Knowledge Stack (IKS)1 project, that is focused
on building an open and flexible technology platform for SCMS. As a working hypothesis,
when starting the project in 2009, we thought of four layers, shown in Figure 1, that would
be required to have in an SCMS architecture. The top layer called Presentation & Inter-
action for presenting knowledge to the end user and support a direct interaction with this
knowledge. To extract knowledge from content the second layer called Semantic Lifting
is used. In this layer, a given content is lifted to semantic level by extracting knowledge
from it. To generate new knowledge based on existing knowledge and to represent this
knowledge within an SMCS we need the third layer, called Knowledge Representation
and Reasoning. The last layer persists the new knowledge in the Persistence layer.

Starting with the initial four layer architecture we began our research on requirements.
We also implemented semantic components in an iterative development process. The re-
quirements were gathered by asking industrial CMS vendors for their needs and by doing
research on possible semantic features [CES+09]. The requirements were consolidated
and implemented in prototypical semantic components in an agile development process.
The architecture was refined and adapted with each iteration of research and develop-
ment [CEN+10].

In this paper, we present the resulting reference architecture for SCMS that addresses the

1http://www.iks-project.eu (July 27, 2011)

)&#

136

domain-specific characteristics of such systems. This reference architecture has been im-
plemented in two software development projects that are described as case studies. The
reference architecture can be adapted in two different ways. On the one hand, the architec-
ture can be used to enhance a traditional CMS with semantic features. On the other hand,
the reference architecture provides support for the specification of SCMS from scratch.

The remainder of this paper is structured as follows. At first, an overview about the state-
of-the-art in engineering CMS is given in Section 2. In Section 3, traditional CMS archi-
tectures and their characteristics are discussed. Section 4 introduces the SCMS reference
architecture that is applied in two case studies described in Section 5. Finally, the presented
results are concluded and an outlook about future work is given in Section 6.

2 Related Work

Recent research provides only few reference models for the development of SCMS. Based
on the technologies and foundations developed for the Semantic Web, a stack architecture,
termed the “Semantic Web Stack” as described in [Ber00], has been designed. This ar-
chitecture has been extended in [HPPH05] with a rule layer. Both approaches provide a
conceptual architecture by defining layers and assigning appropriate semantic technologies
to these layers. Though, both approaches do not provide architectures that can be oper-
ationalized in the sense of development of software. They neither specify functionalities
provided by layers or components nor the interaction between the layers.

In [BKvH02] Sesame is introduced, a generic architecture model that focuses on storing
and querying metadata in RDF and RDF schema. The architecture includes functional
components that can be deployed. As described, this approach is restricted on a specific
technology and thus limited to RDF and RDF schema. It mainly addresses persistence and
data access components, whereas other functionalities like knowledge extraction or user
interaction are not considered sufficiently.

A server architecture for XML document management is proposed in [AMFK+00]. The
architecture consists of a set of high-level layers that focus on the processing of textual
documents. The approach is limited to XML-based content and does not provide solutions
for the storing or extraction of knowledge from existing content.

The “Context Broker Architecture” (CoBrA) described in [CFJ03] uses semantic web tech-
nologies in an architecture for context-aware information systems. The storage and access
of knowledge and context reasoning is explicitly considered. The architecture is designed
on a high level of abstraction and does not describe the different components and their
interfaces in detail. In addition, dynamic processing of knowledge extraction is not in the
focus of the approach.

Summarizing the state-of-the-art in architecturing of SCMS, existing approaches do not
provide a generic model that is independent from concrete technologies and considers
all aspects of knowledge extraction and management. Another shortcoming of existing
architectures is the lack of user interaction with knowledge providing an actual value of
semantic technologies for the end user.

)&"

137

User Interface

Content
Data Model

C
ontent

A
dm
inistration

Content
Repository

Content
Management

Content Access

Figure 2: CMS Server Architecture

3 Traditional CMS Architecture

CMS architectures are built upon the concept of a 3-tier architecture with client, CMS
server, and database backend. Figure 2 shows the internal server architecture of a CMS.
The main difference of CMSs compared to other information systems is to focus on flexible
content modeling and storage. Content data models as the representation of content and
their persistence need to be highly adaptable to any domain or customer scenario.

A CMS User Interface at the top layer in Figure 2 presents the content and offers editorial
features to create, modify, and manage content within its lifecycle. Access to the content
itself is provided by a Content Access layer. This layer is used by the User Interface to get
access to the content and the content management features of the CMS. Additionally, the
Content Access layer can be used by third party software that may want to integrate the
CMS into other applications.

The core management features are implemented in the Content Management layer. This
layer provides functionalities for the definition of the domain or application specific Con-
tent Data Model. Access control and content lifecycle definitions are further typical man-
agement features implemented in this layer. The Content Data Model layer is conceptually
placed below the Content Management layer that has the necessary features to manipulate
the model. The Content Data Model is the application specific model based on the under-
lying Content Repository. The Content Repository defines the fundamental concepts and
persistence mechanisms for any Content Data Model that is defined on top. The Content
Management features are tightly related to the Content Administration layer to administer
the CMS stack.

4 Reference Architecture

In an SCMS the content is stored in a traditional Content Repository and the knowledge
about that content is additionally stored in a Knowledge Repository. Our proposal of an

)&!

138

Presentation &
Interaction

Knowledge
Representation
and Reasoning

Semantic Lifting

Persistence

User Interface

K
now

ledge
A
dm
inistration

Knowledge
Repository

Knowledge
Models

Reasoning

Semantic User Interaction

Content
Data Model

Content
Repository

Knowledge

SCMS -
Semantic Content Management System

C
ontentA

dm
inistration

Knowledge
Extraction Pipelines

Content

Content
Management

Semantic User Interface

Content Access Knowledge Access

Figure 3: SCMS Reference Architecture

SCMS reference architecture, as shown in Figure 3, is designed in such a way that any
existing CMS, that has an architecture similar to the one depicted in Figure 2, can be
extended to become an SCMS. This ensures that a CMS can be semantified without any
major changes to the existing CMS. To create an SCMS out of a CMS the traditional CMS
content column is extended by a second knowledge column for the semantic features in
parallel.

To interact with each other both columns are connected at the level of Content Access and
Knowledge Access. The content of an SCMS is stored in the content column. Traditional
content repositories are best prepared for this task. The content is transported from the
content column to the knowledge column at the Content/Knowledge Access layer. For a
loosely coupled solution, this could be done via some service implementation, e.g. REST-
ful Web Services [Fie00]. The delivered content can be analyzed by the components of
the knowledge column. The obtained knowledge is stored in the knowledge column. Once
the content column needs additional knowledge regarding some content it can query the
content column. On the other hand the knowledge column can search for new or changed
content in the content column.

In summary, a SCMS is a CMS with the capability of interacting with, extracting, man-
aging, and storing semantic metadata about content. In the following, we will describe
the SCMS reference architecture along our coarse grained four layer concept shown in

)&*

139

Figure 1 that consists of Presentation & Interaction, Semantic Lifting, Knowledge Repre-
sentation & Reasoning and Persistence.

Presentation & Interaction In a traditional CMS, the user is able to edit and consume
content through a user interface. When dealing with knowledge in SCMS we need an ad-
ditional layer at the user interface level that allows a user to interact with content, called
Semantic User Interaction. For example, a user writes an article and the SCMS recog-
nizes the name of a person in that article. An SCMS includes a reference to an object
representing that person – not only the person’s name. The user can interact with the per-
son object and see, e.g. its birthday. The person is a knowledge object that is part of a
Semantic User Interaction. Access to knowledge is encapsulated through a Knowledge
Access layer similar to the Content Access layer. Whereas the content column of Figure 3
provides access to the content from the User Interface, provides the knowledge column
access to knowledge for Semantic User Interaction. By combining existing features of a
CMS User Interface layer with new feature from the Semantic User Interaction layer, an
SCMS provides a Semantic User Interface layer on top of both.

Semantic Lifting One problem for traditional CMS is the missing ability to extract
knowledge in terms of semantic metadata from the stored content. Therefore, an SCMS
defines a layer for Knowledge Extraction Pipelines that encapsulate algorithms for seman-
tic metadata extraction. Typically, knowledge extraction is a multistage process [FL04]
by applying algorithms known from the research field of Information Extraction and Re-
trieval. A Knowledge Extraction Pipeline defines that each stage of the pipeline produces
results that are an additional input for the next stage [ELB07]. For example, a typical step
in a Knowledge Extraction Pipeline is to identify all entities in a given content.

Knowledge Representation & Reasoning After lifting content to a semantic level this
extracted information may be used as inputs for reasoning techniques in the Reasoning
layer. Logical reasoning is a well-known artificial intelligence technique that uses seman-
tic relations to retrieve knowledge about the content that was not explicitly known before.

To handle knowledge within the system we use Knowledge (representation) Models that
define the semantic metadata used to express knowledge. These metadata are often defined
along some ontology that specifies so-called concepts and their semantic relations. For ex-
ample, persons and organizations are concepts and a semantic relation between these con-
cepts may define that persons can be employees of organizations. Using this definition, one
can express that a concrete person is an employee of an organization and this knowledge
may have been extracted from a given content through a Knowledge Extraction Pipeline.

In the same way the content column provides an extra orthogonal layer for Content Admin-
istration there is a need for a corresponding construct to administer knowledge. Knowl-
edge Administration leads from the management of Semantic User Interaction templates,
over Knowledge Extraction Pipeline and Reasoning management to the administration of
Knowledge Models and Repositories.

)%'

140

Persistence Knowledge is stored in a Knowledge Repository that defines the funda-
mental data structure for knowledge. State-of-the-art knowledge repositories implement a
triple store where a triple is formed by a subject, a predicate, and an object. Influenced
by the ideas of the semantic web a triple can be used to express any relation between a
subject and an object. To make this a semantic relation one has to define the Knowledge
Models on top of the Knowledge Repository, e.g. to specify the semantic meaning of a
certain predicate.

In the following section, two case studies are introduced that demonstrate the applicability
of our reference architecture in concrete project contexts.

5 Case Studies

The concepts introduced by the SCMS reference architecture are validated through two
distinct implementation projects. The first project is the IKS reference implementation
(IKS-RI) project with the goal to deliver an implementation of the Knowledge column
of the presented SCMS architecture in Section 4. The IKS-RI is validated through an
industrial early adopters program where CMS vendors are invited to integrate the IKS-RI
technology into their existing CMS and by this they create an SCMS. The major part of the
IKS-RI is implemented as its own open source sub-project hosted at the Apache Software
Foundation. This IKS subproject is called Apache Stanbol and was founded to create an
independent open source community around the presented concepts of an SCMS. In this
paper we reflect on the current work in progress status plus the planned features of the
IKS-RI. The IKS-RI 1.0 release is scheduled for the end of 2011 and the Apache Stanbol
community is supposed to push the development further on after 2011.

The second project is a one-year student project that lasted from April 2010 to April 2011.
The project was dedicated to develop an SCMS for the software engineering domain and
is called Information-Driven Software Engineering – abbreviated as ID|SE. The idea is to
create an SCMS that can handle large unstructured software specification documents and
helps to extract the semantic information that is hidden in these documents. Therefore, the
ID|SE platform tries to, e.g., identify pieces of content within a specification that describe
a requirement.

5.1 IKS Reference Implementation

The IKS-RI2 is used as a proof of concept implementation of the SCMS reference ar-
chitecture. The implementation of IKS-RI and the development of the SCMS reference
architecture is an intertwined process driven by open-source developers for the implemen-
tation and researchers for the reference architecture. Distinguished roles and viewpoints
on the problem to support the development of SCMS ensured that all decisions made on

2http://code.google.com/p/iks-project/ (July 27, 2011)

)%)

141

User Interface

Reference Architecture IKS Reference Implementation

IKS VIEjQuery

rdf
Query

Back-
bone.js

IKS VIE WidgetsSemantic User Interface

Semantic User
Interaction jQuery

UI

Figure 4: Reference Architecture compared to VIE Architecture

the implementation or the conceptual design were critically questioned.

The IKS-RI implements the Knowledge column of the SCMS reference architecture (see
Figure 3). Its implementation is divided into different open-source projects. The IKS-RI
developers, amongst others the authors of this paper, use and support several existing open-
source projects for their work. Examples are the Apache Clerezza3 project to manipulate
semantically linked (RDF) data or the Apache OpenNLP4 project for natural language
processing. Additionally, the developers are actively involved in the development of a
newly founded open-source project, called Apache Stanbol5, to implement the required
knowledge features. Before describing the work done at Apache Stanbol we will first
focus on the Semantic User Interaction layer of the reference architecture.

Today, most CMS are web-based CMS whereas clients are primarily web browsers. Thus,
the User Interface is implemented using modern Java Script browser technology. Along
the traditional User Interface, the new Semantic User Interaction features are also required
to work inside web browsers. The IKS/VIE6 sub-project makes use of a set of Java Script
libraries, namely jQuery, Backbone.js, and rdfQuery and creates new semantic interaction
widgets on top. The VIE architecture is depicted in Figure 4 in comparison to the reference
architecture. VIE provides a framework at the Semantic User Interaction layer for user
interaction widgets that can be used to create user interface components in the Semantic
User Interface layer. Such widgets realize user interaction with content plus knowledge. A
simple scenario is to edit a text and insert not just the literal name of the person but instead
the entity person with the associated knowledge about that person.

The Apache Stanbol architecture is built upon the OSGi [All11] component model imple-
mented by the Apache Felix7 project. The OSGi model supports elegant separation of dif-
ferent components required by the Knowledge column. Each component is based on a Re-
source Oriented Architecture [Ove07] exposing their interfaces in terms of a REST [Fie00]
API. The aggregation of the components’ interfaces forms an implementation of the Knowl-
edge Access layer in Figure 3. This means that all components of Apache Stanbol address
functionality within this layer and below of the reference architecture. Apache Stanbol

3http://incubator.apache.org/clerezza/ (July 27, 2011)
4http://incubator.apache.org/opennlp/ (July 27, 2011)
5http://incubator.apache.org/stanbol/ (July 27, 2011)
6http://github.com/IKS/VIE (July 27, 2011)
7http://felix.apache.org/ (July 27, 2011)

)%(

142

K
now

ledge
A
dm
inistration

Knowledge
Repository

Knowledge
Models

Reasoning

Reference Architecture

Knowledge
Extraction Pipelines

IKS Reference Implementation

Stanbol Enhancer

O
S
G
iS
ystem

C
onsole

Enhancement Engines

Stanbol
EntityHub

Apache
Clerezza

Stanbol
Ontology Mgr

Apache
Jena

Stanbol
Reasoners

Stanbol
ContentHub

Apache
Solr

Knowledge Access Stanbol REST Service API

Figure 5: Reference Architecture compared to IKS-RI Architecture

does not address the top layers. The IKS-RI architecture for the SCMS layers starting with
Knowledge Access is depicted in Figure 5.

Apache Stanbol defines a sub-framework, called Stanbol Enhancer, to implement Knowl-
edge Extraction Pipelines. Such a pipeline consists of Enhancement Engines in which
each engine is responsible to automatically extract one piece of information. Subsequent
engines can use information extracted by previously executed engines. At the end of this
process a given content is enhanced with the extracted metadata that become knowledge.
The most important knowledge that can be extracted with Apache Stanbol is the identi-
fication of certain types of entities within the content. Supported entities are e.g. per-
sons and locations. The extracted knowledge is represented in a triple-graph structure
provided by Apache Clerezza and stored with the use of the Stanbol ContentHub. The
ContentHub provides access to previously enhanced content and allows to retrieve already
stored knowledge for a given content.

The EntityHub is used to retrieve semantic information about entities available through
accessible Linked Open Data sources. A prominent example of a public Linked Open
Data source is the DBPedia8 archive which provides access to the data available through
Wikipedia9. The EntityHub is able to search for entities in such data sources, to cache the
information in an Apache Solr database, and to publish this information within Stanbol.

Reasoning about knowledge is prepared through the Stanbol Reasoner component which
is able to integrate existing reasoning engines. This reasoning implementation requires
knowledge that is structured according to an ontology that can be managed by the Stanbol
Ontology Manager. The Ontology Manager provides a management API for ontologies
expressed in the Web Ontology Language (OWL) [W3C09]. Clients can query the Stanbol

8http://dbpedia.org/ (July 27, 2011)
9http://www.wikipedia.org/ (July 27, 2011)

)%&

143

Reasoner to gain new knowledge that is only implicitly present in the stored knowledge.
The Stanbol Reasoner processes existing knowledge represented in an OWL ontology and
is able to retrieve new knowledge, e.g. by using the semantic relations between entities
defined through the ontology. Ontologies can be stored using Apache Jena which supports
semantic web standards like the used OWL.

The administration of all Apache Stanbol components is done via the OSGi System Con-
sole that is provided by the underlying Apache Felix OSGi implementation. Each com-
ponent defines its own configuration parameters that can be manipulated via the System
Console. For example, the used Linked Open Data source for the EntityHub is config-
urable through this mechanism.

5.2 Information-Driven Software Engineering

The ID|SE project10 was a one-year student project with the goal to create an SCMS for
the software engineering domain. Imagine a CMS in which one can upload unstructured
requirements and specification documents and the system is able to identify specified re-
quirements, actors, use cases, and components of the system plus the ability to reason
about relations, e.g. between actors and use cases. Such an SCMS would help to structure
the large amount of information written in plain text specifications. The ID|SE project
used the publicly available specification of the German health card system for evaluation.
The specification11 consits of more than 10,000 pages of text written in German including
some tables plus a few informal figures and is available in Word or PDF format.

In this paper, we focus on the ID|SE architecture and leave out the discussion about se-
mantic features of the ID|SE platform. In Figure 6, we compare the reference architecture
with the ID|SE version of an SCMS architecture. The ID|SE project realizes the Content
column in Figure 3 on the basis of OpenCMS12, an open-source CMS. In consequence,
the ID|SE User Interface is implemented as an OpenCMS module. The focus of the ID|SE
project was on features to analyze a given software specification document. The creation
of sophisticated Semantic User Interaction components was not part of the project. That is
the reason why the ID|SE architecture does not reflect Semantic User Interaction but only
provides a User Interface without extra semantic capabilities.

The ID|SE Service Platform API provides access through web services to the platform
services that are realized by the IE/IR Service Orchestrators. To connect the Knowledge
column with the Content column provided by OpenCMS the ID|SE project implemented
an adapter in OpenCMS that informs the ID|SE platform about newly uploaded content to
trigger the semantic lifting machinery and to transfer the content from OpenCMS to the
ID|SE platform.

The core of the ID|SE platform is a set of semantic lifting components that implement
features from the research field of Information Extraction (IE) and Information Retrieval

10http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss10/pg-idse/pg-idse.html (July 27, 2011)
11http://www.gematik.de/ (July 27, 2011)
12http://www.opencms.org/ (July 27, 2011)

)%%

144

K
now

ledge
A
dm
inistration

Knowledge
Repository

Knowledge
Models

Reasoning

Reference Architecture

Knowledge
Extraction Pipelines

ID|SE Implementation

IE/IR Service Orchestrators

IE/IR Services

Information Aggregators

Metadata Model

User Interface ID|SE Presentation-Platform
based on OpenCMS UI

Metadata Storage

Knowledge Access ID|SE Service Platform API

Figure 6: Reference Architecture compared to ID|SE Architecture

(IR), respectively. This IE/IR services are executed in a pipeline by the IE/IR Service
Orchestrators. In the following, we present a list of the IE/IR services used by the platform
to give an impression of how this Knowledge Extraction Pipeline depicted in Figure 7
works.

• Content Extraction
Features to convert a given content in DOC or PDF format into a format that is
suitable for being further processed by the pipeline.

• Preprocessors
Features to pre-process the content by applying techniques like tokenization of text,
sentence detection, part-of-speech tagging, and word stemming.

• Classifier
A set of algorithms to classify pre-processed content according some classification
schema. It is used for example to classify content as a text containing requirements
or as a use case description.

• Clusterer
Features to partition large sets of documents into clusters of similar documents. This
is used, e.g., to identify similar requirements as they are partitioned into the same
cluster with these techniques.

• Named Entity Recognizer
Features to recognize named entities like actors, components, and use cases within
the content.

)%$

145

Content
Extraction

Pre-
processors Classifier Clusterer Named Entity

Recognizer

Figure 7: ID|SE IE/IR Services Pipeline

After processing the documents by the IE/IR Services, the ID|SE platform provides addi-
tional features that are aligned to the reasoning capabilities of the reference architecture,
called Information Aggregators. The Information Aggregators layer consists of compo-
nents that collect semantic metadata that were extracted by the IE/IR Services and gener-
ates new metadata on that basis. The ID|SE platform provides three aggregators.

• Entity Cover Calculator
The Entity Cover Calculator computes the ratio between the coverage of named enti-
ties between two documents. This feature can be used, e.g., to search for documents
that may be duplicates of each other like duplicate requirements.

• Faceted Data Creator
The Faceted Data Creator generates metadata for a faceted search user interface
component. A faceted search lets users browse through large sets of documents by
selecting different document categories. Each selection of a new category reduces
the number of matching documents and allows an easy way to find a searched doc-
ument.

• Use-Case Model Recognizer
Searches for use cases and actors in documents and creates UML [OMG10] use-case
diagrams based on this information.

The knowledge extracted by the IE/IR Services and the Information Aggregators is rep-
resented using the ID|SE specific Metadata Model. This model defines that each doc-
ument consists of a number of artifacts in which each artifact is stored as a character
sequence. This character sequence can be annotated with metadata defining that a certain
sub-sequence contains a specific semantic information. Additionally, character sequences
form tokens and sentences. The Metadata Model is implemented using the Java Persis-
tence API (JPA) [Gro06] for storing these data into the Metadata Storage. The ID|SE plat-
form uses the open-source relational database MySQL13 as its Metadata Storage which
implements the Knowledge Repository layer of the reference architecture.

13http://www.mysql.com/ (July 27, 2011)

)%#

146

6 Discussion & Future Work

In this paper, we have motivated the need for a new generation of CMS that improve the
handling of the growing amount of content by using semantic web technologies and IE/IR
concepts. For these systems, termed Semantic Content Management Systems (SCMS)
we proposed a reference architecture that supports the development of such systems by
considering domain-specific requirements like the pipeline processing of knowledge ex-
traction technologies. The reference model is intended to be used in different ways. The
architecture can be adapted to develop an SCMS from scratch or to enhance existing, tra-
ditional CMS with semantic functionalities.

The applicability of our approach in these two different ways has been evaluated by the
implementation of the reference architecture in two software development projects. Ap-
plying the reference model to concrete implementation projects, the architecture provided
a starting point for integrating semantic web and IE/IR technologies. The proposed struc-
ture ensures the consideration of all relevant aspects of semantic content and knowledge
management by appropriate concepts. Hereby, the presented approach attains benefits for
the design and implementation of SCMS.

Addressing the experiences from the performed case studies, we identified three directions
for the further work on our reference architecture. As a first step, the reference architecture
will be evaluated as part of an overall evaluation in the IKS project. The applicability is
measured by the expertises from the project consortium including partners from seven
research institutions and six industrial CMS providers.

Secondly, we will use best practices and feedback given by architects and developers from
our case studies to concretize the different layers and their functionality to fine-granular
components. In addition, conceptual interfaces for the interaction between these compo-
nents will be defined. Through this, the applicability of the reference architecture in the
technical design will be improved.

Finally, we still see the potential for further improvement in the presentation and inter-
action layer of our architecture. The investigation of useful concepts for semantic user
interaction and corresponding user interfaces is still part of our current work. The im-
pact of these concepts on an architecture level needs to be analyzed in order to identify
alignments for the reference architecture.

References

[AL99] Maryam Alavi and Dorothy E. Leidner. Knowledge management systems: issues,
challenges, and benefits. Commun. AIS, 1999.

[All11] OSGi Alliance. OSGi Service Platform - Core Service Specification Version 4.3,
2011. http://www.osgi.org/Release4/HomePage (July 27, 2011).

[AMFK+00] Tim Arnold-Moore, Michael Fuller, Alan Kent, Ron Sacks-Davis, and Neil Sharman.
Architecture of a Content Management Server for XML Document Applications. In

)%"

147

1st International Conference on Web Information Systems Engineering (WISE 2000),
2000.

[Ber00] Tim Berners-Lee. Semantic Web - XML2000, 2000.
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html (July 27, 2011).

[BKvH02] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema. In Proceedings of
the first Int’l Semantic Web Conference (ISWC 2002), Lecture Notes in Computer
Science, pages 54–68. Springer, 2002.

[CEN+10] Fabian Christ, Gregor Engels, Benjamin Nagel, Stefan Sauer, Sebastian Germesin,
Enrico Daga, and Ozgur Kilic. IKS Alpha Development. Deliverable, 2010.
http://www.iks-project.eu/resources/iks-alpha-development (July 27, 2011).

[CES+09] Fabian Christ, Gregor Engels, Stefan Sauer, Gokce B. Laleci, Erdem Alpay,
Tuncay Namli, Ali Anil Sinaci, and Fulya Tuncer. Requirements Specifica-
tion for the Horizontal Industrial Case. Deliverable, 2009. http://www.iks-
project.eu/resources/requirements-capture-through-use-cases (July 27, 2011).

[CFJ03] Harry Chen, Tim Finin, and Anupam Joshi. Semantic Web in a Pervasive Context-
Aware Architecture. IN ARTIFICIAL INTELLIGENCE IN MOBILE SYSTEM 2003
(AIMS 2003), IN CONJUCTION WITH UBICOMP, pages 33–40, 2003.

[ELB07] Michael Thomas Egner, Markus Lorch, and Edd Biddle. UIMA GRID: Distributed
Large-scale Text Analysis. In Seventh IEEE International Symposium on Cluster
Computing and the Grid, CCGRID 2007., pages 317–326, 2007.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California, 2000.
http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm (July 27, 2011).

[FL04] David Angelo Ferrucci and Adam Lally. Building an example application with the
unstructured information management architecture. IBM Systems Journal, pages 455–
475, 2004.

[Gro06] EJB 3.0 Expert Group. JSR 220: Enterprise JavaBeans,Version 3.0 Java Persistence
API, 2006. http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html (July
27, 2011).

[HPPH05] Ian Horrocks, Bijan Parsia, Peter Patel-Schneider, and James Hendler. Semantic Web
Architecture: Stack or Two Towers? In Principles and Practice of Semantic Web
Reasoning, pages 37–41. Springer, 2005.

[LHL01] Berners Lee, J Hendler, and O Lassila. The Semantic Web. Scientific American, 2001.

[OMG10] OMG. Unified Modeling Language (OMG UML), Superstructure, V2.3, 2010.
http://www.omg.org/spec/UML/2.3/Superstructure/PDF (July 27, 2011).

[Ove07] Hagen Overdick. The Resource-Oriented Architecture. IEEE Congress on Services,
pages 340–347, 2007.

[Sar08] Sunita Sarawagi. Information Extraction. Foundations and Trends in Databases,
pages 261–377, 2008.

[W3C09] W3C. OWL 2 Web Ontology Language Structural Specification and Functional-Style
Syntax, 2009. http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/ (July 27,
2011).

)%!

148

