
Automatic Generation of Optimized Integration Test Data

by Genetic Algorithms

Florin Pinte, Francesca Saglietti, Norbert Oster

Lehrstuhl für Software Engineering
Friedrich-Alexander-Universität Erlangen-Nürnberg

Martensstraße 3
91058 Erlangen

pinte@informatik.uni-erlangen.de
saglietti@informatik.uni-erlangen.de

oster@informatik.uni-erlangen.de

Abstract: The importance of software in nearly all of today’s engineering
disciplines demands for development and validation techniques ensuring high
dependability of complex software systems. Component-based software
development as the ultimate approach for dealing with complexity shifts the focus
of verification from unit to integration tests addressing the correctness of
component interactions. As the current state-of-the-art does not include a
systematic and tool-supported approach to interface testing, this paper presents a
procedure for the automatic generation of integration test data based on genetic
algorithms.

1 Introduction

The clarity and economic attractiveness offered by systems consisting of reusable
components frequently leads to the underestimation of a major source of failures, namely
of those caused by the incorrect interaction of correct components [SJ04]. Integration
testing is meant to expose defects at the interfaces and in the interactions between
integrated components [IST07]. Due to the lack of tool support this testing phase is still
carried out in a very unsystematic and cursory way. In particular, techniques to generate
test data and to evaluate their interface coverage are missing in the industrial
environment.

When compared to state-of-the-art integration testing techniques [MP05], which are
mainly limited to the consideration of operational call sequences in UML diagrams, the
novelty of our approach consists in including further details concerning component
interaction, like message-based and state-based information, as well as in applying
genetic algorithms for the purpose of achieving a high interaction coverage by a low
number of test cases.

415



In view of the manual effort needed to verify the behaviour observed during testing it is
crucial to avoid redundant testing activities. For this reason our research work addresses
the problem of systematizing rigorously the integration testing process by providing

1. a hierarchy of interface coverage criteria,

2. for each interface coverage criterion automatic techniques resp. tools capable of
generating input data aimed at

2.1 maximizing the interaction coverage and

2.2 minimizing the number of test cases.

In order to focus on component interaction, integration testing cannot be done in a purely
black-box fashion; on the other hand, in general commercial off-the-shelf components
have already been extensively tested, such that a white-box approach would imply
unnecessary re-testing. For these reasons we decided to base our approach on a grey-box
level as provided by UML diagrams.

Supported by the Bavarian Ministry of Economic Affairs, Infrastructure, Transport and
Technology, our ongoing project UnITeD (Unterstützung inkrementeller Testdaten) aims
at fully automating the generation of optimized integration test cases on the basis of
UML model descriptions of components enriched by interaction information.

Our methodology grounds on a similar approach [Os07] developed at our department,
which successfully applies genetic algorithms to the automatic generation of optimized
test data for white-box testing at code level. We also developed a further derivative of
this technique which addresses grey-box testing of components at model level, thus
providing automatic support for a number of model-based testing strategies [OSS07]. An
appropriate hierarchy of interface coverage criteria was introduced in [SOP07] together
with a worst case estimate of the number of test cases required to achieve a given
coverage.

This article is structured as follows: section 2 introduces the grey-box model with
respect to which we represent the behaviour and the interaction of components.
Successively, genetic algorithms supporting the automatic test data generation are
presented in section 3, together with a model simulator required to evaluate the
interaction coverage achieved. Finally, section 4 describes experimental results obtained
by applying this technique.

416



2 Modelling the Behaviour and the Interaction of Components

We chose to represent the behaviour and the interaction of components by UML state
machines enriched by messages sent between the components as possible effects of state
transitions. Whenever a state transition tA in an invoking component A results in calling
a method of a component B leading to a corresponding transition tB, we call the pair (tA,
tB) a mapping. Fig. 1 illustrates for example the mapping m1 = (tA6, tB4) resulting from
the call of opB2 as effect of transition tA6 triggering transition tB4. A further mapping
m2 = (tA6, tB3) arises from the call of opB2 as effect of transition tA6 triggering
transition tB3.

Fig. 1: State machines describing the behaviour of two communicating components A and B with
mappings m1 = (tA6, tB4) and m2 = (tA6, tB3)

3 The Genetic Algorithm and the Model Simulator

This section addresses the question of applying genetic algorithms for the purpose of
multi-objective optimization. Genetic algorithms work with populations of individuals,
each individual being a possible solution to the optimization task.

In the following a test case is defined as a sequence of method calls together with
corresponding data, while a test suite is defined as a set of test cases.
In our approach each individual of a population corresponds to a test suite, each gene of
an individual corresponding to a test case. For the purpose of evaluating the fitness of an
individual the following properties are considered:

- the interaction coverage achieved,

- the size of the test suite, i.e. the number of test cases it contains.

Further properties which may be taken into account in addition to the above are:

- the maximum length of test cases in terms of the number of messages contained,

- the distance between the state reached after a test run and the final state of the
machine (when test cases triggering complete paths from the initial node to the
final node of the state machines are required).

417



Having determined the encoding and the fitness function a multi-objective genetic
algorithm can be applied, starting with the generation of an initial population.

Typical genetic operators (e.g. mutation, crossover) are applied to each generation, thus
resulting in the emergence of a new population. This process is repeated until a stopping
rule is met. Examples of such stopping rules are the achievement of a given fitness or the
generation of a given number of populations.

3.1 Coverage Criteria

So far, systematic integration testing criteria were essentially limited to the consideration
of operation call sequences in UML diagrams ([WCO03] and [AO00]). In our opinion,
thorough integration testing should not neglect further details on component interaction
like message-based information, which takes into account the variety of data conditions
underlying the calls, as well as of state-based information, which includes details on
internal component transitions as done by the state-based coverage criteria shown in Fig.
2 and introduced in detail in [SOP07]. The most demanding among these criteria is
denoted by “invoking/invoked-transitions” and requires to cover all mappings, i.e. all
pairs of corresponding transitions, in particular taking into account all possible
combinations of pre- and post-states of invoking and invoked components as well as all
triggers and non-trivial effects of the invoking component.

invoking-transition-
on-all-pre-states

trigger-and-effect-
in/on-pre-states

effect-in/on-pre-states

effect-on-pre-states

pre-state-trigger-
and-effect

pre-state-and-trigger

invoking/invoked-
transitions

invoking-transition

Fig. 2: Hierarchy of state-based interface coverage criteria

418



3.2 Initial Population

The automatic generation of test data by genetic algorithms starts with an initial
population with each individual containing several test cases, i.e. sequences of messages
to communicating components. Considering components A and B as shown in Fig. 1, in
the following we will describe how such an initial message sequence can be built for the
special case of two interacting components. For every component a possible message
sequence is randomly generated, for example the sequence (opA1(4), opA2(), opA3())
for component A resp. (opB1(7), opB4()) for component B. Interleaving these two
sequences results in a test case like (opA1(4), opB1(7), opA2(), opB4(), opA3()).

3.3 Coverage Measurement by Model Simulation

For the purpose of computing the fitness of a test suite, the coverage achieved by all test
cases contained in an individual needs to be determined. This is done by means of a
model simulator developed within our project. For every interacting component this
model simulator is instantiated, processes the corresponding messages contained in the
test case to be evaluated and returns the list of covered transitions.

In order to do so, the simulation of the mere component functionality was extended such
as to include also component interactions by propagating internal messages (resulting as
transition effects) to the components they are destined for.

For the simple example in Fig. 1 the coverage of the test case (opA1(4), opB1(1),
opA2(), opA3(), opB4()) w.r.t. to the invoking-invoked criterion [SOP07] is evaluated
by model simulation as described in the following. According to the invoking-invoked
criterion all mappings between the two components must be covered, thus the target of
the generation is to cover the mappings m1 = (tA6, tB4) and
m2 = (tA6, tB3). The process of determining the coverage of this test case is explained
step by step in the following.

Step 1: Instantiate and initialize the simulators: component A is in state A1 and
component B is in state B1, such that transitions tA1 and tB1 are traversed immediately.

Step 2: Process the first message opA1(4) of the test case: this message is sent to the
simulator of component A. The guard of transition tA3 is evaluated to true, the internal
variable x is assigned the value 4 and transition tA3 is traversed, resulting in state A2.

Step 3: Process the second message opB1(1) of the test case: this message is sent to the
simulator of component B. The internal variable y is assigned the value 1 and transition
tB2 is traversed, resulting in state B2.

Step 4: Process the third message opA2() of the test case: this message is sent to the
simulator of component A. The guard of the transition tA5 is evaluated to true (because
x = 4 < 5) and transition tA5 is traversed, resulting in state A4.

419



Fig. 3: The internal states A4 and B2 of the components as reached after the fourth step

Step 5: Process the fourth message opA3() of the test case: this message is sent to the
simulator of component A. Transition tA6 is traversed, resulting in state A2; its effect
consists of an internal message opB2 to component B, which is accordingly sent to the
simulator of B. The guard of transition tB4 is evaluated to true (because y = 1 > 0) and
transition tB4 is traversed, resulting in state B3.

Step 6: Process the fifth message opB4() of the test case: this message is sent to the
simulator of component B. Because there is no transition leaving the actual state B3 with
trigger opB4(), this message does not change the state of component B.

The transitions traversed by the test case considered are: tA1, tB1, tA3, tB2, tA5, tA6,
tB4. Since the target is to cover both mappings m1 = (tA6, tB4) and m2 = (tA6, tB3), the
test case has achieved a coverage of 50% - by covering only mapping m1. If the above
test case is modified by swapping messages opA3() and opB4(), the coverage of the
modified test case is 0. Full coverage may be achieved by an additional test case hitting
also mapping m2, like (opA1(4), opA2(), opB1(-3), opA3()). But since our approach
aims at minimizing the size of the test suite a better solution would consist of adapting
the first test case such as to cover both mappings by one message sequence, e.g.
(opA1(4), opB1(1), opA2(), opA3(), opB3(), opB1(-1), opA2(), opA3()).

On the whole we can note that the main difficulty in generating adequate test suites
essentially lies in determining the order of messages between interacting objects. In fact,
the message sequence must first bring the components into appropriate states enabling
the subsequent coverage of the interaction entities envisaged. Obviously, our technique
is also applicable to systems of more realistic complexity, in particular those with
parameterized operational calls between components, as the one introduced in the
following section.

4 Experimental Results

This section describes preliminary results gained by applying the technique described
above. In cooperation with the industry a tool was developed which automatically
generates test suites from EMF UML models. After having modelled the component-
based software system under test the tester may choose among the following alternative
interaction modes: interaction of two components, interaction of one component with the
rest of the system and interaction of all components within the system.

420



The application of our technique was exemplified for the software-based elevator
controller shown in Fig. 4 and consisting of 6 components. Some of the results obtained
are presented in Table 1. The number of generations #G and the size #T of the test suite
required to achieve a given coverage are of special interest.

Fig. 4: The software components and their interactions for the elevator system

Interaction between: #Est #Cov #G #T

CabinControl and MainControl 16 100% 40 7

CabinControl and all other
components

20 100% 50 9

All components 32 81% (26 mappings) 50 9

Table 1: Results related to the generation of test suites
for the invoking/invoked-transitions interface coverage criterion

#Est: worst-case estimation of the number of test cases required
#Cov: coverage achieved
#G: number of generations required
#T: number of test cases required

The number of test cases required to fulfil the criterion is less than half of the worst-case
estimates determined according to [SOP07]. Even if the absolute decrease in test cases
may not look too impressive at first sight, it allows a substantial effort reduction in view
of the laborious manual verification required by each of the test runs involved.

421



5 Conclusions

This research paper introduced an innovative approach for the automatic generation and
optimization of integration test suites fulfilling a variety of state-based coverage criteria
as introduced in [SOP07]. The efficiency and economic attractiveness of this
methodology was clearly demonstrated by means of convincing and promising
preliminary results. The technique developed allows for filling a major gap in today’s
industrial software testing environment by offering a practical, fully automated support
during the integration of component-based software systems.

Future work will include the extension of the present tool such as to include further
UML behavioural diagrams like Activity and Sequence Diagrams. This will allow the
generation of optimized test suites also for the mapping- and message-based testing
criteria proposed in [SOP07].

References

[AO00] Abdurazik, A.; Offutt, J.: Using UML Collaboration Diagrams for Static Checking
and Test Generation. Proc. 3rd Int. Conf. on The Unified Modeling Language, 2000

[IST07] Erik van Veenendaal (Ed.): Standard glossary of terms used in Software Testing,
Version 1.3, ISTQB International Software Testing Qualification Board, 2007

[MP05] McQuillan, J. A.; Power, J. F.: A Survey of UML-Based Coverage Criteria for
Software Testing. Technical Report NUIM-CS-TR-2005-08, Department of Computer
Science, NUI Maynooth, Co. Kildare, Ireland, 2005

[Os07] Oster, N.: Automatische Generierung optimaler struktureller Testdaten für objekt-
orientierte Software mittels multi-objektiver Metaheuristiken. Dissertation, in
Arbeitsberichte des Instituts für Informatik, Vol. 40, Nr. 2, University Erlangen-
Nuremberg, 2007

[OSS07] Oster, N.; Schieber, C.; Saglietti, F.; Pinte, F.: Automatische, modellbasierte
Testdatengenerierung durch Einsatz evolutionärer Verfahren. In R. Koschke, O.
Herzog, K.-H. Rödiger, M. Ronthaler (Eds.): Informatik 2007 - Informatik trifft
Logistik, Vol. 110 of Lecture Notes in Informatics, Gesellschaft für Informatik, 2007

[SJ04] Saglietti, F.; Jung, M: Classification, Analysis and Detection of Interface
Inconsistencies in Safety-Relevant Component-based Systems, in C. Spitzer, U.
Schmocker and V. N. Dang (Eds.): Probabilistic Safety Assessment and Management,
Springer-Verlag, 2004

[SOP07] Saglietti, F.; Oster, N.; Pinte, F.: Interface Coverage Criteria Supporting Model-Based
Integration Testing. In M. Platzner, K.-E. Großpietsch, C. Hochberger, A. Koch
(Eds.): ARCS '07 Workshop Proceedings, VDE Verlag, 2007

[WCO03] Wu, Y.; Chen, H.; Offutt, J.: UML-based Integration Testing for Component-based
Software, Proc. Second International Conference on COTS-based Software Systems,
Lecture Notes in Computer Science, Volume 2580, Springer-Verlag, 2003

422


