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Abstract: Never touch a running system! This proverb is essentially true when deal-
ing with complex mature software systems that have been run for years. When it
comes to modifying certain aspects due to performance enhancements or to customer
needs, maintainers spend quite significant time to understand the behavior of the whole
system. As is practice today, only static documentation is available for such systems
which is unsuitable for understanding the behavior.

In this paper, we present the Windows Monitoring Kernel (WMK), a custom-built
version of the latest Windows 2003 Server operating system that includes a fine-
grained logging infrastructure for arbitrary operating system (OS) kernel events. These
events are suitable for monitoring a system’s behavior at runtime. The WMK infras-
tructure is complemented by a reporting tool that visualizes these events and displays
their dependencies with respect to some aspects. Furthermore, the WMK provides the
possibility to use these events for understanding application behavior running in the
Windows operating system.

1 Introduction

Since the introduction of the Windows NT operating system in 1993, very few details about
the kernel structure and behavior have been known to the research community. While
UNIX and Linux sources are freely available for research and analysis, Windows NT has
always been a closed source. In 2006, Microsoft changed its policy for the kernel sources
[PP06].

The published kernel sources are known as the Windows Research Kernel1, based on the
latest release of Windows 2003 Server Enterprise Edition, and uncover the core part of the
kernel. As only limited documentation is available of how things work inside the kernel,
we prepared a modified WRK version, called Windows Monitoring Kernel (WMK). This
paper presents the details of how WMK works. WMK adds an event logging infrastructure
to the Windows kernel that allows logging of any arbitrary function/activity inside the
source code. We also provide a reporting tool that allows post-mortem analysis such as
diagrams or graphs.

1The WRK is available to academic institutions for research purposes [WRKa, WRKb]. The WRK can be
used to build customized variants of the Windows kernel. It requires a running instance of a Windows Server
2003 Enterprise Edition, as it only provides a modified version of ntoskrnl.exe.

261



The main contributions are as follows: (1) We built a modified version of the Windows
NT kernel, (2) we implemented an efficient event logging infrastructure therein, and (3)
we implemented a tool that analyzes and visualizes recorded events.

The rest of the paper is organized as follows: We firstly present the architecture of our
event logging infrastructure. Secondly, we present two case studies highlighting the need
for WMK for analyzing application specific behavior. Then, we will give a brief overview
of existing event logging facilities, and finally, we will conclude and give some outlook on
our future work.

2 The Windows Monitoring Kernel

The basic idea of the Windows Monitoring Kernel (WMK) approach is to replace an ex-
isting Windows kernel (ntoskrnl.exe) with an instrumented one. After a reboot, the
behavior of arbitrary applications can be monitored.

Figure 1 gives an overview of the WMK architecture. With slight modifications of the NT
kernel, we provide the WMK event logging API to any NT subsystem; hence it can be
used to log arbitrary events. At the moment, the following events are logged:

System service calls System calls are monitored to analyze which functionalities of the
OS are required by an application. Time stamps help to identify those kernel services
that most of the time is spent in.

Context switches Context switches denote the process of assigning the CPU from one
thread to another. Logging this event is helpful to evaluate execution flows of a
multi-threaded application.

Wait events are triggered when a thread waits on a particular synchronization event and
when a wait can be satisfied. In combination with context switch events, these events
are useful to identify potential deadlocks.

Process/thread creation and termination Process creation and termination mark the start
and end point of an application’s existence. Threads denote different execution flows
through an application and are interpreted as actors of an application.

Each monitored event creates an event log entry which contains a time stamp, a unique
type identifier, an event specific, variable-length data set, and the data set length. Event
log entries are stored within an event log buffer. This buffer is allocated in non-pageable
kernel memory and is created at boot time. To enhance scalability on multiprocessor
systems, one buffer is allocated per CPU. The optimal buffer size depends on the amount
of events to be logged and is subject to future work2.

2For example, monitoring the Windows boot process requires a buffer size of approximately 16 MiB, leaving
space open for additional event types.
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Figure 1: WMK components - overview

Events occur potentially in parallel and occur frequently thus requiring a rapid event han-
dling mechanism. The allocation of an event log entry must happen under mutual exclu-
sion. OS synchronization objects are insufficient for this purpose as they exhibit blocking
semantics, i.e., an event handler might block while another event handler is allocating
an event log entry. Thus, we implemented a non-blocking allocation algorithm that uses
atomic processor instruction to guarantee mutual exclusion. For example, on i386 archi-
tectures, we use a compare-and-swap instruction that can atomically execute a comparison
and swap operation.

To prevent the buffer from overflowing, we dump the event log to a secondary storage
(WmkDiskWriterThread). This happens when the event log buffer exceeds a certain
threshold. While flushing the buffer to disk, other events might occur. In order to not miss
these events we provide a reserve buffer. When flushing has finished, we continue to use
the regular buffer again and flush the reserve buffer to disk.

To log an event, instrumentation code first calls WmkAllocateEvent specifying the
type of event that should be logged. Afterwards a pointer to the WMK buffer is returned
providing enough space to hold event data. The instrumentation code can then fill in all
event specific data to the buffer and finally commits the event (WmkCommitEvent) to
indicate that an event has successfully been logged. The commitment is crucial to signal
the WmkDiskWriterThread that all events in the event log are ready for flushing to
disk.

3 Case Studies

First, we describe the Wait-for graph which is helpful for identifying the collaboration of
threads via their synchronization connections. Second, a Process-thread graph is described
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which can be used to analyze the process-thread hierarchy.

The Thread-priority diagram and Scheduling diagram are not presented in this paper. Other
types of diagrams might be useful depending on the data classes acquired from our infras-
tructure and are subject to future work.

3.1 Analyzing Synchronization Behavior

A common problem in complex multi-threaded applications is the analysis of their syn-
chronization behavior and the analysis whether a potential deadlock may arise. Given
only a static documentation or the source code of an application, it is difficult to figure out
which thread waits for which synchronization object and which other threads wait for the
same synchronization object. This behavior should be monitorable at runtime of a system.

Basing on our wait event monitoring, we created a tool that dynamically analyzes and visu-
alizes dependencies concerning synchronization objects acquired by different threads. For
convenience, we used a simple consumer-producer-application [Dij68]. Figure 2 demon-
strates the resulting wait-for dependency graph.

Inside this graph, a rectangle denotes a thread object. A thread object is specified by its
thread identifier, the thread’s function name (if available3) and the thread object’s address.
A diamond denotes a waitable object, e.g., semaphores, events, or threads. The diamond
shape contains the object type as well as the object address. A directed edge between a
thread and a waitable object denotes that the thread waited for the object.

Figure 2: Wait-for Graph of a simple producer-consumer example.

Not surprisingly, the producer and the consumer thread both wait for a mutant object, a
Windows synchronization primitive for assuring mutual exclusion. Also, the main thread
(executing the main function of a C program), waits for both child threads to finish their
execution. Each thread, consumer and producer, also waits for another semaphore object

3To resolve function names, additional symbol files may be necessary.
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not related to solving the producer-consumer-problem. The purpose of this semaphore is
beyond the scope of this paper; it is needed for implementing Local Procedure Calls (LPC)
[RS05].

The Wait-for Graph can be created by connecting the WMK to the specific application
that should be observed. The process handle is given to the logging infrastructure via a
system service call. Note that this connection can even be established at runtime when the
application has already started.

3.2 Analyzing Windows Boot Activity

We consider the Windows operating system as an example of a mature complex system
that has been undocumented until now. The WMK allows to trace the (operating) system
behavior.

To monitor the whole system the WMK must be globally enabled. The system service
call which connects a specific process handle to the infrastructure is not necessary (and
makes no sense). With a globally enabled WMK, even the boot process can be traced.
Furthermore, inter-application dependencies can be analyzed.

As an example, figure 3 shows a section of the process/thread relation of the windows
boot procedure. Processes (ellipses) and threads (yellow boxes) are shown. If possible,
the thread function name is extracted from the application debug information (PDB files).

Figure 3: Windows boot process - thread/process relation

The graph edges illustrate the hierarchy dependency. In this way you can analyze which
thread or process is started by which thread.
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You can see that the Windows system process (at the top of the graph, with the id 0x00000004)
starts the Phase1Initialization thread which starts all other system threads and
initializes the whole system.

Analyzing the process-thread creation can be useful to get a high-level overview of the
components of a monitored system. Such an analysis can be the starting point of further
analysis, e.g. considering synchronization behavior.

4 Related Work

Instrumenting applications at operating system level has been well investigated. On Win-
dows operating systems, the major comprehensive analysis tool at operating system level is
perfmon [RS05]. Perfmon queries built-in Windows performance counters and generates
diagrams that help system administrators to identify bottlenecks in the operating system.
Performance counters have to be queried by a Windows API, restricting the frequency of
the requests. For example, it is impossible to trace every context switch, because the con-
text switch counter might already have changed while the result of a query is transfered to
the monitoring thread.

The Linux Trace Toolkit (LTT) [YD00] was created to instrument the Linux operating
system at source code level. It also provides an efficient event logging infrastructure but
requires a user mode deamon to transfer logged events to the file system. This implies that
the buffer containing logged events can be dumped to the file system at a late stage in the
boot process which requires a bigger buffer size to guarantee that no events will be lost.
Especially on multiprocessor systems this approach does not scale well.

A more flexible approach is taken by DTrace [CSL04] which allows dynamic modification
of kernel code in order to instrument it. It instruments the kernel by replacing the opcode
at a specified instruction address with a jump instruction to an instrumentation routine.
The ability to add events at runtime makes the tool much more flexible than WMK. But
DTrace has a major drawback: The locations where instrumentation code can be placed
is limited by available providers. As long as there is no provider for an arbitrary code
location, DTrace is unable to log events at that location.

5 Conclusion and Outlook

We presented the WMK infrastructure for logging arbitrary OS kernel events. We imple-
mented a prototype according to our architectural model and monitored several applica-
tions. The results of our monitoring can be used for further analysis by our visualization
tool. We showed that the Wait-for graph is suitable for analyzing synchronization behavior
of multi-threaded applications. The Process-thread graph can be used to get a high-level
overview on the runtime behavior of an application.
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We will investigate to what extent the operating system’s execution time is effected by
WMK event logging. Also, we will investigate impacts on the OS’s behavior caused by the
non-paged memory pool consumptions. We will also focus on more sophisticated analysis
scenarios (e.g. detect deadlock occurrence or calculate performance characteristics) and
additional instrumentation points (e.g. logging system call parameters or page faults).
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