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Ongoing Automated Data Set Generation for Vulnerability
Prediction from Github Data

Torge Hinrichs1

Abstract: This paper describes the development of a continuous github repository analysis pipeline
with the focus on creating a data set for vulnerability prediction in source code. Currently, used data
sets consist only of source code functions or methods without additional meta information. This paper
assumes that the surrounding code of vulnerable functions can be beneficial to the detection rate.
In order to test this assumption, large data sets are needed that can be created using the proposed
pipeline. Although the pipeline requires some improvements, in a first test run 1.5 million repositories
could be analyzed and evaluated. The resulting data set will be published in the future.
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1 Introduction

Detecting vulnerabilities in source code has been one of the most active fields in security
research during the last years. Due to the latest advances in machine learning and data
science more and more researchers are using these techniques for vulnerability detection
/ prediction. All approaches have one thing in common. They require large data sets of
non- and vulnerable source code to train their models. Finding source code repositories
for security analysis, analyzing and labeling the data is a tedious task that can not be
performed by hand at a large scale. Even though some projects like “Project KB”[Po19]
tried to craft such a data set manually, they “only” managed to analyze 205 distinct open
source-projects leading to a remarkable 1282 commit entries of data. However, the amount
of data gathered is minimal in comparison of other traditional machine learning approaches
which use millions of data samples to train their networks. Automatically gathered data
sets like “Draper Muse Data set”[Ru18] often consists of individual source code methods
or functions with a label indicating the type of vulnerability or a binary classification
without additional meta information. Even though this approach is beneficial for training
machine learning models with remarkable results, it limits the scope of detection since the
surrounding of the function can not be taken into consideration. In addition, creating data
sets for vulnerability detection suffers from the “needle in the haystack” problem[SW13].
Vulnerabilities are less frequent and hard to detect, therefore the data sets contain large
quantities of non-vulnerable in comparison to vulnerable data (scarce data)[BS19], which
influences the overall performance of machine learning approaches. To tackle the lack of
data sets for source code analysis with machine learning that also take the surrounding of a
finding into consideration, this paper proposes an ongoing data analysis of public github.com
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repositories to automatically identify and classify vulnerabilities with static analysis, saving
the vulnerable lines and the commit id. This reduces the “needle in the haystack” problem
in the long run and enables context analysis for future work. The following section provides
a brief overview of the approach and methods used, followed by first analysis results and
finally a discussion with future work.

2 Approach and Methods

The hypothesis of this contribution is that a static analysis pipeline is capable of performing
all previously mentioned steps autonomously and can be scaled to a larger computing setup
if needed. The following figure 1 shows a brief overview of the implemented components.
Each block shown in the figure is a separate component that can be scaled if needed to

Fig. 1: Overview: Static analysis pipeline

prevent bottlenecks. Creating this approach can be split in 4 main tasks: selecting and
providing the repository, analyzing with static analysis and labeling the findings. For the
first task, a github interface was created that is capable of searching the repository stream
provided by their API. By default, the stream is ordered by the repository id that increases
for each repository created on the platform. The github interface also selects repositories
that match the following constrains: The repository consists mainly of C/C++ code, due
to the fact that most source code vulnerabilities occur in this language according a report
by white source[Wh21]. In addition, the repository shall have a minimum size of at least
100 lines of C/C++ code. This assumes that repositories smaller than this do not contain
enough complexity for context analysis. This assumption is based on manual reviews of
small github repositories mostly containing snippets or small examples not suitable for
machine learning. Repositories matching these criteria will automatically be cloned to
a storage server and scheduled for analysis and a meta entry is created in a mongoDB
database. During the analysis task, the pipeline automatically schedules an analysis block
for each repository. The analysis consists of four state-of-the-art static analysis tools: clang,
cppcheck, flawfinder, and pvs-studio. The selection is based on the open availability of
these tools. They are also widely used in the creation of other data sets like Draper Muse. In

220 T. Hinrichs



Automated Data Set Generation 13

addition, a commit text analysis was developed that scans commit messages in order to find
security relevant keywords based on the BSI-glossary [Bu21]. The last step in the pipeline
is to map the reports of the different analysis tools to a common label that is associated with
the corresponding Common Weakness Enumeration (CWE). This is achieved by a look up
table for each tool.

3 Results

The pipeline was deployed and ran for three months as a first test. During this period 1.5
million repositories where analyzed with an overall yield of 2.3% which results in 35.000
eligible repositories with at least one hit in the analysis tools. The performance of the
repository selection was constrained to about 2000 repositories per hour. This is caused by
API restrictions on github. The overall performance of each analysis block, however, was
measured and is shown in figure 2.

Tool Avg. Evaluation time [s / Repository]
clang 30
cppcheck 70
flawfinder 10
pvs-studio 30
commit message 60

Fig. 2: Analysis time comparison

The deviation in analysis effort is caused by the varying feature set of the tools used. Each
tool was configured to use all available checks. Therefore, cppcheck had to perform the most
amount of checks and this, in conclusion, results in the longest analysis time per repository.
In addition, the execution time of the individual analysis had large variations. This time is
not only determined by the files or lines of code in a repository, but also by the amount of
commits. For example the Linux kernel with its over one million commits took more than
six hours to scan on the hardware used.

However, evaluating the performance of the commit text analysis showed some issues of
this approach. The selection of keywords only based on the BSI-Glossary led to a high
number of false positives as keywords like “stackoverflow” are often used in URL to the
equal named developer help website “stackoverflow.com”. Overall, the execution of this
analysis was rather slow in comparison to its low benefit.

The labeling method, in comparison, has no mentionable issues. It was created independently
based on the documentation of each individual tool used. The label for each sample is
determined by the analysis result. If one tools detects a possible vulnerability the sample is
labeled accordingly, also the number of tools that back this label is stored.

The resulting data samples are stored in a mongoDB database. In hindsight, this has to
be changed to a more storage friendly solution. A No-SQL database worked well to store
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various different shaped data fields and allows for querying the database, but takes up a lot
of disk space. This can easily be improved by using an optimized or compressed storage
solution like “hdf5”. This looses the ability to query, but not necessary in a machine learning
application anyway.

4 Discussion

In this paper, a concept for creating an automated data set generation for vulnerability data
from github repositories was described. This concept was implemented and a first test
phase over a three-month period was performed. During that time 1.5 million repositories
were analyzed. An evaluation of the pipeline showed that some analysis blocks are more
effective than others compared to their throughput and overall effectiveness. In addition,
the implementation showed that the concept can be used to generate security relevant
data samples continuously. However, this pipeline can still be improved in future work.
First, the pipeline should to be set up production ready so an ongoing analysis can be
performed. In addition, the overall performance of the analysis should be increased by
analyzing the individual blocks and optimize the configuration of each tool. Next, up-scaling
the pipeline to a larger infrastructure would also be beneficial to increase the throughput.
Finally, storage should be more suitable for machine learning applications. The benefits
of having a query-able database is not needed for learning, instead the handling of large
data sets in less disk space should be focused on. This can be achieved by transforming a
database into another format like “.hdf5”. After the improvements of the pipeline, the final
data set will be released to the public.
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