Assembly-based Method Engineering
with Method Patterns

Masud Fazal-Baqaie, Markus Luckey, Gregor Engels

s-lab — Software Quality Lab
Universitit Paderborn
Zukunftsmeile 1
33102 Paderborn
{masudf,luckey,engels} @uni-paderborn.de

Abstract: Software development methods prescribe and coordinate the activities
necessary to plan, build, and deliver software. To provide methods that account for
the situational context of a development project, e.g., an acquirer-supplier-
relationship or specific communication needs, the existing method creation ap-
proaches represent a trade-off between flexibility and ease of use. On the one side,
less flexible configurable methods offer a fixed set of configurations to quickly
adapt a method to the situation at hand. On the other side, assembly-based ap-
proaches allow creating methods from scratch by combining preexisting building
blocks. Thus, they are more flexible and capable of creating methods not covered
by configurations of configurable methods, e.g., a mixture of agile and plan-driven
ideas. However, assembly-based approaches are not easy to use and require con-
siderable expert knowledge. In this paper we suggest the use of method patterns
during the assembly-based method creation. Method patterns represent desirable
principles for the to-be-method and therefore support the right choice and combi-
nation of method building blocks, simplifying assembly-based method creation.

1. Introduction

Large software development projects often involve many stakeholders and different
organizations. One example for such a project is the development of an ePassport sys-
tem. An ePassport system covers all lifecycle phases of an ePassport, from the data col-
lection during the enrollment of its holder, over its personalization (the “printing”) to its
delivery to its holder, its usage, and finally its destruction.

In order to successfully accomplish large software projects like ePassport projects, soft-
ware engineering methods are applied. By software engineering methods we denote the
full set of elements needed to describe a software development project, including the
development process and its activities, the artifacts produced, and the tools and tech-
niques that are employed as well as relationships between these concepts [ES10].

There exist several widespread software engineering methods based on different philos-
ophies for different purposes, e.g., RUP [K199], V-Modell XT [Vm12] or Scrum [SS11].
However, even for one specific domain like the development of ePassport systems there

435

is no one-size-fits-all method. The very different nature and priorities of each project,
i.e., the situational context [HR10], has an impact on the method’s activities and arti-
facts. As an example, consider the trade-off between plan-driven activities and agility
[Bo03]. That trade-off is influenced, e.g., by having an acquirer-supplier-relationship,
like it is typical for ePassport projects, or by the stability of the requirements base. There
may also exist certain regulatory constraints that have to be taken into account, e.g., to
meet a certain process maturity level regarding CMMI [Cm10].

Situational method engineering (SME) is the field dedicated to engineering situation-
specific software development methods from scratch or adapting existing methods
[HR10]. The adaption of existing methods is often summarized under the term tailoring,
disregarding the differences between unrestricted free adaption and guided configura-
tion. Every SME approach represents an individual tradeoff between the effort to design
a method and the flexibility in terms of possible choices during the method design pro-
cess [HB94]. On the one side there exist more rigid approaches to create a project-
specific method. For example, configurable methods like V-Modell XT [Vm12] offer
several variability points to adjust the method to the situation. On the other side, less
rigid SME approaches are more flexible, in terms of the variety and specialization of the
creatable methods, however, the design of methods requires more effort and more exper-
tise.

A particular group of these less rigid SME approaches is called assembly-based SME
[BS98]. The basic idea is to maintain a repository of predefined method building blocks,
e.g., called method fragments [Br96], method chunks [R096], method components
[GL98], or as in our case method services [Ro09]. Based on the situational context,
method building blocks suitable for the current project are selected and assembled to a
method (see Figure 1). The flexibility of this approach is restricted only by the set of
available building blocks. These can be defined on-the-fly without requiring changes to
existing method building blocks. Hence, it is possible to incorporate, e.g. the latest best
practices.

Situational
Project factor Characterization
Environment of project

method building
blocks

Selection of
method building
blocks

characterization

Method Base

Selected method A
building blocks
Assembly of Definition of
method building Method Building
blocks Blocks

Figure 1. Assembly-based SME (cf. [Br96])

The major drawback of assembly-based SME is that creating meaningful methods re-
quires a certain level of method engineering knowledge as it is more tedious and error-
prone than configuration-based SME, where the possible configurations are already
known beforehand. In this we see the main reason why assembly-based SME has not
achieved noticeable attention in industry. Suitable building blocks have to be identified
and combined in such a way that a consistent method is created. Furthermore, the meth-
od has to comply with the requirements imposed by the situation. To benefit from the

436

advantages of assembly-based SME, we introduce the new concept of method patterns to
support the method engineer following that approach in his work.

Method patterns represent methodological aspects and quality constraints that shall be
incorporated into the method, e.g., “iterative development” or “use of quality gates”.
They are combined to form a “method frame”, which ensures that the combined method
building blocks do not violate the pattern-specific properties. For example, a method
pattern that prescribes the creation of a specification can be combined with a method
pattern for iterative development. That ensures that in the created method that specifica-
tion is created iteratively.

This paper is organized as follows. In Section 2 we use ePassport system development as
an example to illustrate the rationale for assembly-based SME with method patterns. In
Section 3 we exemplify the use of method patterns by combining patterns of a plan-
driven software engineering method with patterns reflecting agile aspects. We conclude
with a discussion of our contributions and the planned future work in Section 4.

2. Motivational Scenario

We use the following scenario as a running example to illustrate why configuration-
based SME may fall short and to motivate assembly-based SME and the benefits of
method patterns. It is based on real life industry projects carried out by one of our co-
operation partners. The project in the scenario deals with the introduction of a distributed
ePassport system connected to several national (e.g. border control, civil register) and
international (e.g. Interpol) databases and information systems. Typically, such a system
is not developed by the government organization itself, but by a supplier that is awarded
the project after a public tender of the government organization (acquirer). Normally, a
passport domain expert is the project manager. Right before the project’s start the expert
chooses the software development method of the project. As domain experts usually
have no particular SME knowledge they choose fixed off-the-shelf methods or create a
method using configuration-based SME, e.g., V-Modell XT [Vm]12].

Figure 2 illustrates the lifecycle of such a project with the decision gates of V-Modell
XT-based methods.! Each decision gate, depicted by a left leaning parallelogram, marks
the end of a lifecycle phase, where the produced deliverables are examined.

Different from other domains, V-Modell XT has not been established as a standard for
ePassport system projects. Nevertheless, the scope and formality of the methods created
with V-Modell XT define a frame for the legal and commercial cooperation of acquirer
and supplier. The desirable characteristics include:
e the work division between acquirer and supplier, e.g., support of tender activi-
ties
e the definition of formal documents, e.g. for legal and commercial reasons

! As we use V-Modell XT as an illustrative example, we abstract from different project execution strategies.

437

e the definition of formal handover activities, e.g., for legal and commercial rea-
sons
e coverage of the lifecycle presented in Figure 2

Requirements Request for \\ pfter submitted \\ Contract Awarded\ “‘;“P‘Ig“f
\Prop! omplete
o Delivery
System Specified
4 e Conducted

System Designed 'System Integrate
Detail Design System Elements
Completed Realized

Figure 2. Sequence of decision gates in V-Modell XT-based methods

According to experience, the document-centric philosophy of methods created with V-
Modell XT and their rigid formality are however also seen as the root for severe prob-
lems in practice. Typically, stakeholder are not familiar with ePassport technology and
do not understand the implications caused by “just an additional chip on the passport”.
Therefore, they have difficulties to formulate all their requirements upfront and the re-
quirements specification does not reflect the stakeholders’ real intends. However, by the
document-centric nature of a V-Modell XT-based method, the requirements specification
is the main and dominant source of information for the supplier during the specification
and development. Only little participation of the acquirer takes place during develop-
ment and the stakeholders often do not see the system before it is ready to be delivered.
Flaws uncovered then have to be removed at high costs.

In order to improve the situation, the method to use for the ePassport project shall there-
fore incorporate aspects of the agile software development philosophy [Bel2] that fos-
ters information exchange and collaboration. However, V-Modell XT is not designed to
create a method that exhibits the following characteristics:

e iterative and incremental development towards decision gates

e informal coordination meetings

e sharing of intermediate work results

Using the scenario as an example we illustrated the limitations of configuration-based
SME. Assembly-based SME, in contrast, allows incorporating method building blocks of
different methods, especially following different development philosophies, as requested
in our example. However, the available literature on assembly-based approaches pro-
vides no formal guidance for people without any particular SME knowledge during the
method construction (e.g., [GH9S, Fi09]). Additionally, if the effort to create a method is
too high, the project manager will not be able to timely create a method for the initiated
project. We therefore propose the concept of method patterns, which are used additional-
ly to method building blocks during the method construction. They encode methodologi-
cal aspects and quality constraints like the required presence and order of activities. In
our Scenario the project manager could use and combine these patterns to assure that the
method creates all the documents required by V-Modell XT and additionally shows the
desired agile characteristics. Violated constraints of method patterns provide him with
additional guidance during the method construction.

438

3. Situational Method Engineering with Method Patterns

In this section we exemplify the use of method patterns by the assembly-based creation
of a method that incorporates the desired characteristics described in Section 2. On the
one hand we define two method patterns that embody the essential constraints of these
methods. For V-Modell XT we create a method pattern that reflects the development
process of V-Model XT with the order of its decision gates. For Scrum we create a
method pattern for the sprint loop. On the other hand we define method services, method
building blocks that reflect the software development activities and artifacts of these
methods. Recall that method patterns constrain the assembly of method building blocks
(method services). By combining the method patterns and respective method services we
could reconstruct the two original methods. However, we show how the combination of
method patterns from both methods guides the method engineer to create a hybrid meth-
od, which maintains the order of document creation conforming to V-Modell XT, but
ensures that they are developed in sprint loops.

3.1 Extraction of Method Patterns and Method Services from V-Modell XT

As stated in Section 2 methods created with V-Modell XT define a flow of decision
gates that have to be passed to accomplish the project (see Figure 2). In V-Modell XT at
each decision gate a set of documents has to be approved using the activity “Project
coming to a progress decision”. For example, Figure 3 shows on the right the three doc-
uments that have to be approved for the decision gate “System Specified” depicted on
the left. Consequently, these documents have to be produced before the decision gate can
be passed. Thus, in methods based on V-Model XT the sequence of decision gates indi-
rectly specifies the order of activities that have to be performed. For example, for the
decision gate “System Specified” the document “Overall System Specification” has to
be created with a software development activity called “Preparing Overall System Speci-
fication” and it has to be approved like every other document using the activity “Project
coming to a progress decision”.

Overall System Specification]

System Specified Evaluation Specification Document]

Evaluation Specification System Element]

Figure 3. Decision gate “System Specified” and related documents of V-Modell XT

We now translate the flow of decision gates into a method pattern, by first creating a
method pattern for every decision gate and then combining them into an overall method
pattern that reflects the V-Modell XT development process. We later reuse this method
pattern when creating the hybrid method.

Figure 4 illustrates the relationship between the constituents of a method pattern and
method services. A method pattern consists of method compartments, denoted by dotted
rectangles. These are restricted by the attached pattern constraints, depicted by grey

439

boxes. Pattern constrains restrict their respective method compartment, because the host-
ed method services must fulfill these constraints.

Method Pattern

Method fulfill Method
Service ' Service

Method Compartment \
restrict
Pattern Constraints I

I Pattern Constraints / I

Figure 4. Overview of the relationship between method patterns, compartment, and services and
pattern constraints

Figure 5 shows a method pattern that encodes the concrete decision gate “System Speci-
fied”. The method pattern consists of two consecutive method compartments. The first
method compartment fulfills its pattern constraints, if it hosts a method service that has
the respective artifact among its outputs, for each of the three artifacts named in Figure
3. The second method compartment has to contain a method service that has the value
reviewing assigned to its attribute activity type. Thus, the method pattern de-
scribes, that method services have to create the three named documents and that they
have to be followed by a method service encapsulating a reviewing activity. Figure 6
shows a combination of method services that fulfills the constraints.

System Specified

NN RN NN RN EEEREEEEEERAEEEEERAEEEEEEEEEEE H AR R EEEEEEEEEEEENEE AR A AR

LLELTTS
T

3 x: contains(x.Out, ,Overall System Specification*)

3 y: contains(y.Out, ,Evaluation Specification Document") 3 w: w.ActivityType = ,reviewing"

3 z: contains(z.Out, , Evaluation Specification System Element)

Figure 5. Method pattern for the decision gate “System Specified”

Metainformation

Proepari“g Name: ,Preparing Overall Specification"
veral

[Outputs: {,Overall System Specification“)]
ActivityType: ,Developing™

System Specified

B Preparing Preparing E " :
& Eiepaling ; Evaluation Evaluation H Projec}:Comm\ng H
Overall 1 fr gasa H to a Progress H

| Specificat it Specification Specification H Decision H
L‘ s ‘_’a_c.'f g" _ | |_System Element Document H H

3 x: contains(x.Out, ,,Overall System Specification“)] V

3 y: contains(y.Out, ,Evaluation Specification Document*) + =W WIS = Ot DS
3 z: contains(z.Out, , Evaluation Specification System Element”)

Figure 6. A method pattern with fulfilled pattern constraints

Each software development activity and its input and output documents are translated to
a method service with respective input and output artifacts. For example, the method
service “Preparing Overall Specification” encapsulates the equally named V-Modell XT
activity and its output “Overall System Specification” (see Figure 6). Additional metain-

440

formation specifies that this is a development activity: the attribute ActivityType of
the method service has the value developing assigned to it. Thus the first method
service in the first method compartment “Preparing Overall Specification” fulfills the
first pattern constraint as it has the required artifact among its outputs. Similar, the other
three method services fulfill the remaining pattern constraints. Figure 6 is only an ex-
ample for a fulfilled method pattern; we do not combine method patterns and method
services yet.

To obtain a method pattern that reflects the development process of V-Model XT with
the order of its decision gates we chain the concrete method patterns of all decision gates
to an overall “V-Modell XT” method pattern. Figure 7 illustrates this for the three con-
secutive decision gates depicted on the left. The three method patterns are combined to a
new method pattern that has no pattern constraints on its own, but specifies the order of
the contained method patterns “System Specified”, “System Designed” and “Detail De-
sign Completed”.

Partial V-Modell XT Pattern

O .
System System Designed Detail Design Completed

N N (N >

b Z
Detail Design
Completed 7

Figure 7. Decision gate sequence reflected as a method pattern

3.2 Extraction of Method Patterns and Method Services from Scrum

Scrum is a widespread agile development method that we use in our example to define
agile method patterns and agile method services. One of the core aspects of Scrum is a
time-boxed execution loop called “Sprint” that is repeated throughout the duration of the
project. Figure 8 shows the method pattern “Sprint Loop”, which requires method ser-
vices that reflect agile activities. The method pattern consists of the three sub method
patterns “Sprint Planning”, “Agile Construction” and “Sprint Review” that are combined
to a loop. For example, “Agile Construction” describes that all the method services in the
respective method compartment have to either encapsulate developing activities or con-
tain the backlog artifact among their inputs. Additionally, the use of a method service
named “Standup Meeting” is prescribed and has to be present in the method compart-

ment.

Sprint Loop

Sprint Planning Agile Construction Sprint Review

v b: b.ActivityType = ,developing* v
contains(b.In, ,Backlog")
3 c: c.ActivityName = ,Standup Meeting*

3 a: aActivityType = planning* v
contains(a.Out, ,Backlog")

3d: d.ActivityType = reviewing" v
contains(d.In, ,Backlog")

Figure 8. The Sprint Loop pattern extracted from Scrum

441

Based on the Scrum guide [SS11] the method services “Sprint Planning”, “Standup

Meeting”, “Update Backlog” and “Sprint Review ” are identified. They fit into the ap-
propriate method compartments of the method pattern depicted in Figure 8.

3.3 Creation of a Situational Method for ePassport System Development

For a typical method creation procedure, the previously constructed and presented meth-
od patterns and method services would have been identified and retrieved from the
method base instead of being defined from scratch (see Figure 1). The next step now is
their combination. Different from traditional assembly-based approaches we first com-
bine method patterns and then place method services into the method compartments of
these patterns. In our example the Project Manager picks the overall “V-Modell XT”
method pattern, to assure the conformance to the prescribed order of activities. In addi-
tion he adds a “Sprint Loop” method pattern into every decision gate method pattern,
because he wants it to be executed in an agile manner. Figure 9 illustrates this for the
decision gate “System Specified”. The combination of method patterns now prescribes
and ensures that the created method will contain a “Sprint Loop” in every decision gate
method pattern and that all necessary activities of V-Modell XT are executed in the right
order. Compared to other assembly-based approaches, with this frame of method pat-
terns it is much easier to decide, which method services to use and where in the process
to put them. Figure 10 shows the combination of method patterns after adding method
services to fulfill the pattern constraints depicted in Figure 9.

System Specified

Sprint Loop

Sprint Planning Agile Construction Sprint Review

3 a: aActivityType = planning’
contain:

v v b: b.ActivityType = developing* v
eta.ut, Backlogh) contains(b.In, ,Backlos

3 d: dActivityType = reviewing" v
contains(d.In, ,Backlog")

% contains(x.Out, ,Overall System Specification’)
3y: contains(y.Out, ,Evaluation Specification Document’)
3 2 contains(z.Out, ,Evaluation System Element’)

3 w: w.ActivityType
= reviewing"

Figure 9. Combined method patterns derived from V-Modell XT and Scrum

With the method creation state shown in Figure 10 there could be additional refinement
iterations. For example, in the method compartment of “Agile Construction” illustrated
in Figure 11 the “Sprint Loop” method pattern could be used again to model the daily
Scrum, which is a daily sprint loop, of the Scrum method. As this additional formality is
not desired for this ePassport project, the method creation procedure is finished by
(manually) connecting the method services with control flow. According to the practices
in the Scrum Guide the control flow specifies that the work is carried out in a loop,
where “Standup Meeting” precedes the parallel execution of the development method
services. “Update Backlog” is executed continuously in parallel.

442

System Specified

Sprint Loop

Sprint Planning Agile Construction Sprint Review

Preparing
Preparing Evalusiion
fepit] ‘Specification =
Siasiicte Elemant Erepark
‘Sprint Planning Preparing Document Project Comring
= Evaluation Standup - toa Progress
Specification & Meeling - _| Decision

Figure 10. Combination of method services that fulfill the constraints of the method
patterns in Figure 8

Agile Construction

Preparing Evaluation
Specification System
Element

Preparing Overall
Specification

Preparing Evaluation
Specification
Document

¥ b: b.ActivityType = ,developing” v
contains(b.In, ,Backlog*)
3 ¢: c.ActivityName = ,Standup Meeting*

Figure 11. Method services of a method compartment connected with control flow

4 Conclusions and Future Work

Using a realistic example scenario from the ePassport system development domain we
exemplify that in some cases more rigid SME approaches are not flexible enough to
reflect the situational context, e.g., agile aspects in our example. Here, assembly-based
SME provides the required flexibility, however, we criticize that assembly-based ap-
proaches require too much method engineering knowledge and offer insufficient support
to create methods of good quality. We exemplified the use of method patterns and show
how they can guide in choosing and combining suitable method building blocks, sup-
porting the method engineer in his work. Doing so we also show how building blocks
from different methods can be incorporated. The resulting created method preserves the
flow of activities and the document-based approvals at specific decision gates known
from V-Modell XT. In addition, by incorporating sprints of Scrum, there are fixed cy-
cles, where results are planned, produced, presented, and discussed between the appro-
vals of two consecutive decision gates.

443

Although we argue, that by the use of method patterns we have an advantage over pure
assembly-based approaches, the additional freedom compared to more rigid approaches
as configuration-based SME still requires more time and more skills to create the meth-
od. However, we will be able to gradually improve on the status quo in the future. We
continue our work in two directions. In this paper we focused on activities and control
flow. First, we work on formalizing other aspects of methods like roles, artifact lifecy-
cles and object flow. Second, applying this approach in practice is feasible only with
sufficient tool support. In a project with an industrial partner we work on an expert sys-
tem that supports the different activities of method creation. We are also evaluating how
such method specifications can be enacted in terms of a workflow engine, task manage-
ment and integrated tooling like version control and plan to evaluate the whole approach
in their industry projects.

References

[Bel2] Beck, K. et al.: Manifesto for Agile Software Development, http://agilemanifesto.org/

[Bo03] Boehm, B.W., Turner, R.: Observations on Balancing Discipline and Agility. In: ADC
2003, pp. 32-39. IEEE Computer Society, Los Alamitos, Calif (2003)

[Br96] Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Inf. Softw. Technol. 38, 275-280 (1996)

[BS98] Brinkkemper, S., Saeki, M., Harmsen, A.F.: Assembly Techniques for Method Engineer-
ing. In (Pernici, B., Thanos, C. eds.): CAiSE '98, pp. 381-400. Springer, Berlin (1998)

[Cm10] CMMI Product Team: CMMI for Development, Version 1.3. Improving processes for
developing better products and services Pittsburgh, Pennsylvania (2010)

[ES10] Engels, G., Sauer, S.: A Meta-Method for Defining Software Engineering Methods. In (
Engels, G., Lewerentz, C., Schifer, W., Schiirr, A., Westfechtel, B. eds.): Graph Trans-
formations and Model-Driven Engineering, pp. 411-440. Springer, Berlin (2010)

[Fi09] Firesmith, D.G.: The method framework for engineering system architectures. CRC
Press, Boca Raton (2009)

[GH98] Graham, 1., Henderson-Sellers, B., Younessi, H.: The OPEN process specification. ACM
Press, New York (1997)

[GL98] Goldkuhl, G., Lind, M., Seigerroth, U.: Method Integration: The Need For A Learning
Perspective. IEE Proceedings Software 145, 113-118 (1998)

[HB94] Harmsen, F., Brinkkemper, S., J. L. Han Oei: Situational method engineering for infor-
mational system projects. In (Verrijn-Stuart, A.A., Olle, T.W. eds.): CRIS'94, pp. 169—
194. North-Holland Publishers, Amsterdam (1994)

[HR10] Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art
Review. j-jucs 16, 424—478 (2010)

[Kr99] Kruchten, P.: The rational unified process. An introduction. Addison-Wesley, Reading,
Mass (1999)

[Ro96] Rolland, C., Prakash, N.: A proposal for context-specific method engineering. In
(Brinkkemper, S., Lyytinen, K., Welke, R.J. eds.): Method Engineering: Principles of
method construction and tool support, pp. 191-208. Chapman & Hall, London (1996)

[Ro09] Rolland, C.: Method engineering: towards methods as services. Softw. Process: Improve.
Pract 14, 143-164 (2009)

[SS11] Schwaber, K., Sutherland, J.: The Scrum Guide (2011)

[Vm12] V-Modell XT (english version), http://v-modell.iabg.de/v-modell-xt-html-
english/index.html

444

