
Architecture of a Highly Scalable Data Warehouse

Appliance Integrated to Mainframe Database Systems

Knut Stolze1 Felix Beier1,2 Kai-Uwe Sattler2

Sebastian Sprenger1 Carlos Caballero Grolimund1 Marco Czech1

1IBM Research & Development, Böblingen, Germany
2Ilmenau University of Technology, Germany

Main memory processing and data compression are valuable techniques to address the new

challenges of data warehousing regarding scalability, large data volumes, near realtime

response times, and the tight connection to OLTP. The IBM Smart Analytics Optimizer

(ISAOPT) is a data warehouse appliance that implements a main memory database system

for OLAP workloads using a cluster-based architecture. It is tightly integrated with IBM

DB2 for z/OS (DB2) to speed up complex queries issued against DB2. In this paper,

we focus on autonomic cluster management, high availability, and incremental update

mechanisms for data maintenance in ISAOPT.

1 Introduction

For supporting management decisions, more and more companies gather business data

in data warehouses (DWH) and evaluate it with the help of modern business intelligence

(BI) tools. Reports are used for identifying market trends, conducting risk assessments,

performing customer segmentations, and many other analytic tasks. These analyses are

considered as business critical by an increasing number of companies and the trend evolves

from static analyses towards ad-hoc reporting by a large user group with varying skill

levels [Gar07]. The data warehouse systems are therefore faced with new challenges for

handling enormous amounts of data with acceptable response times for analytical queries.

Thus, several techniques have been developed for achieving near realtime response times

for reporting queries. They reduce the number of required operations for computing re-

sults and try keeping processing units fully utilized with reducing the I/O bottleneck when

transferring data between different layers in the memory hierarchy. In combination with

massive parallel computations, data throughputs can be increased by orders of magnitude.

Special data structures and algorithms have been developed that exploit access character-

istics of critical system workloads for reducing the amount of data that has to be processed

and efficiently applying typical operators on it. Prominent examples are compressed, read

optimized data structures, cache conscious indexes and query operators, as well as opera-

tions which are executed directly on compressed data.

628

Since prices for RAM chips drastically decreased within the last years [Joh02], it nowa-

days becomes feasible to store the entire warehouse data – or at least the critical part of

it – in fast main memory. More and more vendors of modern data warehouse solutions

therefore pit on the application of main memory databases (MMDB) or hybrid solutions

using a large main memory buffer for the data.

For scalability reasons, typically computer clusters consisting of several nodes are used.

Further nodes can be added when the amount of data which has to be handled increases.

Moreover, increasing the cluster size may reduce query response times when parallel com-

putations can be efficiently utilized [DG92].

These approaches lead to new challenges in the system architecture which have to be

addressed. Because companies rely on the availability and fast response times of their

decision support systems, downtimes of latter can become very expensive and have to be

avoided. But sometimes errors occur which must be handled internally and transparently,

especially in the context of an appliance. Nodes in the cluster might fail and others may

take over their parts for keeping the overall system alive. On the other hand, in case

the cluster size is increased to scale up the system, the workload should be redistributed

for an equal utilization for each of the nodes to minimize overall query response times.

Along the same line, mechanisms must be available, which allow a simple upgrade and –

equally important – downgrade of the installed software, including automatic forward and

backward migration of all internal data structures, ranging from the actual data managed

by the system, over the catalog to the actual management of the operating system.

Further problems occur when updates have to be processed on the read optimized DWH

systems. They can lead to degenerations of the typically compressed and densely packed

data structures. These degenerations have to be removed from time to time for main-

taining the system operational and keeping the high performance commitments to user

applications. Because the system must be available all the time, offline maintenance oper-

ations are not an option. Both – updates to the data and reorganizations of data structures –

therefore have to be executed online while concurrent queries are running, without major

negative impacts on latter.

All these challenges should be addressed without increasing complexity of system ad-

ministration. Therefore, an appliance-like approach where most of the maintenance tasks

are performed transparently and autonomously without needing interventions by the ad-

ministrator is the most promising. In this paper we focus on the autonomic cluster man-

agement implemented by IBM Smart Analytics Optimizer (ISAOPT) data warehouse ap-

pliance [IBM10], which is a cluster-based main memory database management system

(MMDBMS).

The remainder of the paper is structured as follows. In section 2 we summarize related

work for high availability and administration questions of main memory DWH systems.

In section 3 we give an overview on ISAOPT and its integration with IBM DB2 for z/OS.

Section 4 discusses the autonomic cluster management features of ISAOPT and how soft-

ware management (including forward/backward migration) is realized. Data management

using incremental updates to synchronize ISAOPT with DB2 is described in section 5.

Finally, section 6 concludes the paper and gives an outlook to further research directions.

629

2 Related Work

ParAccel Analytic Database (PAADB) [Par09] is an analytical high performance DBMS

comparable to ISAOPT, implementing a hybrid architecture for both, disk-based query

execution with a large main memory buffer and for databases that reside completely in

RAM. The data is stored in a cluster with either a shared nothing or shared disk archi-

tecture. PAADB uses three types of cluster nodes, all running on commodity hardware.

Leader nodes provide the interface for communicating with external applications. They

are responsible for parsing and scheduling queries, as well as cluster workload manage-

ment. Compute nodes actually store the data highly compressed in a columnar layout and

execute tasks scheduled by leader nodes. The main query performance is achieved without

tuning mechanisms like MQTs or indexes, but with massive parallel computations. Last,

hot standby nodes are used for cases other nodes fail to take over their work. Lost data in

a failover scenario is recovered automatically depending on the cluster architecture. It is

either reloaded from shared disk or from backup replications stored on other nodes.

Vertica [Ver08] also implements a parallel DBMS on a cluster with either a shared nothing

or shared disk architecture. High availability is achieved like in PAADB with replicating

data. If nodes fail, other ones can take over their workload. The Vertica cluster implements

k-safety, i. e. k nodes may fail without causing a system downtime. The overhead for stor-

ing replicated data is compensated using aggressive compression schemes on columnar

data structures. Since updating these read optimized structures causes some problems,

Vertica introduces a write optimized staging area where updates are written to. These

changes are applied to the read optimized part by a tuple mover during runtime. Several

algorithms have been investigated for performing these modifications online in the back-

ground to concurrent query execution. [SI09]. Vertica uses a snapshot isolation approach

for hiding modifications from concurrent queries without locking overhead.

3 Overview of the IBM Smart Analytics Optimizer

ISAOPT is an appliance consisting of a computer cluster and a parallel MMDBMS. It

was developed based on the Blink query processor [RSQ+08] for reacting to the trends

in modern analytical data warehousing environments. It is aimed to improve warehousing

on System z. Because customers using DB2 for z/OS typically pay for computations on

mainframes, executing computationally intensive ad hoc reporting or data mining work-

loads have a noticeable price tag. Thus, ISAOPT is a cost-efficient solution for them,

which also delivers a significant performance improvement for such SQL queries.

The main idea is offering an hybrid approach for supporting both OLTP and OLAP work-

loads with quality of service guarantees close to those for System z. As illustrated in fig 1,

OLTP transactions are executed directly by DB2 for z/OS and expensive OLAP queries are

offloaded by DB2 transparently to ISAOPT. The appliance is attached to the mainframe

via TCP/IP network. DB2 recognizes it as an available resource and offloads query blocks

only if it is deemed to be beneficial, based on the decision by DB2’s cost-based optimizer.

630

IBM Smart Analytics Optimizer ApplianceIBM DB2 for z/OS

User Applications

Optimizer

Local Query
Processor

ISAO
Interface

Parallel
Offloaded Query

Execution

Query ResultsQuery Results

Query

Query Blocks

Merged

Query Results

Query

Blocks

Partial Results

Query

Blocks

Partial Results

OLTP

Query Part

OLAP

Query Part

B ...2N+2
...2N+1 A

F ...2N

...

...
DN+2 ...
CN+1 ...

...AN
...... ...
B ...2

...

...A1
Col F2Col F1

Fact Table

...
c3 ...
b ...2

...

...a1
Col D12Col D11

Dim1

...
1.23 ...
0.5 ...2

...

...15.71
Col D22Col D21

Dim2

Node 1

...2N+1 A
...

CN+1 ...

...

...A1
Col F2Col F1

Fact Table Partition

...
c3 ...
b ...2

...

...a1
Col D12Col D11

Dim1

...
1.23 ...
0.5 ...2

...

...15.71
Col D22Col D21

Dim2

...

Node N

...3N K
...

F2N ...

...

...AN
Col F2Col F1

Fact Table Partition

...
c3 ...
b ...2

...

...a1
Col D12Col D11

Dim1

...
1.23 ...
0.5 ...2

...

...15.71
Col D22Col D21

Dim2

shared disk

...... ...
B ...2

...

...A1
Col F2Col F1

Fact Table

...... ...

...

2 b

Col D11
1 ...a

Col D12

...

Dim1

...
1.23 ...

...

...15.71
Col D22Col D21

Dim2

Log Reader

Transaction
Log

Update
Processor

Log Records

Change

Records

Log Records

Delete

Queries

New Tuples

New Tuples

Reorg
Processor

Figure 1: Overview: IBM Smart Analytics Optimizer

Complex analytical queries are split into query blocks which are executed in parallel by

ISAOPT on several physical nodes in a cluster. Their partial results are merged and trans-

ferred back to DB2 completely transparent to user applications which still use DB2’s SQL

interface without further configuration or source code modifications. ISAOPT’s available

main memory and processing power can be scaled by extending the cluster size. Each node

uses specialized and dedicated commodity hardware (blades) and therefore executing data

warehouse tasks on them is more cost efficient than on general purpose systems like main-

frames – with the penalty of lower hardware quality and, thus, a higher chance for outages.

But latter is compensated by ISAOPT’s cluster monitoring and recovery mechanisms.

Those parts of the warehouse data (called data marts in the following) which are crit-

ical for the analytical workload are replicated to ISAOPT. While the data is primarily

stored on disks in DB2 (and supported by DB2’s buffer pools), it is completely held highly

compressed in the main memory of the appliance (and only backed with disk storage for

recovery purposes). The used compression technique allows a fast evaluation of equal-

ity and range predicates using bitmasks directly on the compressed values and hence

avoids an expensive decompression in many cases. [RSQ+08] Furthermore, a cache ef-

ficient data structure is used which enables the predicate evaluation of queries with vector

operations. [JRSS08] Through these techniques, queries can be accelerated by orders of

magnitude despite the fact that no workload specific tuning techniques like indexes or ma-

terialized views are used. [Dra09] Due to that, no special workload knowledge is necessary

by database administrators for guaranteeing high performance of their systems.

631

4 Cluster Management

ISAOPT uses two different types of nodes. Each query being processed by ISAOPT runs

on a single coordinator, which orchestrates the overall query execution, and on all workers.

Due to the integration with DB2 for z/OS, the DB2 for z/OS acts as the client sending

each query to another coordinator. The decision is based on the current workload of each

coordinator, in order to achieve good workload balancing behavior.

Coordinators. A coordinator node does not hold any data in its main memory. It uses

its memory to merge partial query results received from worker nodes and to apply post-

processing, e. g. sort rows of a result set or compute aggregates like AVG. Since it is

not known in advance, how big the intermediate result sets may be, all the coordinators’

main memory has to be available – and still it may be necessary to resort to external sort

algorithms using external storage, for example.

Another task for coordinator nodes comes with system failures. Since multiple coordi-

nators are available, one of them can take over the data and workload of a failed worker,

reducing the impact on other workers – which may already run with high memory pres-

sure. In contrast to PAADB, no hot standby nodes are employed because the hardware

resources of such nodes can be put to the task of workload processing without loosing any

time in case of a system failure.

Workers. A worker node reserves most of its physical main memory to hold the mart

data. Only about 30% of the total memory is available for temporary intermediate query

results as well as all other operations like monitoring and autonomic system maintenance.

4.1 System Failures

The IBM Smart Analytics Optimizer appliance realizes a shared-disk architecture so that it

can easily recover system failures without losing data. All mart data kept in main memory

is also stored on disk for backup purposes. The used commodity hardware cannot match

the stability of System z, resulting in an increased risk of hardware failures. Reloading the

data from DB2 and re-compressing it would be too expensive in terms of time needed for

the recovery and CPU overhead for IBM DB2 for z/OS.

Storing the compressed data on a dedicated storage system as-is expedites the recovery

process with the least amount of overhead. Mirroring the data in the cluster appears to offer

another solution with even faster recovery, but it comes with the penalty that it impacts the

most scarce resource in a main-memory database system in terms of scalability: main

memory.

632

4.1.1 Process Failures

A dedicated process is running on each node in the MMDBS cluster. That process may

fail, e. g. due to programming errors. Very fast recovery is often achievable with a simple

restart of the process and the node is operational again almost instantly. To accomplish that

in ISAOPT, all data is loaded into shared memory and will always survive a failing process

because it is not owned by its address space. The recovery time is mostly dominated by

the time to detect the process failure and to restart it (a few seconds) and not by the time

needed for reloading the backup from shared disk (potentially several minutes). Thus,

the outage of the overall cluster will be much shorter, delivering on the promise of high

availability that is expected by customers today even for unplanned outages.

4.1.2 Node Failures

If a complete node fails, e. g. due to hardware problems encountered at run-time or a prob-

lem in the operating system kernel and its drivers, it may happen that the node cannot be

restarted (automatically or even manually) and needs to be replaced. In order to keep the

cluster operational, redundancy mechanisms are required to detect node failures and initi-

ate recovery steps if necessary. Waiting for the hardware problem to be repaired is not an

option in customer environments. The recovery steps include attempts to restart the pro-

cess on the failing node first, then rebooting the blade, and if that also fails, autonomically

removing the node from the cluster and distributing its data and workload to other nodes.

All these steps are implemented in the IBM Smart Analytics Optimizer.

The redistribution of the data is based on the shared file system holding the backup in-

formation, just created for these purposes. ISAOPT employs GPFS [SH02], a high-

performance and fail-safe cluster file system, which has been further enhanced to be fully

auto-configurable and auto-recoverable in the context of the ISAOPT appliance. Since

GPFS does not yet support IPv6, the requirement came up to automatically configure an

IPv4 network for it. The IPv6 automatic configuration features are used to detect which

nodes exist in the cluster and to set up an IPv4 class C subnet. That is done during the

boot process of each node. A small stand-alone tool is employed for the node detection.

DHCP is not being used because its full power was not needed and a DHCP server must

not become a single point of failure either. Furthermore, configuring a fail-safe DHCP

server automatically would have been a more involved task as well.

4.1.3 System Inconsistencies

In rare cases, it may happen that one of the nodes in the cluster is not running with the

correct software version, e. g. because that node was not active in the cluster when a

newer (or older) version was installed and activated. Corruptions on the operating system

are another problem that the ISAOPT appliance has to be able to deal with automatically.

Manual intervention from a support specialist can only be the very last resort. The ex-

pectation of users is that such problems are usually detected and recovered by the system

itself, i. e. a self-healing approach is required. For that purpose, ISAOPT maintains a so-

633

called reference system image, in which all administrative tasks are applied first. During

each node’s boot process, the local installation is verified with this reference image and

re-synchronized when necessary.

Avoiding such system inconsistencies by using a network boot mechanism may sound at-

tractive, but the network boot server would introduce a single-point of failure. The storage

system holding the reference system image does not suffer from this problem due to its

own redundancy and failure recovery mechanisms.

4.2 Cluster Administration

Cluster administration sums up tasks that are typically performed by a support specialist

as a follow-up for hardware failures or newly detected and fixed vulnerabilities. It ranges

from replacing broken hardware (e. g. defective DIMMs) over installing new firmware

versions and drivers for components like network cards to adding new nodes to an existing

cluster for increasing its memory capacity and processing power. Therefore, it may be

necessary to remove an existing node from the cluster – while not interrupting the cluster’s

availability for query processing – or to add a new node to it.

The preparations for such tasks are built on the above described recovery mechanisms,

except that the redistribution of the data and workload is explicitly initiated. Due to the

shared-disk architecture, other nodes load the data of a node to be removed from the cluster

from shared disk and take over the node’s workload. The loading of the node’s data and

workload draining is achieved within a few minutes and can be done in advance so that

there is no externally visible outage of the appliance.

Newly added nodes exploit the consistency checks of the operating system level (described

above) to make sure the correct version is running. That means, only a very small base

system (just 50MB) is needed on new nodes. This base system has to be able to boot the

operating system kernel and to perform synchronizations with the reference system image.

4.3 Software Updates & Automatic Migration

A cluster-based MMDBMS must have the capability to switch between different versions

of the appliance. That does not only mean to move from the current version of the software

to a newer one – it should also be possible to easily rollback to a previous software version.

The latter requirement is not often found in todays software products, but it is simply

expected by customers of System z, who have the capabilities to upgrade a system like

IBM DB2 for z/OS without taking it offline at all if it runs in a cluster. Since ISAOPT is

integrated with DB2 like any other service (cf. fig 2), those requirements are transferred

from System z directly to it as well.

634

z/OS on z10
10's of processors

100's GB of memory

User Applications

Application Interfaces

(standard SQL dialects)

DBA Tools, z/OS Console, ...

Operation Interfaces

(e.g. DB2 Commands)

Linux on Blades
100's of processors

1000's GB of memory

DB2

Data

Manager

Buffer

Manager

IRLM
Log

Manager

...

IBM Smart

Analytics Optimizer

Very High Availability

Reliability

Security

Workload Management

Abundance of

Resources

Figure 2: DB2 Integration with zHybrid Architecture

A stored procedure executing in DB2 for z/OS is used to deploy new software versions

and to switch between already installed versions in ISAOPT. Forward migration, i. e. mi-

grating structures from an older to a newer version is straight-forward. It can be applied

transparently in most cases when the new version is activated for the first time. However,

backward migration may be necessary if the newer version may not work as expected (e. g.

performance degradations, stability issues, . . .).

Transparent migration can not be done when an older version is activated if there were dif-

ferences in the data structures or the meta data compared to the currently running software

version. Therefore, migration functionality is decoupled from the specific version of the

ISAOPT server code into its own, light-weight executable. This tool is always used in its

most-current state. That way, it is ensured that the tool can perform a migration step, even

if the current ISAOPT version may not be capable.

5 Incremental Updates and Data Maintenance

Naturally, the data in a data warehouse has to be maintained incrementally. It does not

matter if it is a standalone data warehouse system or an accelerator like ISAOPT, which is

integrated with DB2 for z/OS and stores its own replica of the original warehouse data. In

both cases, reloading a complete mart would just take too long because multiple TBs of

data would have to be extracted, transformed, transferred, and loaded again.

635

Two techniques are being implemented by ISAOPT to update the data and autonomic reor-

ganization is realized as well. Those tasks are running in the background to normal query

processing without any downtime to the latter. ISAOPT implements snapshot semantic

for all tuples like Vertica (cf. Sect. 2). Unique timestamp IDs (called epochs) and an

additional range predicate on them are used to guarantee consistent views on the data for

running queries while updates are active. [SRSD09] This approach allows a lock-free par-

allel execution of these concurrent tasks. Furthermore, failing updates can easily be rolled

back by undoing the modifications marked with the respective epoch ID.

5.1 Log-based Update

The first update strategy is illustrated in fig. 1. When data stored in source tables in IBM

DB2 for z/OS is modified, change records are written into the database log. This delta for

committed transactions is read by a log reader, potentially compressed to merge multiple

update operations on the same tuples, sent to ISAOPT, and applied there. [SBLC00].

To mark tuples as deleted in ISAOPT, the data of the updated table is scanned in its entirety

and the delete epoch for affected tuples is set. Those tuples are not physically deleted and

remain in place so that concurrent queries are not interrupted, i. e. setting the delete epoch

is transparent for them. New tuples are distributed in the cluster, dictionary encoded, and

written directly into the read optimized blocks. A special handling is only required for

new values which have no corresponding dictionary code. [SRSD09]

Unfortunately, the prerequisite that updates are logged is not common for customer ware-

housing environments where many operations usually may bypass the transaction log in

order to improve performance, for example when loading a new set of data for sales of the

previous day. Nevertheless, if applicable, log-based update is the most efficient method

with minimal overhead and can be used for realtime updates.

5.2 Partition-based Update

The second update approach implemented in ISAOPT can be used in all environments

where no log records are available or where real time updates are not important and can be

processed batch wise in larger time intervals. This solution exploits the fact that big tables

are usually horizontally partitioned by ranges where each partition contains a disjoint sub-

set of the table’s data. This range partitioning is exploited by ISAOPT to track partitions,

which were newly added or have been removed. For removed partitions, the corresponding

data is deleted in each replica and all tuples from new partitions are automatically loaded.

Additionally, the administrator can specify which table partitions have data modifications

e. g. resulting from a LOAD or similar operation. These updates are locally limited to the

affected partitions and can be applied with simply re-loading the outdated data.

636

This solution has a higher overhead than log-based updates because it may happen that

some data will be transferred to ISAOPT’s replica even if that data actually didn’t change.

The amount of the overhead depends on the table partitioning granularity, the update fre-

quency on the data warehouse data, and the time intervals when synchronizations between

source tables and replicas are initiated.

5.3 Mart Reorganization

When updates are executed, several degenerations can occur which have a negative impact

on system performance and scalability. For example, the following degenerations can be

observed in ISAOPT:

• New attribute values that could not be considered for dictionary computation in the

frequency partitioning algorithm will not have order preserving dictionary codes

assigned. They are covered with special cell types as described in [SRSD09] which

can not be used for fast range predicate evaluations directly on compressed data. If

a tuple has to be stored in the catch-all cell no compression can be applied for it.

• Because the frequency partitioning algorithm determines code lengths depending

on attribute value histograms when the mart is loaded [RSQ+08], shifts in data

distributions through updates can have negative impacts on the overall efficiency of

the dictionary encoding.

• During updates, tuples must not be physically removed as long as previously started

queries are running. With the snapshot semantics, the affected tuples are marked

as deleted and leave gaps in the data structures as soon as the last query needing

them in it’s data view finishes. These gaps waste memory and negatively influence

query runtimes because the deleted tuples have to be tested for validity in each query

snapshot. Since tracking these gaps for overwriting them during following updates

is too expensive, they remain in the data structures and require a clean-up.

To address such problems, a reorganization process is needed in cluster-based main mem-

ory database systems. Following autonomic principles, a self-scheduled process is used,

which is triggered as soon as a reorganization is needed. The decision whether – and

which – reorganization should be performed is based on statistics that need to collected

in the system. For example, ISAOPT gathers the number of tuples marked as deleted or

stored in the catch-all cell and extension cells and it also collects automatically informa-

tion about the executed query workload. Thus, the reorganization task can be a simple

removal of cell blocks that only contain deleted tuples, compacting the data by physically

removing deleted tuples no longer needed by any query in cell blocks, a rearrangement

of the storage layout based on the statistics derived from the query workload, or even the

computing and application of a a new compression scheme.

637

Like updates, the internal reorganizations in a main-memory database system like ISAOPT

have to be executed online without major impact on query execution. But required system

resources like main memory and CPU cycles are critical resources. The reorg process of

ISAOPT therefore implements an autonomic adaptation and throttling of resources avail-

able for the task at any time, based on the current workload that is active in the system.

6 Conclusion

A highly scalable cluster-based MMDBMS like the IBM Smart Analytics Optimizer has

many similarities to traditional disk-based database systems in terms of its architecture.

In this paper we presented two important aspects of ISAOPT: cluster management and

data maintenance with incremental updates and online data reorganization. Cluster man-

agement comprises the automatic detection of system failures and initiating of recovery

procedures.

Since ISAOPT is a cluster-based MMDBMS, system consistency across nodes in the clus-

ter has to be ensured, for example in the context of software updates. Mismatches in

the software versions are detected and recovery is triggered. The appliance form factor

relieves the administrator of all such tasks because they are run autonomically. Thus,

administrators only have to take care of deploying software versions and activating the

desired version. Migration of data structures and meta data itself is handled transparently

by ISAOPT.

Furthermore, no administration efforts are required for maintaining the internal data struc-

tures after updates. The appliance autonomically detects degenerations and repairs latter

in the background to query processing without major noticeable performance impacts.

This guarantees the efficient data structure layout for query processing as well as optimal

compression rates to save system resources.

Future directions in the product development will focus on further improving system re-

covery times and also develop strategies for disaster recovery. Given that the ISAOPT

appliance is tightly integrated with DB2, thus it also has to fit into the recovery mecha-

nisms of DB2 itself. Regarding the autonomic management of user data, using ISAOPT’s

maintenance process for reorganizations as self tuning mechanism is a topic for current

research activities. These operations can be exploited to restructure and recompress the

internal data structures depending on the monitored system workload with intent to reduce

query response times and a more efficient utilization of available system resources.

References

[DG92] David DeWitt and Jim Gray. Parallel database systems: the future of high performance
database systems. Commun. ACM, 35(6):85–98, 1992.

[Dra09] Oliver Draese. IBM Smart Analytics Optimizer Architecture and Overview. Presentation
Slides IOD 2009 Session Number TDZ-2711, IBM Corp., October 2009.

638

[Gar07] Intelligent Users Use Business Intelligence: From sports teams to traffic police to
banks to hospitals, organizations are using analytical tools to turn data into knowledge.
www.computerworld.com, 2007.

[IBM10] IBM Corp. IBM Smart Analytics Optimizer for DB2 for z/OS V1.1 User’s Guide,
November 2010.

[Joh02] McCallum John. The Computer Engineering Handbook, chapter Price-Performance of
Computer Technology, pages 4–1 – 4–18. CRC Press, 2002.

[JRSS08] Ryan Johnson, Vijayshankar Raman, Richard Sidle, and Garret Swart. Row-wise paral-
lel predicate evaluation. Proc. VLDB Endow., 1(1):622–634, 2008.

[Par09] The ParAccel Analytic Database: A Technical Overview. Whitepaper, ParAccel Inc,
2009.

[RSQ+08] Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss, Vijay Dialani, Donald
Kossmann, Inderpal Narang, and Richard Sidle. Constant-Time Query Processing. In
ICDE ’08: Proceedings of the 2008 IEEE 24th International Conference on Data Engi-
neering, pages 60–69, Washington, DC, USA, 2008. IEEE Computer Society.

[SBLC00] Kenneth Salem, Kevin Beyer, Bruce Lindsay, and Roberta Cochrane. How to roll a join:
asynchronous incremental view maintenance. SIGMOD Rec., 29(2):129–140, 2000.

[SH02] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for Large Com-
puting Clusters. In FAST ’02: Proceedings of the 1st USENIX Conference on File and
Storage Technologies, page 19, Berkeley, CA, USA, 2002. USENIX Association.

[SI09] Gary H. Sockut and Balakrishna R. Iyer. Online reorganization of databases. ACM
Comput. Surv., 41(3):1–136, 2009.

[SRSD09] Knut Stolze, Vijayshankar Raman, Richard Sidle, and O. Draese. Bringing BLINK
Closer to the Full Power of SQL. In Johann Christoph Freytag, Thomas Ruf, Wolfgang
Lehner, and Gottfried Vossen, editors, BTW, volume 144 of LNI, pages 157–166. GI,
2009.

[Ver08] The Vertica Analytic Database Technical Overview White Paper: A DBMS Architecture
Optimized for Next-Generation Data Warehousing. Whitepaper, Vertica Systems, 2008.

639

	Vorwort

	Inhaltsverzeichnis
	Eingeladene Vorträge
	SanssouciDB: An In-Memory Database for Processing Enterprise Workloads
	The Web as the development platform of the future
	The Power of Declarative Languages: From Information Extraction to Machine Learning

	Wissenschaftliches Programm
	Verarbeitung großer Datenmengen
	MapReduce and PACT - Comparing Data Parallel Programming Models
	Parallel Sorted Neighborhood Blocking with MapReduce
	PigSPARQL: Übersetzung von SPARQL nach Pig Latin

	Datenströme
	Koordinierte zyklische Kontext-Aktualisierungen in Datenströmen
	Tracking Hot-k Items over Web 2.0 Streams
	Flexible and Efficient Sensor Data Processing - A Hybrid Approach
	Feature-Based Graph Similarity with Co-Occurence Histograms and the Earth Mover's Distance

	Vorhersagemodelle
	Lightweight Performance Forecasts for Buffer Algorithms
	Offline Design Tuning for Hierarchies of Forecast Models
	Online Hot Spot Prediction in Road Networks

	DB-Implementierung
	Advanced Cardinality Estimation in the XML Query Graph Model
	Efficient In-Memory Indexing with Generalized Prefix Trees
	Stets Wertvollständig! - Snapshot Isolation für das Constraint-basierte Datenbank Caching

	Anfrageverarbeitung
	A generalized join algorithm
	View Maintenance using Partial Deltas
	Cloudy Transactions: Cooperative XML Authoring on Amazon S3

	Informationsextraktion
	Conceptiual Views for Entity-Centric Search: Turning Data into Meaningful Concepts
	A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases
	Efficient Interest Group Discovery in Social Networks using an Integrated Structure/Quality Index
	Filtertechniken für geschützte biometrische Datenbanken

	Benchmarking & Simulation
	Benchmarking Hybrid OLTP&OLAP Database Systems
	Simulating Multi-Tenant OLAP Database Clusters
	SSD != SSD – An Empirical Study to Identify Common Properties and Type-specific Behavior
	HiSim: A Highly Extensible Large-Scale P2P Network Simulator

	Probabilistische und inkonsistente Daten
	Operators for Analyzing and Modifying Probabi listic Data - A Question of Efficiency
	Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases
	QSQL^p: Eine Erweiterung der probabilistischenMany-World-Semantik umRelevanzwahrscheinlichkeiten

	Maßgeschneiderte DB-Anwendungen
	Generierung maßgeschneiderter Relationenschemata in Softwareproduktlinien mittels Superimposition
	SIMPL – A Framework for Accessing External Data in Simulation Workflows
	Einsatz domänenspezifischer Sprachen zur Migration von
Datenbankanwendungen

	Dissertationspreis
	XML Query Processing in XTC

	Industrieprogramm
	Complex Event Processing und Reporting
	An Integrated Data ManagementApproach to Manage Health Care Data
	Involving Business Users in the Design of Complex Event
Processing Systems
	Fast and Easy Delivery of Data Mining Insights to
Reporting Systems

	Rund um OLAP
	Technical Introduction to the IBM Smart Analytics Optimizer for DB2 for System z
	Architecture of a Highly Scalable Data Warehouse Appliance Integrated to Mainframe Database Systems
	Interactive Predictive Analytics with Columnar Databases

	In-Memory und Cloud
	An In-Memory Database System for Multi-Tenant
Applications
	Available-To-Promise on an In-Memory Column Store
	Cloud Storage: Wie viel Cloud Computing steckt dahinter?

	Panel
	Panel: “One Size Fits All”: An Idea Whose Time Has Come and Gone?

	Demonstrationsprogramm
	Improving Service Discovery through
Enriched Service Descriptions
	StreamCars – DatenstrommanagementbasierteVerarbeitung von Sensordaten im Fahrzeug
	NexusDSEditor — Integrated Tool Support for the DataStream Processing Middleware NexusDS
	AIMS: An SQL-based System for Airspace Monitoring
	PROOF: Produktmonitoring im Web
	ProCEM Software Suite - Integrierte Ablaufsteuerung und -überwachung auf Basis von Open Source Systemen
	Demonstration des Parallel Data Generation Framework
	Measuring Energy Consumption of a Database Cluster
	Snowfall: Hardware Stream Analysis Made Easy
	MOAW: An Agile Visual Modeling and Exploration Tool
for Irregularly Structured Data
	Touch it, Mine it, View it, Shape it
	Metadata-driven Data Migration for SAP Projects

	Ende

