
April 1982

Rundschau

Contents

From the Editor..

Public Notice of the Foundation of the PEARL-Association

S. Eichentopf
The PEARL Implementation of AEG-Telefunken and ATM .

B. Krüger, G. Müller
The BBC PEARL Subset PAS2

P. Elzer, H.-J. Schneider
A PEARL Software System for Multi-Processor Systems .

K.Lucas
The Portable GPP PEARL System . . .

H. Schoknecht, P. Rieder
The Siemens PEARL Compiler System .

H. Windauer
The Portable PEARL Programming System of WERUM .

H. Steusloff
lndustrial Applications of PEARL .

Literature on PEARL.

Band 3

1

2

5

12

15

20

24

29

35
42

Nr. 1

Rundschau

Der PEARL-Verein e.V. (PEARL-Association) hat das Ziel,
die Verbreitung der Realzeitprogrammiersprache PEARL
(Process and Experiment Automation Realtime Language)
und ihre Anwendung sowie die Einheitlichkeit von PEARL­
Programmiersystemen zu fördern.
Sitz des Vereins ist Düsseldorf. Seine Geschäftsstelle be­
findet sich in 7000 Stuttgart l, Seidenstraße 36

Vorstand des PEARL-Vereins:

Prof. Dr.-lng. R. Lauber
1 nstitut für Regelungs­
technik und Prozeßauto­
matisierung
Seidenstraße 36
7000 Stuttgart 1

Dr.-lng. K. Marenbach
AEG-Telefunken
Abt. AL3 - F
Th.-Stern-Kai 1
6000 Frankfurt 1

Dipl.-I ng. D. Eberitzsch
Krupp-Atlas-Elektronik
Seebaldsbrücker Heerstr. 235

Prof. Dr. L. Frevert
Ostersiek 29
4902 Bad Salzuflen

Dr. rer. nat. H. Steusloff
Fraunhofer-Institut für

stellv. Vorsitz

Informations- und Datenverarbeitung
Sebastian-Kneipp-Str. 12-14
7500 Karlsruhe 1

Herstellung durch die VDI-Verlag GmbH, Düsseldorf

April 1982
Band 3
Nr. 1

Die PEARL-Rundschau ist das Mitteilungsblatt des PEARL­
Vereins e.V. Neben Vereinsangelegenheiten werden für alle
PEAR L-lnteressenten Informationen über Erfahrungen,
Anwendungsmöglichkeiten und Produkte gegeben.
Preis des Einzelheftes für Nichtmitglieder: DM 15,-, für
Studenten DM 5,-. Jahresabonnement DM 75,-.
Zur Veröffentlichung werden sowohl fachliche Abhand­
lungen über Realzeit-Anwendungen, als auch Kurznach­
richten zu Themen des Prozessrechnereinsatzes und der
Verwendung höherer Sprachen angenommen, soweit sie
für PEARL-lnteressenten von Bedeutung sein können.

Es obliegt dem Autor, die Rechte zur Veröffentlichung
seines Beitrags in der PEARL-Rundschau sicherzustellen.
Der PEARL-Verein erhebt keine Einwände gegen das Ko­
pieren einzelner Beiträge bei Angabe der Quelle.

Beiträge können jederzeit, auch unaufgefordert, an ein
Mitglied des Redaktionskollegiums geschickt werden.
Autoren werden gebeten, bei der Schriftleitung ein Info­
Blatt zur Manuskriptgestaltung anzufordern.

Redaktionskol legium:
Schriftleitung Dr. P. Elzer

Brown Boveri & Cie. AG
Entwicklung mittlere Systeme
Wal lstadterstr. 53-59
6802 Ladenburg

stellvertr. Schriftleitung: Dipl.-Ing. K. Bamberger
Siemens AG
Postfach 211080
7500 Karlsruhe 21

Dr. T. Martin
Kernforschungszentrum Karlsruhe
Projekt PFT
Postfach 3640
7500 Karl,sruhe 1

Dipl.-Ing. V. Scheub
Institut für Regelungstechnik
und Prozeßautomatisierung
Seidenstraße 36
7000 Stuttgart 1

Mit dem Namen des Autors gekennzeichnete Beiträge
geben nicht unbedingt die Meinung des Schriftleiters,
des PEARL-Vereins oder dessen Vorstand wieder.
Die Wiedergabe von Gebrauchsnamen, Handelsnamen,
Warenbezeichnungen usw. berechtigt auch ohne besondere
Kennzeichnung nicht zur Annahme, daß solche Namen im
Sinne der Warenzeichen- und Markenschutz-Gesetzgebung
als frei zu betrachten wären und daher von jedermann be­
nutzt werden dürfen.

PEARL-Rundschau, Heft 1, Band 3, April 1982

From the Editor:

This Engl ish edition of the "PEARL-Rundschau" is an­

other first in the series of interesting developments
which could be experienced by the readers of this
journal, which is devoted to the programming language
PEARL, its development, standardization and use. It

language does not show very much of this broad out­

look. But there will be others.

For the beginning we felt that the broad availability

and support of the language should be demonstrated.
is the attempt to answer a need which has lang been Therefore this issue mainly consists of translations
expressed by our readers and the nembers of the PEARL- of descriptions of PEARL translation systems. And,
Association, i.e. the request for more detailed in­
formation on PEARL in English language.

Not much need tobe said about the development of

PEARL (=Erocess and ~xperiment ~utomation Bealtime
hanguage), the application oriented programming
language for digital computers in measurement an
control. This purpose is exactly described by the
name. The language was developed in the seventies in
close cooperation between industry, research labora­
tories and universities in Germany and has since then
been inplemented and used on a broad basis. Abrief
description thereof has been compiled by the PEARL­
Association in a information folder which is avail-
able in the following languages:

Bulgarian
Chinese
English
French
German
Italian
Japanese
Portuguese
Spanish.

While the name of the language has been derived from
the English description of its purpose, the name of the

after all, what is a programming language without
compilers? To demonstrate the power of PEARL as an

application oriented development tool, one article
describes some interesting applications of PEARL: a
distributed computer system in a steel plant, the
application of PEARL in power distribution and an
industrial data communication network.

For the reader, who got interested in PEARL after
having read this issue and wants more information,
we have provided another little service: a list of
publications on PEARL with short comments on the
respective contents.

Let me close by commenting to a point of dicussion
which is often raised these days. The reader may for-
give that for this purpose I samewhat misuse some of
the most famous words ever written:
"PEARL, or Ada, that ist NOT the question"!

PEARL is a language for the application engineer, Ada
is a language for the language designer, as Grace Hop-

per, one of the best known pioneers of data processing,
called it. And there are always many priest who make a
good living out of the words of one prophet.

journal is kind of "typically German". Literally trans- Last but not least I want to thank the American students
lated could be called "PEARL-survey", but "Rundschau" who untertook the effort to translate the slang of us
has a somewhat broader meaning than that. It is to technicians into English and all those colleagues who
indicate that one is willing to look over the own did the proofreading.

fence, i.e. to take aspects into account which are a

little bit outside of the "inner circle'' of detailed

knowledge about one's own area of work. Well, one
should not raise to high expectations and it shall
therefore be admitted that this first issue in English

I would be glad if this issue of our "Rundschau" would
raise your interest in PEARL to a degree that you
might want to try it.

Peter F. EL ZER

2

Pressrelease, concerning the foundation of the
PEARL association. This public notice was sent out
in February 1980 from the press office of the VDI=
.Y_erein _Q_eutscher .!_ngenieure (= Association of
German Engineers) to a list of more than 300 adresses.

PEARL Support Organization founded

There is now a support organization for the real­
time programming language PEARL, the PEARL Asso­
ciation (in German: "PEARL Vereine.V.") The asso­
ciation will, as a guest organization of the Asso­
ciation of German Engineers (VDI), have its business
adress in the VDI building in Düsseldorf.

The name 'PEARL' stands for '_1:rocess and fxperiment
~utomation B_ealtime !:_anguage'. It is a programming
language for the application of computers and micro­
processors to automation purposes.

This language was developed over the last ten years
in a close cooperation of process computer manu-

PEARL-Rundschau, Heft 1, Band 3, April 1982

port organization in the legal form of a registered
association ('eingetragener Verein') has been formed.
Its main purposes are:

1. To further the distribution of PEARL through:
- Response to questions about PEARL.
- Publication of the conceptional and technical

advantages of PEARL in literature and presen­
tations at conferences.

2. To promote the use of PEARL through:
- Collection, evaluation and distribution of

user experience.
- Encouragement of the development of program­

ming aids.
- Organization of user groups in cooperation

with technical and scientific organizations.
- Support of training courses.
- Mediation of exchange of user program

packages.

facturers, users, and research institutes in the 3. To promote the uniformity of PEARL pro-
Federal Republic of Germany. Its main purpose ist gramming systems through:
to transform the programming of computers for - Support of standardization activities.
automation applications from a kind of 'black magic', - Distribution of test program systems.
practiced by only a few experts, into a clear and - Support of the cooperation at the panels
easy-to-use technique for engineers and other and committees associated with PEARL
interested users. The development of PEARL was - Appropriate protection of the name 'PEARL'.
therefore supported from the beginning by the
German 'Bundesministerium für Bildung und Wissen­
schaft' (BMBW) and the 'Bundesministerium für
Forschung und Technologie'(BMFT). Also worthy of
special mention in this conncetion is the 'Project
for Process data Processing' (PDV = Projekt Prozess­
datenverarbeitung) at the Center for Nuclear
Research in Karlsruhe, which has been trusted since
1972 with the management of the support of process
control computer development and applications in
the Federal Republic of Germany by the German
'Bundesministerium für Forschung· und Technologie'.
The 'Verein Deutscher Ingenieure' (VDI) has parti­
cipated in the development of PEARL since 1972

through a committee of the 'VDI/VDE-Gesellschaft
Meß- und Regelungstechnik'. A subset of PEARL
('Basic PEARL') was accepted by the DIN (Deutsches
Institut für Normung= German Standards Institute)
as a standard (DIN 66253) and has also been sub­
mitted to the International Standards Organization
(ISO) for international standardization.

In order tobe able to perform the necessary advi­
sory and informative activities - especially as far
as users are concerned - after the introduction of
such a programming language into common use, a sup-

The foundation of the association was actively
supported by such users as e.g. energy supply
companies. The 'Fraunhofer-Gesellschaft' played
a prominent role in the preparatory work necessary
toset up the organization.
The initial session took place at the University
of Karlsruhe on Dec. 1ath 1979. The participants
came from many different sections of the computer
manufacturing and user industry. Amongst others,
the following firms were represented: AEG­
Telefunken, Badenwerk, BBC-Mannheim, DEC, DORNIER­
System, EWAG-Nürnberg, GEI, GPP, KRUPP-Atlas­
Elektronik, MBP, MODCOMP, OBAG, Pfalzwerke, PSI,
SEL, SIEMENS, Programmierbüro WERUM.

The following people were elected to the first
Board of Directors of the organization:
- Prof. Dr.-Ing. R. Lauber, Chairman

Institute for Control Engineering and
Process Automation
University Stuttgart

- Dipl.-Ing. G. Müller, Vice Chairman
Brown Boveri & Cie. AG, Mannheim
Fachbereich Netzleittechnik

PEARL-Rundschau, Heft 1, Band 3, April 1982

- Dr.-Ing. P. Elzer
DORNIER System GmbH
Friedrichshafen

According to the bylaws new elections were held in
December 1981 and the Board of Directors now
consists of:

- Dipl .-Ing. D. Eberitzsch
Krupp-Atlas Elektronik

B.remen

- Prof. Dr.-Ing. L. Frevert
Bad Sa 1 zufl en

- Prof. Dr.-Ing. R. Lauber
Institute for Control Engineering
and Process Automation
University Stuttgart

- Dr.-Ing. K. Marenbach
AEG-Telefunken
Frankfurt

- Dr. rer. nat. H. Steusloff
IITB
Karlsruhe

Until the final establishment of a headquarter,
information about the association, its goals,
charter, organization, possibilities of partici­
pation etc. can be received either directly
from the members of the Board of Directors,
or through

PEARL-Verein
Geschäftsstelle Stuttgart
Seidenstr. 36
D-7000 Stuttgart 1

3

4

PEARL-Rundschau, Heft 1, Band 3, April 1982

The PEARL Implementation of AEG-Telefunken and ATM

S. Eichentopf, Konstanz

1. Introduction

From the beginning - that is since 1969 -

AEG-Tele funken has assisted wi th the lan­

guage definition work of PEARL. As the

language definition stabilized in the

mid-70's after much revision, AEG-Tele­

funken took up implementation of the new

language with increased capacity on the

basis of its previous work. Changes con­

cerning PEARL definition could easily be

dealt with by chosen semiautomatic im­

plementation process. A PEARL implementa­

tion has thus come about whose language

scope is on the newest level of the official

PEARL language definition /1, 2/.

In April 1980, AEG-Telefunken left its

development and manufacture of process

control computer activities along with the

corresponding basic software to the newly­

founded daughter company ATM computer GmbH.

The PEARL implementation by AEG-Telefunken

is therefore distributed and serviced by

ATM under the name ATM 80 PEARL.

Both companies - AEG-Telefunken and ATM -

are members of the PEARL Association.

2. Language Scope

The language scope of ATM PEARL was

established very early in the imple­

mentation, a short time before the

final boundaries of Basic PEARL /1/

were laid. In making this choice, the

performance capabilities of the lan­

guage and, with that, the benefits for

the user stood in the foreground. The

only language elements of Full PEARL

/2/ that where not included were

those whose implementation was possible

only with disproportionately high

cost, or those that could not be reali-

zed in a sufficiently efficient way

with the operating system at hand.

ATM PEARL has only the following

limitations with respect to Full PEARL:

- There is no operator declaration,

however, the large, complete set of

implemented standard operations is

available.

- There is no interface declaration,

though there are numerous inter­

faces supplied for various peripheral

devices and data management.

- There are no synchronization objects

of the sort BOLT, only of the sort

SEMA.

No lists of semaphores in semaphore

assignments.

- No (dynamic) changes of task priorities.

- Certain limitations on array and struc-

ture displays.

- Only constants may be used as indexes

of bit strings.

ATM 80 PEARL greatly exceeds Basic PEARL.

The following fundamental elements of

Full PEARL are contained in ATM 80 PEARL

but not in Basic PEARL:

- all types of declarations on any level

of nested blocks, particularly, proce­

dures in tasks,

- arbitrary sequences of declarations,

- reference objects,

- arrays and structures as structure

elements, and with that, arbitrary

structure nesting,

- arbitrary and dynamic lower and upper

array index bounds,

- dynamic character string length,

5

6

- type specification for the intro~

duction of freely chooseable structure

designations,

- conditional expressions,

- assignment of arrays and structures

as wholes,

- assignment as the right side of an

assignment (multiple assignment)

and as an expression in other expres­

sions,

- sections of arrays that contain more

than only one array element,

- arbitrary sections of character and

bit strings,

arbitrary expressions in initial

attributes in declarations,

- identity specifications (SPC

IDENT .••) for the assignment of

(more) access operations or design­

ators to existing objects (not only

to procedure parameters),

- arrays and structures as procedure

parameters with both parameter

passing mechanisms (value through

INITIAL and reference through

IDENT) as well as procedure results,

- procedures as procedure parameters,

- array and structure displays for

direct output of array and structure

values,

- all possible ways of writing BIT and

CHARACTER constant notations,

- Standard Operators SQRT, EXP, LN,

SIN, COS, TAN, ARCTAN, TANH, LWB,

UPB, DUR FLOAT, FLOAT DUR, DUR/­

FLOAT, DUR/DUR, REM,

- lists of schedule elements for all

task operations (not only one element

per task operation),

suspension and delay statements (SUSPEND

and RESUME) also for "unusual" tasks,

- interrupt statement TRIGGER for simu­

lation of appearance of interrupts,

- standard function ORIGIN for identifi­

cation of events that disable task

starts,

PEARL-Rundschau, Heft 1, Band 3, April 1982

- standard function NOW for determina­

tion of the actual time of day,

- ONEOF attribute with the transfer

element type from data stations and,

with that, files with data of differ­

ent types,

- arbitrary expressions as arguments of

input-output formats,

- system divisions in more than only

one program module,

- no limitations with the syntax of the

system component.

Many of these language elements not only

raise the prograrnming comfort and contri­

bute to ease of reading and to better

self-documentation of the program, but

also can significantly improve program

efficiency. A few examples of this:

- memory optimization through arrays

whose index bounds are dynamically

set according to input values with

minimal increase in run-time with

respect to array declaration,

- reduction of the number of additio­

nal tasks through the possibility

of schedule lists at activation to­

gether with the Standardoperation

ORIGIN for determination of which

schedule element led to activation

of the task,

- assignrnent of structures and arrays

as wholes instead of element by

element:

DCL (AR1, AR2) (50) FIXED,

DCL (ST1, ST2)

STRUCT [E1 TYP1, E2 TYP2, E3 TYP3];

/ FULL PEARL / / BASIC PEARL /
AR1 : = AR2 ; FOR I = 1 TO 50

REPEAT AR1 (I) :

AR2 (I);

END

ST1: ST2, ST1.E1

ST1.E2

ST1.E3

ST2.E1;

ST2.E2;

ST2.E3;-

- avoidance of index transformations

through arbitrary lower and upper

bounds that can be negative,

- reduction of the number of address

PEARL-Rundschau, Heft 1, Band 3, April 1982

calculations with help of identity

specifications (SPC ... IDENT),

for example with arrays of structures:

TYPE STR STRUCT [E1 TYP1, EZ TYPZ,

E3 TYP3]

DCL A (12,10) STR;

DCL (I,J) FIXED;

/FULL PEARL/

BEGIN

SPC AIJ STR

IDENT (A(I,J));

AIJ. E 1 : =

••• AIJ. EZ

AIJ. E3 : =

END;

3. COMPILER

/BASIC PEARL/

A(I,J). E1 : =
••• A(I,J). EZ

A(I,J). E3 : =

3.1 Procedure, construction

PEARL lends itself to the formulation of

the compiler because it has, with its

manifold-data types and modern data

structures, an 11 algorithmic language

nucleus 11 that has good performance capa­

bilities. The compiler is thus written

in the language it translates - a proce­

dure that is frequently used when the

language tobe implemented is suitable

for it. With a so-called bootstrap sys­

tem, the compiler is brought into the

computer on which it will run, and on

which it can translate itself. Only a

few small input/output routines, which

must first have been written irito the

assembler for this procedure, remain as

assembler routines in the same way as

basic start-up and management programs.

Besides the management program, the

compiler consists of altogether nine

PEARL programs that each contain several

tasks and that, controlled by the manage­

ment program, are executed one after the

other, whereby they communicate with one

another through auxiliary memory files.

The first six of these programs make up

the 11 general 11 - or machine independent

part of the compiler, the other three

make up the code generator. The interface

between all programs of the general section

7

of the compiler is an internal intermediate

language that consists of, besides a series

of lists, a sequential flow that is a sim­

plified and more strongly modified copy of

the source program tobe translated.

At the interface between the compiler gene­

ral section and the code generator, the

copy of the source program is represented

in reverse polish notation, in which array

indexing, structure element selection,

procedure calls, ect., are handled as spe­

cial operations. This intermediate lan­

guage is relatively close to machine lan­

guage, but is still, for practical pur­

poses, computer- independent.

Five of the programs in the general por­

tion of the compiler are compiler passes

in the sense that they analyze the cur­

rent program in the internal intermedi­

ate language from different viewpoints,

and modify it appropriately for the

succeeding passes. For analysis, bottom­

up parsers, or, more exactly, bounded

context parsers that were optimized

through measures including skillful class

construction are used. Essential compo­

nents of these parsers are parser tables

that are automatically produced from

given (context free) grammars, and with

whose help analysis is carried out.

The rules of the given grammars can con­

tain instructions for actions that are

taken into the parser tables and are exe­

cuted during the analysis for the mani­

pulation of lists and for the modifica­

tion of the sequential flow of the inter­

mediate language.

The first PEARL program of the general

portion of the compiler processes the

global program structure, processes the

block nesting of the program tobe trans­

lated, and collects complete definitions

of designators in a block dependent

address book. At the same time, the lexi­

cal analysis runs parallel in time to the

parser task, acting like a finite automata

and arranging designators and simple con­

stants into appropriate reference lists and

replacing key words and special character

chains by corresponding simpler symbols of

the internal intermediate language.

8

The second program of the upper section

of the compiler processes the system

component.

The third program processes complete dec­

larations and specifications with exception

of expressions contained in them and com­

pletes the address book correspondingly

with instructions about properties of

the data objects. In addition to that,

all existing indicators are, in place

of their "applied appearances" and

"defined appearances", replaced by

appropriate references to the address

book.

The fourth program of the general sec­

tion of the compiler is not a pass; it

tests complete type attributes for

correctness and identifies type attri­

butes that represent the same type. Also,

if desired, a reference list of all PEARL

data objects in the program tobe trans-

PEARL-Rundschau, Heft 1, Band 3, April 1982

ated object program on the other. These

associations are necessary for program

testing at source level.

3.2 Compiler data

The compiler runs on the computers

ATM 80-20/4 and ATM 80-20/5 with at

least 96 K byte, but better with

128 K byte main memory capacity, and

on the more advanced computer ATM-80-30,

the main memory capacity of which lies

between 128 K byte and 1 M byte. In each

case, an auxiliary memory with freely choos­

able devices (magnetic discs, floppy discs)

is required:

The compiler program and the compiler

tables occupy about 300 K byte statically

in the auxiliary memory. Dynamically, at

compilation of a program, an additional

300-500 K byte of auxiliary memory is
lated is produced as well as output with required, depending upon the program to

all locations of data objects and points be compiled. The maximum required amount

at which the objects are called in the source of main memory at compilation is 70 K byte

program (rows, columns). with 96 K byte computers, and, with com­

puters with (at least) 128 K byte of main

The fifth program processes expressions

and statements with the exception of

input/output statements which are pro­

cessed in the sixth program.

The first program of the code generator

prepares for the code generation in that

it assigns temporary memory space for

PEARL data objects. The second program

does the actual code generation, while

the last program brings the code produced

into linkage modules in which the still

open forward address references are in­

serted. The code generator, then, pro­

duces linkage modules directly, without

producing assembler programs first.

Besides the linkage modules of the object

program, the compiler or code generator

produces files that contain infor-

mation about the translated program;

in fact, they contain information

about its structure, in particular

about associations between the

source program and its data objects on

one hand, and between corresponding

code and dat~ ~ddresses of the gener-

_memory capaci ty is 83 K byte, of which

14 K byte is needed by the so-called com­

munication sector and 69 K byte by the task

running sector.

The largest PEARL source program

modules capable of being translated in

one piece can, with the amount of main

memory given, be 2000 to 3000 lines

long, depending on the source program

line structure (essentially one ele-

mentary instruction per line

other program characteristics.

and

If the source program is stored in a

disc file, and the linkage modules gener­

ated are stored in disc files, which

is normally the case, about 250 source

program lines per minute are compiled,

including linkage module generation but

not including protocol time.

The object program generated can be

executed on the computers ATM 80-20/4

and ATM 80-20/5 as well as on the

ATM 80-10 and ATM 80-05/HD after loading

and linking.

PEARL-Rundschau, Heft 1, Band 3, April 1982

3.3 Compiler Restrictions

The compiler is embedded in the ATM 80

programming system and uses its file

management. It is started with a simple

command. The source programs tobe

translated can be stored in source

files in the auxiliary memory where

they can be processed with a text editor

and management programs of the file

management system in dialogue with the

computer, or they can be read in from

the compiler directly through punch cards.

The linkage modules generated are stored

in auxiliary memory files.

At compilation, the compiler generates

a protocol whose scope, disregarding an

unconditionally required minimum, can

be controlled through ~ parameter in

the compiler start conuhand. The follow­

ing parts belong to the maximum proto­

col scope:

- format-true source listing with line

. numbers,

listing of all PEARL data objects in

the program with statement of the

location of definition and of the

complete call locations in the

source program (exact location

statement with lines and branches) as

well as with the state of the memory

of the object program generated,

- code listing in a form similar to the

assembler with references to the corres­

ponding source lines and branches,

- index of the generated linka9e modules

with static length and storage files,

- degree of packing or length of important

compiler lists.

In addition, error messages are produced

as the need arises with the exact sort

(from over 200) and location of the error.

Generation of error messages does not,

with the exception of a few serious cases,

lead to interruption of the compilation

procedure, so that with only one compila­

tion many independent errors in the source

program can be identified.

4. 0bject Programs

4.1 Run-time Packet

9

The language elements of PEARL that cannot

be realized simply through inline se­
quences of machine instructions or directly

through appropriate operating system

functions are realized with the help of a

runtime packet. These furnish the required

capabilities either alone, or by applying

a suitable set of operating system func­

tions. In particular, tasks of the PEARL

program are in this way built up 1:1 from

"programs" managed by the realtime oper­

ating system MART0S-K or activities of

the tasks are built up from processes

through these programs.

The run-time packet is strongly modularized

and the modules are reentrant. At loading

and linking of a specific PEARL object

program, only the modules of the run-time

packet required for the program are loaded

and linked, and that is done automati­

cally from the appropriately library .

From the special requirements of the

various PEARL user programs results, be­

cause of the direct memory requirements of

these programs for their code and data, a

memory requirement of modules of the run­

time packet of ca:

4 K byte resident in the so-called

communication sector,

- from at least 3.5 K byte to at most

19 K byte can lie in either the

communication sector or the run

sector for the user tasks, as well as

- at least 1 K byte to at most 3.5 K

byte must remain ready for .use in an­

other run sector exclusively for the

run-tirne packet.

The run-time packet also contains the

interfaces for the peripheral devices as
well as for the file management of the
operating system.

4.2 Loading and Linking

The linkage modules of the object program

produced by the compiler can be loaded

and at the same time linked with the link-

10

age editor-loader of the prograrnming sys­

tem, which operates in dialogue. Sub­

stantially more comfortable is, however,

the use of the loader of the so-called

prograrnming system generation. It is opera­

ted with a sequence of cornmands that can

be given in arbitrary ways, particulary in

auxiliary memory files. With that, a

loading/linking procedure requires be­

tween one minute and several minutes, de­

pending upon the scope of the program (sys­

tem) tobe loaded.

Modules that do not consist of PEARL sources

and that can be called from PEARL programs

as global procedures can also be loaded

and linked. In these procedures, besides

the (actual) procedure pararneters, complete

sets of data objects of the PEARL program

introduced as GLOBAL can be referred to.

4.3 Prograrn Test

With the maintenance version MV 500 for

ATM 80-30 compiled PEARL programs can be

tested in the source language. The 'source

relative PEARL test system' QPTS is a

component of the run-time packet of the

ATM 80 PEARL programming system.

The essential part of this test system is

that it does not use special test variants

for the program tobe tested; the object

prograrns produced by the compiler can be

executed unchanged with or without the

test. This was achieved through two meas­

ures: the computer produces, as mentioned

above, information files on the object

program separate from the linkage modules

of the object program, and the test sys­

tem makes modifications on the program to

be tested where required. These are undone

when they are no longer needed.

For operation of the test system, there

are simple cornmands and dialogues. Both

can be input with any type of device.

Cornmands can also be supplied through

cornmand files that are made up in ad­

vance. Protocol output of the test sys­

tem goes to any arbitrary protocol de­

vice.

PEARL-Rundschau, Heft 1, Band 3, April 1982

The cornmands can be supplied with simple

conditions on which their execution is

dependent.

Specifications in the cornmands and dia­

logues that refer to the prograrn tobe

tested consist of the numbers of the

lines in the source listing as well as

of the identifiers of PEARL data ob­

jects and tasks in the source prograrn.

In a second section, array indexing and

structure element selection is also

possible.

Cornrnands can be made dependent or inde­

pendent on a reached test interrupt point

(breakpoint) .

The essential cornmands and dialogues

serve as aids for the insertion and de­

letion of test interrupt points, for the

resumption of execution after a test inter­

rupt point has been reached, and to

supply information about task states,

semaphores, schedules of tasks, and data

values. In addition to that, complete in­

structions for tasks, semaphores, inter­

rupts and signals are available as commands.

5. Docurnentation, Training

To the product scope of ATM 80 PEARL be­

longs the following documentation:

- A PEARL language description /3/ that

is meant in the first place tobe a

supplement to the ATM 80 PEARL users

handbook and is, therefore, more orien­

ted in its presentation to the syste­

matic presentation of PEARL than on a

didatic viewpoint. This language

discription is separately obtainable.

- A user's handbook in which implemen­

tation dependencies, installation and

use of the compiler, treatment of the

generated object programs, and the

addition of non-PEARL prograrns is de­

scribed; this user's handbook is only

obtainable with delivery of the com­

piler;

- Docurnentation on the run-time packet

as far as it is required by or profi­

table for the user.

PEARL-Rundschau, Heft 1, Band 3, April 1982

ATM offers two-week lang courses that

are supplemented through practical ex­

arcises on the computer as an intro­

duction to PEARL.

6. Applications

ATM 80 PEARL has been delivered to many

University institutes, sections of AEG

Telefunken, and other firms.

ATM 80 PEARL has been installed for

software production in almost ten larger

projects to date. Three of these pro­

jects lie in the television and radio

sector, two are in the sector of radar

data processing, and the rest lie in

the military sector. Further projects

are under consideration.

0ne application of ATM 80 PEARL is, as

mentioned, the ATM 80 PEARL compiler

itself.

For the first time with the development

version then available, a model of a

flexible manufacturing system controlled

by PEARL programs was implemented for

INTERKAMA '77 by coworkers of Dr. Jüne­

mann (University of Dortmund). It actu­

ally dealt with only a model, but with

a non-trivial one (for example, 80 di­

gital inputs and outputs, 40 tasks). An

article over this model project is

contained in /4/.

References to literature

/1/ Preliminary Standard DIN 66 253

Part 1

Information Processing

Programming Language PEARL

Basic PEARL

Beuth Verlag Berlin, Köln 1981

/2/ Draft Standard DIN 66 253

Part 2

Information Processing

Programming Language PEARL

Full PEARL

Beuth Verlag Berlin, Köln 1980

/3/ PEARL for ATM 80 computer systems

Language Description

ATM Computer GmbH Konstanz,

München 1980

/4/ Periodical "Datenverarbeitung AEG

TELEFUNKEN"

Nr. 2/3, 1 977

Author's Address

S. Eichentopf

ATM Computer GmbH

Bücklestr. 1-5

7750 Konstanz

11

12

The BBC PEARL Subset PAS2

Dr.-lng. B. Krüger, Dipl.-Ing. Müller

1. Scope of Language

The BBC PEARL subset PAS2 is a comprehensive
subset of PEARL 73. The selection of language
elements was substantially influenced by process
automation projects that reach from the smallest
applications to complex multi-computer systems
on one hand and from process-oriented scientific
and technical installations to management
applications on the other.

2. Hardware Requirements

The compilation of the source programs can be
done either on a host computer with a PL/I
compiler (for example IBM 370), or on a target
machine of the type PDP 11/34 to PDP 11/70.
In the latter case, 64k words and an external
memory (for example RK 05, RL 01, RK 06, RK 07)
are required. (A floating point processor is
not necessary.)

3. PEARL Software System

We regarded the language as an important compo­
nent, but not as a component capable of standing
alone in a user oriented programming system for
process-control applications.

3.1 Compiler

The compiler itself is written in the high-order
programming language PL/1. As shown in figure 1,
it is divided into several self-contained phases.

During test and compilation of the source
program about 500 different errrors can be
recognized and identified in more detail.
(e.g. by statement number, object name, as
well as detailled supplementary reports).

During compilation the following lists are
generated:

- A source program listing with supplementary

PEARL-Rundschau, Heft 1, Band 3, April 1982

references to statement numbers, block levels,
levels nesting, relative addresses, as well
as additional information about e.g. size of
module, date of generation, and compilation
time.

- A cross-reference list in which the location
of declaration, the complete set of attributes,
and the occurrence of each individual object
in the statements are listed.

- A list of all global objects including all
attributes.

Special compiler directives allow to generate
optimized code either with respect to space
or to time.

3.2 Linkers

Special emphasis is also laid upon early error
recognition during link-time. Means to this end
are e.g.:

- Test of global variables with respect to
attribute equivalence and resolved referen~es.

- Protocolling of date of generation compilation
-time, and name of each module tobe linked.

- Sum Checks of the object code of each module.

3.3 BBC PEARL Operating System

The BBC fEARL _Qperating ~stem (POS) was
developed especially to support the capabilities
of PEARL. The operating system including the
drivers for standard and process peripherals
was written in an optimized form with the
assembler code of the object machine. Thus,
the PEARL application programs achieve run times
and reaction times that have proved very satis­
factory in a multitude of time-critical projects.

Fora variety of errors (ca. 240) which are de­
tected at run time, the operating system provides
messages that contain the following information:

PEARL-Rundschau, Heft 1, Band 3, April 1982

Task in which the error occured,
Time at which the error occured and
(as far as relevant)

3.4 Testsystem and Handling

The support system performs the following tasks:

Backtrace addresses (module name and relative
address) with respect to all active block levels.
Device involved
Further supplementary information.

The occurrence of an error - either results in a
predefined action by the operating system or
can be wandled by the user (ON condition).
For this purpose the user is supplied with
additional information at the time of the
occurrence of the error, which allows him to
react in a defined way in his application
program.

Setting of and inquiry after date and system
time
System initialization

Data type specific response and modification
of appropriate declared variables and arrays
or array components in the source program.

Complete reproduction of all tasking commands
including the schedules of each task in the
application program.

Breakpoints for all executable statements
that are either resident in main memory, or

REFl
t------------i Sourc--Ftogrom

----;'k.st;~~t--7--
L ________ __j

Phasi,41
~eferel'JC~ he,ok.
{Supplement)

Phasi, 5
Refe,vncr, btJok
(Syst:emd,'yis,'on)

PhasP42
R~fereh ~ hooh
(SupPlement}

--- -fr;.st-o;tPcrt--7--
L ________ _J

Pha~6
/1tlfchi1>eind~ndtmf

::J11trrmed,'qte. .ld'>g~'},r

----;7;~;,dp~t--~-
1... _____ ___ J

Adressing

- - --fr;st ~tp~t--;- -
L _______ .J

-----('"""A#t~I----- 1

: ____ -J

L----'

- --r"-;~K-----7
L ____,,.,,,.--'

-r:- ------,
~ 1 HIFI 1 l ____ ... -----..J

-~EBOOK.----7
L _____ ... --_J

-----rrut.;;t;w"'r--f""--
L ________ j

Phase 9
stof/c .resmen t
Syst,r,_, Toble!I DPF[

Pre[inlr#r-n.111ir~ dr1t.,, f-1-t"4-----=-_.:._-
0b1~.Progrolfll'fl.f

Fig. 1 Compiler Structure

. STNR

INJFI

1ni ti«lizotion -P.

13

14

loaded from external memory as 'overlay
procedures'.

In addition, it can be stated whether the break­
point shall be effective when the marked statement

- is executed for the first time or the nth time

- is executed by a specific task Tm.

Moreover, at breakpoints the user can chose between
a shutdown of the entire system or suspension of
the task causing the breakpoint (less influence
on the real time environment).

PEARL-Rundschau, Heft 1, Band 3, April 1982

4. PEARL Standard Packages

Developed by means of the BBC PEARL programming
system, a number of standard packages have been
developed and implemented:

- EOS/KYBODAT (Event oriented notation for control
purposes),

- IMAGODAT (Table oriented notation of partially
graphic color image systems),

- SES (Standard EVU System) for control of
distributed energy supply nets.

PEARL-Rundschau, Heft 1, Band 3, April 1982 15

A PEARL Softwaresystem for Mutti-Processor Systems

Dr. P. Elzer1), Dr. H.-J. Schneider, Friedrichshafen

Most of today's and all future systems will be
processor based. There is a trend to multi­
processor-systems. This ist true for all types
of systems, not excluding airborne ones. Up to
now the majority of these systems is programmed
in assembly language, a very awkward and ex­
pensive j ob.

Seeing the difficulties arising from low level
coding, Dornier System implemented a High-Order­
Language-System based on PEARL to program Multi­
Processor-Systems in an airborne or similar
environment. From this environment certain condi­
tions for the implementation resulted. lt was
necessary to minimize the overhead produced by
the operating system. The generated code was
optimized to a very high efficiency with respect
to time and memory.

Originally the aim of PEARL was process-control.
Due to the application area here, subsetting of
PEARL was possible. This was done with high effi­
ciency of code and a smaller modular operating
system in mind.

On the other hand extensions to allow distributed
processing were implemented.

The systems consists of

- Language (Subset of BASIC-PEARL)

- Compiler

- Assembler

- Li nker/Loader

- Testing aids

- Special hardware for testing

lt exists on a host-computer and is written in
FORTRAN for portability. The target processors as

1lcurrently with Brown Boverie & Cie., Ladenburg

implemented up to now are DORNIER DP 432, AEG 80-20
and DORNIER DP 426, which is based on an INTEL 8026.

The system was successfully used in several appli­
cations.

1. Introducti on

lt is a well known fact that High-Order Languages
(HOL's) are one of the most successful means to
improve the productivity of programmers as well as
the quality of programs. For several years, however,
there was a heated discussion among experts as to
whether or not this was also true for real-time
and other time-critical applications, like e.g.
avionics or guidance and control applications. But
mostly this discussion was not very well supported
by quantitative data, and it was therefore felt
necessary to conduct a study (1) on the applicabi­
lity of High-Order Languages to guidance and con­
trol. The task was also, to find out, which special
aspects had tobe taken into consideration in this
- admittedly difficult - application area. The
study concentrated on the Language PEARL (= Pro­
cess and Experiment Realtime Automation Language),

because it was the most promising candidate lan­
guage in the defense environment.

The results were very encourageing. lt turned out
that all of the relevant problems could be formu­
lated in the language. lt was not even necessary
to exploit its full descriptive power. There was
one exception, however: PEARL did not contain yet
all the elements necessary for the programming of
distributed systems and had therefore tobe
slightly expanded for this purpose.

Another important result was that the efficiency
of the compiler and the size of the underlying
operating system were of crucial importance for
the usefulness of a HOL in guidance and control
applications. The reasons for this are that, in
this class of applications memory, however cheap,

16

still is subject to severe limitations like phy­
sical size, energy consumption, or weight. Dynamic
efficiency of the programs is of importance, too,

because guidance and control processes tend tobe
extremely time-critical.

It also turned out that translators for HOL's in

guidance and control had to provide very elaborate
test and integration aids because of the intrinsic
difficulties in testing and integrating embedded
computer systems.

It was therefore decided that Dornier System should
develop a PEARL translation system under contract
with the German MOD (BMVg) which fulfilled the
following requirements:

- Extreme Efficiency of the compiled code

- Elimination of Operating System Overhead
as far as possible

- Possibility to program distributed systems

- Possibility to separate code-elements in
RAM from those in PROM-type memory Optional
support for system integration

- Adaptability to various target processors

- Easy transportability between host-pro-
cessors

It was also obvious that it would not be sufficient
to just develop a compiler. It was rather necessary
to develop an entire PEARL translation system for
distributed systems which consited of the following
components:

- Compiler-generator

- Compiler front-end

- Code generator

- Assembler

- Library management

- Modular operating system

- Linking loader

- Test and Integration aids

The construction principles of that system, and
details about its implementation have already
been published several times (3, 4, 5, 6).

2. The Language PEARL

The development and the properties of PEARL have
also already been rather broadly published, e.g.

PEARL-Rundschau, Heft 1, Band 3, April 1982

in (7, 8). For the purposes of this paper it is
therefore sufficient to concentrate on the proper­
ties of the implementation by DORNIER-Systems.

3. The PEARL-Implementation by Dornier System

As already mentioned above, the characteristics
of the PEARL-implementation by Dornier System
are mainly dictated by the requirements of its
application area. They are most obviously re­
flected in the choice of the implemented lan­
guage subset.

3.1 The Language Subset

For the reasons mentioned above, those language

elements were not implemented from which it was
known that they would result in paar object code
efficiency or unnecessary overhead at runtime.

In particular such elements are:

- File handling (on-board computers usually
are not equipped with magnetic background

storage devices)

- Formatting (an board there are practically
no printing devices and the few which
there are, can easily be handled by stream

output of character strings)

- Absolute time (time is usually counted
relative to 'mission start')

- Signals (exception handling is a source of
huge overhead and it is mandatory that un­
planned software conditions da not occur
during the operational phase of a system)

- Structures (Application studies showed
that measurement data are usually of

homogeneous type).

On the other hand certain extensions had tobe
provided for the programming of distributed

systems. However, it was a strict policy to keep
them very small in order not to deviate too much

from the original PEARL. Another important design
criterium for these multicomputer extensions was
that they had tobe 'strategy independent', i. e.
the user should be enabled to implement whatever

concept be deemed optimal for the safety - or
redundancy-strategy of his application. These
considerations resulted in the following extensions:

PEARL-Rundschau, Heft 1, Band 3, April 1982

- Declaration of entities with the attribute
'NET GLOBAL' of types 'variable',
'semaphore' and 'task'. These entities
are then either copied into or made known
to every processor in the distributed system.

- Operations on such entities. This was
achieved without additional statements or
operators, just by extending the semantics
of existing operations (overloading).

Besides, there is a facility for the connection to
'external' tasks or procedures, which may e.g. be
written in Assembler. Last, but not least, runtime
checks can be inserted on a statement-by-statement
basis by means of 'check/nocheck' statements.

3.2 The Compiler Front-End and its Technology

The technology, which had tobe used for the trans­
lator, was determined by-the requirements of
adaptability to various target processors and easy
transportabi l i ty wi th respect to the hast pro­
cessor. This led to the usual separation into a
'front-end' which is independent of the target
rnachine and translates PEARL into machine-inde­
pendent intermediate code.

The compiler front-end is written in FORTRAN for
the following reasons:

- FORTRAN translators are available for
nearly every possible hast computer

- A compiler, written in FORTRAN, is much
more readable and much easier to main­
tain than any other one which is con­
structed according to an elaborate boot­
strapping technology.

lt turned out that this decision was the right
one. The front-end could be adapted to the follo­
wing host-computers with an effort of a few
man-days each:

DEC PDP-11/70 and 11/44
AEG-Telefunken 80-20/4
Siemens 7760
DEC POP 10

Fig. 1 shows an overview over the structure of the
entire translation system.

The intermediate representation had tobe chosen
according to the requirement ofmaximum code effi­
ciency. Therefore it was not possible to use one
of the usual virtual machine· representations, be-

17

cause these usually do not contain any rnore all the
inforrnation which was there in the source program
and which is necessary for optimization. Besides,
modern target processors usually have a more power­
ful instruction set than the one wnich happens to
be implemented in a particular virtual machine
architecture. This, too, leads to codeineffi­
ciencies.

Therefore it was decided to use a completely target­
independent intermediate representation, the
so-called 'triple-code'. In principle it is a
numeric representation of the program, where the
individual operation is of the form:

operator, operand 1, operand 2

To sum up: the compiler front-end is written in
FORTRAN and translates PEARL-Source programs into
triple-code. lt can detect approximately 200 differ­
ent syntactical and semantical errors and identifies
them by statement number, name of object and addi­
tional information, if necessary.

During translation the following listings can be
produced on request:

- Source listing

- Cross-Reference listings for the following-
objects with their respective attributes
(e. g. ' GLOBAL')

• Variables

•Tasks

• Semaphores

• Procedures

•Labels

•Dations

- Hierarchies of procedure calls
- Process hierarchy
- Synchronization structure
- Location of variables

3.3 The Code-generator

lt produces symbolic assembly code with relative
adresses for the target processor in question. This
second intermediate layer has the disadvantage of
an additional translation step, which may cost ·some

- Linkage of the operating system components
required by the program

- Sorting of task-control-blocks nnd code
segments

18

- Output of the control sequence for the
l i nki ng l oader

3.6 Linking-Loader

This tool performs the linkag~ process proper anrl
produces absolute code. In case it cannot be taken
from the vendor's software it is delivered together
with the PEARL-System and is functionally integrated
into the pre-linker.

3.7 Modular Operating System

This is a unique feature of the DORNIER PEARL-System.
lt allows efficient use of PEARL even in the smallest
target configurations. This is achieveJ by abandoning
the concept of an underlying, more or less autonomous
and "monol i ti c" operati ng system. lt i s repl aced by
a set of routines which are automatically linked to
the application program according to its require­
ments. These routines operate on task-control-blocks,
time-order-blocks, etc. which are provided by the
compiler. Thus it was possible to reduce the size of
the operating system kernel to a mere 300 to 500
16-bit words, depending on the quality of the in­
struction set of the target processor. This kernel
includes the following functions:

- Initialization

- Dispatcher

- An exit routine, which is executed if the
system knows that there will be no task
switchin_g

time during translation, but this is more
than balanced by the advantages. So, e.g. the
assembler-listing provides an excellent means

for final compiler testing and for easy linkage
of external routines.

At the moment code-generators exist for the follo­
wing target processors:

- DORNIER-MUDAS DP 432/433

- AEG-Telefunken 80-20

- DORNIER-MUDAS DP 426 (INTEL 8086-based)

3.4 Assembler

This component is necessary for the reasons given
above. lt is fully integrated into the translator
system, bus usually adopted from the support soft­
ware provided by the vendor of the target processor.

PEARL-Rundschau, Heft 1, Band 3, April 1982

3. 5 Pre-L inker

In case the linking-loader, which is provided by
the vendor of the target processor, is not capable
of handling the multi-module structure of PEARL­
Programs, apre-linker is provided, which performs
the following-functions:

- Identification of program modules tobe linked
together

- Distribution of code into RAM or ROM

- Distribution of program modules over the
various processors of the distributed
system

- Completeness check for the definition of
global entiti es

The following functional modules can then be
added automatically according to the require­
ments of the application program:

- Clock-routines

- Interrupt handler

- Activation of tasks

- Task-termination (regular)

- Task-termination (irregular; by 'TERMINATE')

- Suspension of tasks

- Continuation of suspended tasks

- Deletion of a schedule ('PREVENT')

- Inter-processor communication

- User command interface

- Character I/0 ('GET' ,'PUT')

- Procedure entry/exit

- Array ind2xing

- Arithmetic routines for FLOAT and
DURATION types

- Comparison routines for FLOAT and
DURATION types

- Type conversion routines

- Standard functions (ABS, SIGN)

- Handling of runtime errors

If all operating system services are invoked, it
uses up to 4 to 6 K of 16-bit words, depending
on the architecture of the target processor.

3.8 Library management

In order tobe able to fully exploit the possibilities
of the modular structure of PEARL programs and to

PEARL-Rundschau, Heft 1, Band 3, April 1982

enable the user to expand his system-library by him­
self, a special library management package is

provided.

It contains the following functions:

- Inclusion of a new module

- Deletion of a module

- Listing of the Directory

- Modification of module names

3.9 Test and Integration Aids

Firstly, these include all the above mentioned
listings which are produced by the compiler and
serve as refere~ce-documents for the user during

test and integration.

Additionally there are runtime checks,which are on

request inserted into the program either by the
compiler or as operating system routines. The follo­
wing errors can be monitored:

- Array index overflow

- Division by zero

- Range Violation

Conversion errors

These runtime checks can be enabled or disabled
by the 'check/nocheck' feature.

Furthermore, several trace-routines can be built

into the code:

- Jump trace

- Subroutine trace

- Cal 1 trace

- Task trace

Another important component is the debugger,
which can be loaded together with the object
program. It supports the following test functions:

- Activation and continuation of tasks

- Set and reset of breakpoints

Output of environment information at
breakpoi nts

- Input and display of values of variables

- Exit from Debugger (and return to normal
execution of the program)

The design of this debugger allows for tv10 modes
of operation:

- Debugging on assembler level

- Debugging on source level

The first mode has already been implemented, the
second one is being designed.

4. Application of the System

This PEARL Translator system has already been

successfully used in several applications. Two
of them are completed:

- A training simulator for the anti-aircraft
tank 'Roland' (with 6 physically distributed

processors)

19

- A gust alleviation system for a light aircraft

In both projects PEARL proved highly successful and
the trc:;1slator system fulfilled the expectations.

5. References

1 Sc h n e i der, H.-J.: Modulare Software
für Flugfuehrung (Modular Software for Guidance
and Control), Dornier System, Report, June 1978.

·2; DIN 66253, Part 1, preliminary standard

Programmiersprache PEARL, Basic PEARL
Beuth Verlag GmbH, Berlin, Köln, 1981

'3- Sc h n e i der, H.-J.: PEARL-Software­

system für gekoppelte Klein- und Mikrorechner
(PEARL-Software System for distributed Mini­
and Microcomputers); PEARL-Rundschau, Vol. 1,
No. 4, Dec. 1980 (pp 3-5).

'4", Am an n, M.: PEARL für verteilte Systeme
(PEARL for distributed Systems), Informatik-Fach­

berichte 39, 1981, Springer-Verlag (pp 399-403).

5_ Graf, F.: PEARL für Mikrocomputer (PEARL for
microcomputers), Informatik-Fachberichte 39, 1981,
Springer-Verlag (pp 413-421).
- ·1
_6J Am an n, M., E l z er, P.: Das PEARL-über-
setzungssystem von Dornier System, Friedrichshafen

(The PEARL-Translator system by Dornier Systems,
Friedrichshafen), PEARL-Rundschau, Val. 2, No. 2,

March 1981.

~7] PEARL Subset for Avionic Applications; Agard
Advisory Report No. 90, Annex J, (A Study of
Standardization Methods for Digital Guidance and

Control Systems), May 1977.

[8] M a r t i · n, T.: PEARL at the Age of three;
Proceedings of 4th IEEE Software Engineering
Conference, Sept. 1979, (pp 106-109).

20

The Portable GPP PEARL System

K. lucas, Munich

1. Implemented Language Scope

The GPP PEARL compiler implementation
completely includes the proposed standard
for BASIC PEARL after DIN 66253, part. 1.
Moreover, the following language features,
which are expected tobe adapted by the
PEARL Committee to the final standard of
BASIC PEARL, are implemented:

• Fields and structures may be initialized
(invariant fields and structures must be
initialized at their declaration).

• Lists can be initialized. To this end, a
1 : 1 correspondence is used. The last

constant is us ed repeatedly if necessary.

·Dynamic initialization is allowed.

• Indicators for selectors have tobe unambi­
guous only within a structure.

• Module names are al lowed.

• The declaration of a dation can be supported
by an indexed, specified dation.

• In i nput/output statements, dati ans may be
indexed not only with integer constants, but

also with integer expressions.

• In input/output statements, data lists may
contain Slices and simple expressions (for
example, calls of function procedures).

2. Construction of the PEARL Compiler

The duties of a compiler can be coarsely
divided into an analysis phase and a syn­
thesis phase. The analysis phase comprises
the tests for syntactic and semantic
correctness of the source program. The

synthesis phase deals exclusively with the
translation of the source programs into
the intermediate language.

PEARL-Rundschau, Heft 1, Band 3, April 1982

Corresponding to this point of emphasis,
the compiler is divided into a PEARL­
oriented section - the so-called frontend
and a target machine oriented section -
the code generator - appropriate for the
target system. As a link between these
sections, an abstract PEARL machine is

provided. Its assembler is the inter­
mediate language CIMIC/P.

~
~

source language

intermediate
l anguage

. .. for example, Assembler ...
target l anguage

With this procedure, the PEARL-specific
assignments are completely taken care of.
The frontend is used in the same way in all
compilers and is therefore very well tested.

The code generators camp l ete the trans l ati on
from the intermediate language to the
appropriate target language.

The experience until now has shown that
the abstract machine can be translated
in simple and efficient ways into .very
different computer architectures.

3. Adaptation to various Process Control
Computer Systems

Normally, each process control computer sys­
tem contai ns a speci a l ly cons tructed proces,s
periphery for the assigned action.

In order to make it possible for the user
to easily adapt the compiler to various

assigned periphery systems and to the run-time

PEARL-Rundschau, Heft 1, Band 3, April 1982

functions (I/0 handlers, trigonometric functions)
tobe used with the respective target machine,
a socalled PRELUDE is provided. It contains the
required information for compilation and testing
of PEARL modules. For this, it deals with the
specifications of:

- Devices

Devices are provided according to their
application as INTERRUPT, SIGNAL, or DATION.

Moreover, an attribute is associated with
them for testing the linking in a data way.

- Procedures

Stated in this way, the application package
requires no corresponding specification,
that is, they have a "built-in" character.

- Precisions

The functions whose applicability is imple­
mentati on dependent are· defi ned for the
basic types FIXED, FLOAT, BIT and CHARACTER.

The syntax of the Prelude is oriented
essentially to the PEARL notation.
Consider the following example:

PRELUDE;

SPC

ZE 330 DATION INOUT

BIT (16) ROOT GLOBAL,

LEAF GLOBAL,

LEAF GLOBAL,

E 605 SIGNAL

INT INTERRUPT

NOW ENTRY RETURNS (CLOCK) GLOBAL,

LENGTH FIXED (15),

FLOAT (27),

BIT (1)'

CHAR (1),

PREEND;

In this case the information of the
PRELUDE is transferred to the compiler
to be taken as "system defi ned" in the
following module:

MODULE;

SYSTEM;
CPU: ZE 330;

ZERODIVIDE: E 605;

HUPE: INT* 25;

PROBLEM;

DCL F FIXED;

MODEND;

4. Program Development Support

Early recognition of errors and visual
documentation of the tested and compiled
program reduce development costs con­
siderably.

- All recognizable violations of BASIC
PEARL after DIN 66253 part 1 are
flagged.

- All error messages are p~aced as ex­
actly as possible in the line con­
cerned.

- All errors recognizable at compilation
time are identified.

- An effort is made to find as many
errors as possible in one compilation
pass. After recognition of an error,
the smallest possible error neighbour­
hood is isolated by further tests to
prevent error propagation. Only with
certain lexical or syntactic errors
it is terminated after tr,, appropriate
compilation pass.

The experience to date with the GPP PEARL
compiler shows that fast progress of pro­
gram generation is acctieved because all
statically recognizable errors are found
already at compilation, not at run time.

5. Testing Support

For the dynamic test of a PEARL program,
the Test and Service, System must be supp­
lied with information about the modules
that make up the PEARL program system. To
this end, the compiler makes

an association of identifiers
from the source program to the
memory

available.

Further, the following items in the pro­
gram list corresponding to the code are
marked:

21

22

• Definition blocks
level of nesting of ranges of
validity

• Statement blocks
level of nesting of compound state­
ments

• Flow control blocks
statements at which the flow of
control can be stopped.

These markings and the association list men­
tioned above allow for the test of a PEARL
program system using only the source program.

6. Control of the Compiler

For control of the PEARL compiler, the
following possib ilities are provided:

- Characterization of the input
Statement of the files, channel numbers, ...
that are contained in the module tobe
compiled.

- Control of the program listing.
The protocol can be limited to a section
in a module. Lines that contain errors are
printed in any case.

- Options
A name list of all identifiers with
attributes and clock membership can
otionally be generated. In the same
way, the marking for Test and Service
Support can be shown in the protocol
if desired.

7. Requirements on the Minimum Con­
figuration

The determination of the minimum confi­
guration of a computer system on which the
compiler is still capable of running can
proceed from the following requirements:

a) Auxil i ary Memory

, for the i nput of the source pro gram

• for the storage of the intermediate
and final results produced during
compilation,and

• for the storage of the BASIC PEARL

PEARL-Rundschau, Heft 1, Band 3, April 1982

Compiler in object form (for example
on magnetic discs).

b) Output device for the program listing
and for error messages (for example, nigh
speed printer, teletype ...).

c) Run area in the working memory for the
compiler (~ 20 K words of a least 16
bit length).

8. Existing Components of the Compiler
System

The compiler system consists

- in essence of the translator itself, the
so-called frontend of the compiler. lt
fullfils all language oriented translation
work and compiles into the intermediate
language CIMIC/P

- of a growing number of code generators.
These take up the translation of CIMIC/P
into the assembler of the target system
in use

- of a consistency check program. This program
is checking the global references of all
modules of the program for completeness and
compatibility in view of the PEARL semantics.
The consitency check program also takes these
visibilities into nccount which may occu,
in sequented programs. After this check error
free PEARL-program systems can be processed
further-on with the target computer dependent
linker.

At present, the PEARL compiler system is available
for the following equipment:

SIEMENS 330

INTERDATA 7/32

DATA GENERAL NOVA

POP 11

VAX (in preparation)

SIEMENS 7.531

Runnable PEARL programs can be produced at
present for the following target processors:

PDP-11/03/23

INTEL 8086

MICRONOVA

PEARL-Rundschau, Heft 1, Band 3, April 1982

In general, the compiling computer (host
machine) is not associated with one particular
target computer. Instead, they are mutually
interchangeable, that is, on each of the given
compiling computers the PEARL compiling system
for one of the given target computers could be
installed. The actual availability is shown in
the following table.

Compiling Computer
(Host Machine)

DATA GNERAL NOVA -

INTERDATA 7/32 -

PDP - 11/23/34

VAX

SIEMENS 330

SIEMENS 7531

X

ld

X

X

X

X

ff)

X

X

ic) = i npreparati on
X

X

X

arget omputer
PDP-11/03/23 INTEL 8086 MICO NOVA

9. Services

Form of Delivery

The compiler system is delivered in the
target code of the host computer tobe
used.

Training material

Training will be given as desired

P.

User handbooks

Good documentation of the compiler
systems relating to

Description, Construction,
Work methods and usage

is available.

Maintenance and Further Development

t'.ai ntenance and further deve l opment
of the compiler system is assured and
done by GPP, based on central procedures.

10. References to Implementations

BGT Bodenseewerk
Gerätetechnik GmbH
Oberlingen

Lehrstuhl für ange­
wandte Informatik
Transport und Ver­
kehrssysteme,
Universität Karlsruhe

Standard Elektrik
Lorenz AG
Stuttgart

VFW Vereinigte Flug­
technische Werke
Fokker GmbH
Bremen ·

PEARL for
fl i ght control

Test and Service
System for
PEARL

PEARL for
spacelab
applications

PEARL for
fl ight control

23

24

Tue Siemens PEARL Compiler System

Dipl.-Math. H. Schoknecht, Dr. rer. nat P. Rieder, Karlsruhe

1. L&nguage Subset Implemented

The language subset implemented cavcrs

Basic PEARL with the following supplel'lents,

all language elements from full PLARL:

- initialization of arrays and structures

- more than three dimensions for arrays

- arbitrary lower dimension bound of

arrays (also negative)

- assignements of complete arrays and

structures

- multiple assignment is allowed

- operators LWB, UPB also monadic

- bit and character group selection

(also on the left side of an

assignment)

- with task operations schedule lists

are allawed

- ACTIVATE with priarity parameter

- Modula function (REM) is implemented

- String assignments with cutting aff

(with output af a warning)

- TOFIXED far CHAR (2)

- TOCHAR far FIXED (7)

- B2 format is allowed

- for the following short forms, the

carresponding lang forms are also

permitted:

CHAR CHARACTER

DECL DECLARE

DUR DURATION

IDENT IDENTICAL

INIT INITIAL

IRPT Il'iTERRUPT

PRIO PRIORITY

PROC PROCEDURE

SPC SPECIFY

PEARL-Rundschau, Heft 1, Band 3, April 1982

2. Brief Description of the Compiler

Technology Applied

2.1. Integration into the System Software

Considering the later introductian of the

PEARL Compiler as a product, fram the be­

ginning importance was attached to its full

integration inta the line of products of

the development system for the 300/16 bit

computer family (/1/, /2/, /3/). This lead

to the following objectives:

- Pragramming of the PEARL compiler in

the available programming languages,

the ASS 300 assembly language and the

MECO 300 syntax analysis language, which

the maintenance department is already

well aquainted with.

- Generation af the object code GS 300,

the representation af the machine

language of the 300/16 bit computer

family, suitable far further processing

through linkage editors and loaders.

- Compilation af the modules fram source

language libraries into object code

libraries conform with the module and

library structure required by the available

utility programs of the 300/16 bit computer

family.

- Possibility of linking the madules

produced by the PEARL compiler to other

GS 300 madules.

- Executability of the compiler as a back­

graund program in a limited partition

of 17 Kwords (16 bit word length).

- Executability of the campiler and af

the programs compiled by it under

the cantrol of the ORG 300 standard

operating system.

PEARL-Rundschau, Heft 1, Band 3, April 1982

2.2. Promotion of the Acceptance by

the Users

and contains, in short, the following

characteristics (/4/, /5/, /12/)

25

Important criteria for the compiler design - 17 Kwords partition

also resulted form the objective to promote - lexical analysis by a finite automaton

a positive user attitude towards the new - division of the syntactic and semantic

product by means of an efficient implementa- analysis into four passes:

tion. This lead to the following demands: processing of the system division

declarations, statements and identifier

- high compilation speed despite of parti­

tion limitations.

detailed and exact compiler messages, in­

forming on the type and the location of the

error discovered.

- high efficiency of the object code

generated by means of full use of the in­

struction set of the 300/16 bit computer

family without an additional optimi­

zation pass.

- integration of high performance runtime

test aids into the PEARL compiler system.

- error recognition, if possible at com­

pile time (thorough type testing)

- differentiated processing of inner and

outer events (signals, alarms).

2.3. Characteristics of the Realization

The Siemens ?EA~L Compiler PC 30 was

realized as an 8 pass co~piler (see Fig.1)

Lexical
Analysis

(ASS300)

Analysis of identi­
fier definitions
(MEC0300)

List construction
and· elimination
(ASS300)

Analysis of statem.
RPN production
(MEC0300)

Expression trans­

(ASS30Ö) lation

Testinformation
expansion

(ASS300)

S~tStem d•ivision

-~WctYllö~0 n

GS production end
listina

ASS30'0

Fig. 1: Passes of the PEARL compiler

elimination. The interface between the

passes is a common intermediate language,

requiring few additional tables.

The syntax analysis is implemented accor­

ding to the syntactic functions method

(Glennie syntax machine). Dead ends are

avoided by additional bottom-up ele­

ments.

code generation is implemented accor­

ding to the principle of a stack

machine whose first two elements are

kept in two register sets. (On principle,

the right operand is evaluated before the

left one).

- the last pass performs the output of the

object code and the listing.

3.

If errors are discovered, they are reported

in form of a detailed message where they

occurred.

the PEARL source language is directly

converted into the object code

(300-700 source language lines per minute).

Existing Components of the Siemens

PEARL Compiler System

3.1. Structure of the Siemens PEARL Compiler

system

The structure of the compiler system is to

meet the requirements of a high compilation

speed and a simultaneous limitation of the

available partition. Therefore, the compiler

was conceived from the beginning as a

multiple pass compiler. Three passes are

used for compiling the system division,

six for the problem division to output

machine code of the 300/16 bit computer

family. In the test mode of the compiler,

a seventh pass, preparing the test aid

information, is executed on compilation

of the problem division. The first and

26

the last compilation steps are identical

for system division and problem division.

Therefore, the compilation is performed in

.8 passes (see Fig. 1, /6/, /7/).

3.2. Integration into a compilation

system

To produce and execute PEARL programs,

several other programs are required

apart from the compiler (see Fig. 2).

These programs, however, are not PEARL

specific but generally applicable utility

programs of the 300/16 bit computer family,

namely,

- the text editor (MEDIS) for writing and

correcting of PEARL source texts.

- the linkage editor (BD 30) for linking

PEARL modules together and for linking

them to modules of the PEARL run time

system or sometimes to modules not written

in PEARL, e.g. to assembler procedures.

- the loader of a (standard) operating

system for loading of the GS modules

produced by the compiler and the pro­

duction of address references beyond

module boundaries.

The entire production path can also be

controlled by service masks of the TESEUS

software development system.

To execute PEARL programs, the PEARL run

time system is necessary apart from

a suitable operating system. It contains,

in form of procedures, all these instruc­

tion sequences and data which, due to their

length, are not directly inserted in the

code generated by the compiler, but which

are addressed via procedure calls.

.. ------
' ' 1
1

____ }_ ____ ,
FORTRAN- l
Compi !er :
FC30 :

----,-----'
1
1
1

' ' "-------

PEARL-Rundschau, Heft 1, Band 3, April 1982

Editor

MEDIS

Utility

-----------~ ~rogram -------~ DIPOS

PEARL­
Compiler
PC30

Linkage
editor

8D30

ORG 300-

loader

Program
partition

1

' 1 :-____ J ____ _
: Assembler
: AS30

' ' '-----,-----
' 1
1

: Utility
______ J program

--------.; DIPOS

Ohject
cofe
library

Utility
program
DIPOS

Utility
_______ __,__, program

DIPOS

Fiq. 2: Production path for PEARL p~ograms

- kernel routines for input and output,

especially in binary, unformatted form.

- routines for positioning during input

and output.

- routines for realization of the GET

statement

- routines for realization of the PUT

statement

- routines for input and output into files.

These compound modules can be either linked

to PEARL programs or loaded as common code.

Most procedures of the run time systemare Besides the compound modules, there are about

reentrant and therefore, they must be kept 40 reentrant small driver routines which

in memory only once. To facilitate handling, generally are only linked to the task re­

most of them were collected in the following quiring them. For the few non-reentrant

eight compound modules: run time routines (e.g. the task start rou­

tine), the only possiblity to make them

- elementary routines as e.g. routines available is by linking them to the calling

for block entry, registration of a signal task. For interrupt servicing about 120

reaction, array addressing etc. standard signals divided into 4 reaction

mathematical functions such as sine, classes and 8 different error classes are

cosine etc. at the user's disposal.

PEARL-Rundschau, Heft 1, Band 3, April 1982 27

3.3. Testaids 5. Form of Delivery, Training Material,

User Manuals, Maintenance Services

The existing high-performance run time

test aids make use of the information

prepared during the test pass and perform Form of Delivery

the following dialogue-controlled functions: The PEARL cornpiler together with the

library is delivered on a disc as a seg-

- listing the numbers of the lines exe- mented prograrn ready for loading.

cuted

- lines numbering for the error location

in the case of a run time error

- unconditional stops at eligible line

beginnings

- stops at eligible line beginnings,

depending on the value of a variable

- testing and changing of the value of

variables.

In the source language listing, the error

messages of the compiler are output at

the place where they appeared.

4. Host Computersand Target Computers

There is no distinction between hast

computers and target computers, since cross­

compilation is not necessary.

Host computers and target computers

may be:

Siemens 330, R10, R20, R30, R40

Configuration for compilation

- console device

- printer

- 17 Kwords partition for the compiler

- 195 Kwords minimum swapping area on disc

Configuration for target computers

- standard peripherals and process

peripherals as applicable (in parti­

cular console device, printer, disc,

graphic CRT terminal, paper tape,

process signal interface).

Training Material

Siemens offers a two-weeks training-course

on the language PEARL.

User Manuals

A user manual as well as a short description

for the experienced user are available

order number (P71100-D3010-X-X-35). Besides

the language description these manuals in­

clude the directions for use of the

compiler and a detailed error and signal

description.

Maintenance Services

The customer has a 12 month warranty on

the functioning of the compiler system.

6. References and Applications

The first PEARL compiler system was released

in January 1978 (/8/).

Since then, three further product releases

were realized. They had become necessary due

to our field experience. They cover the

enhancements according to the users'

suggestions (/9/, /10/, /11/).

References, state 9/81

(The PC 30 has been available since 1978)

Industry:

0BAG

Bayer AG

MBB

SDR

GEW

Berufsförderungs­

werk

Battelle

BWB

Regensburg

Krefeld

0ttobrunn

Stuttgart

Köln

Heidelberg

Frankfurt

Eckernförde

28

Verbundwerke

Haus Aden

DFVLR

NDR

EWAG

Raubach & Co

0beraden

0berpfaffenhofen

Hamburg

Nürnberg

Freiburg

Colleges:

Stuttgart, Berlin, Karlsruhe

Göttingen, Darmstadt, Dortmund

PEARL-Rundschau, Heft 1, Band 3, April 1982

/5/ Dorn, M., Wenzel, T.: Prozeßsprache

PEARL 300 für die Siemens-Systeme

300, Siemens-Zeitschrift, Band 52,

s. 23-27 (1978).

/6/ Siemens Erlangen (1980), Uber­

setzungsprogramme: PEARL 300. Best.

Nr.: E-36/2205.

/7/ Siemens Karlsruhe (1980), PC 30/

PEARL 300: Compiler für PEARL, Pro-

Internal References: grammbeschreibung. Best.Nr.:

Application in several areas P71100-D3010-X-X-35.

7. Literature References

/1/ Rieder, P.: Effiziente PEARL-Imple­

mentierung für den PR 330, Informatik

Fachberichte, Band 7, S. 173-183,

Springer-Verlag,

Berlin/Heidelberq/New York 1977

/2/ Degelow, L., Gottwald, H.-J.,

Schoknecht, H.: Stand der PEARL Ent­

wicklung. Tagungsbericht der 8. Jahres-

/8/ Bamberger, K.-F.: Das PEARL-Kompi­

liersystem für die Siemens 300-16 Bit.

PEARL-Rundschau, Band 1, Nr. 1,

S. 49-64 (1980).

/9/ Struhulla, D.: Erfahrungen mit BASIC­

PEARL im Projekt Netzleitstelle Deggen­

dorf. PEARL-Rundschau, Band 1, Nr. 2,

s. 13-22 (1980).

tagung des Siemens Anwenderkreises, /10/ Weber, H.: Einsatz von PEARL bei der

S. 73-89, Fachhochschule Dortmund, 1977 Software-Entwicklung für eine Fla-

/3/ Schoknecht, H.: PEARL 300: Kompilier­

system und Verwendung für Echtzeit­

aufgaben. Tagungsbericht der 9.

Jahrestagung des Siemens Anwender­

kreises, Bericht KfK 2642, S.161-175,

Ges. für Kernforschung mbH, Karlsruhe,

1978

Schließplatz-Automatisierung.

PEARL-Rundschau, Band 1, Nr. 4,

s. 26-31, (1980).

/11/ Mayr, U.: Funktion und Aufgaben der

Netzleitstelle Deggendorf, PEARL­

Rundschau, Band 1, Nr. 2,

s. 3-12, (1980).

/4/ Gottwald, H.-J., Schoknecht, H.: PEARL, /12/ Rieder, P.: Implementierung eines

eine leistungsfähige Echtzeit-Program­

miersprache. Regelungstechnik S. 23-27

(197 8)

PEARL-Compilers, PDV Entwicklungs­

berichte E 148, Ges. für Kern­

forschung mbH, Karlsruhe, 1980.

PEARL-Rundschau, Heft 1, Band 3, April 1982

The Portable PEARL Programming System of WERUM

Dr. Hans Windauer

1. lmplemented Language Features

The implemented subset contains Basic PEARL

(DIN 66 253, Part 1) and in addition the following language

features of Full PEARL (DIN 66 253, Part 2).

Data Types

REF

User defined types (TYPE)

BOLT

Arrays with elements of type SEMA, BOL T, REF,

user defined DATION, STRUCT, user defined type

(TYPE)

Arrays with more than 3 dimensions

Arrays with lower bounds ~ l

Structures with components of type array, STRUCT,

REF, user defined type (TYPE)

B2 bit strings.

Declarations, Specifications, Definitions

Modules may be identified (e.g. MODULE (TEST))

Global attribute with module identifier (e.g. . ••

GLOBAL (TEST))

Definition of new data types (TYPE)

Declaration of new operators (OPERATOR) with

precedences (PRECEDEl'CE)

Declarations and specifications may be made in

arbitrary sequence

Local procedures, i.e. declaration of procedures

also within tasks, procedures, blocks and loops

Objects of type SEMA, BOL T, IRPT, SIGNAL,

REF and user defined type (TYPE) may be para­

meters of procedures

Objects of type REF, STRUCT and user defined

type (TYPE) may be results of function proce­

dures

Lang forms of INIT and IDENT : INITIAL ,

IDENTICAL.

Statements

Values of reference variables and character string

slices at the left side of assignments

(e.g. STRING.CHAR (J) := 'N' ;)

The schedule of an activate statement may be

combined with a frequence and/or AFTER duration

(e.g. WI--EN interrupt AFTER duration

ALL duration DUR.ING duration

ACTIVATE task;)

SUSPEND for other tasks

CONTINUE with priority change

Lists of SEMA variables after REQUEST and

RELEASE

BOLT statements ENTER, LEAVE, RESERVE,

FREE

Lists of BOLT variables in bolt statements

TRIGGER statement.

Expressions

Slices of character strings, variable slices of strings

(e.g. X:= INPUT.BIT (I: I + 3);

OUTPUT.CHAR (J) := STRING.CHAR (K);)

Dereferenciation (CONT)

Conditional expression

(e.g. A := IF B <l THEN B ELSE C FIN;)

Monadic operators L WB and UPB.

Input / Output

STRUCT, user defined type (TYPE) and ALL

may be transfer item type

Arrays of user defined data stations

Open parameter CAN, PRM

Close parameter CAN, PRM.

System Division

Arbitrary sequence of connections

Inverse notation of connections

29

30

Identifier and / step possible after * in connection

points.

The subset characterized here is implemented completely

in the (portable) compiler of WERUM. There can be

restrictions in the various implementations of the run

time system an some target computers by reasons of

size. E.g., signal handling and file handling are restricted

an Siemens 404/3 (64 KB).

2. Olaracterization of the Compiler Technology

The portable PEARL compiler of WERUM consists

of an analytic part ("front end") translating PEARL

programs to the computer independent intermediate

language ILl, and a code generating part ("code gene­

rator") transforming PEARL programs from their ILl

representation to target code (normally assembler or

BRF, i.e. binary relocatable format). The front end is

computer independent and therefore programmed only

once; the computer dependent code generators have to

be developed for any type of computer where PEARL

programs are to be executed.

PEARL

PEARL compiler

front end

Ill

code generator 1 r:ode generator n

target code

computer 1

target code

computern

The front end and the code generators are programmed

in GBLl, a proper subset of PL/I. GBLl programs can also

be translated to ILl by a front end GBLl- ILl. By means

of this front end and the corresponding code generator

the PEARL compiler front end and the code generator

itself are translated to the target code (assembler or BRF)

of the target computer.

This compilation is normally performed an one of the

production computers of WER UM where the GBL 1 compiler

is implemented (Siemens 330 and NORD 10 S).

PEARL-Rundschau, Heft 1, Band 3, April 1982

PEARL compiler

- front end and

- code generator

in GBLl code

GBLl

compiler

front end

PEARL compiler

- front end and

- code generator

in !Ll code

code generator

PEARL compiler

- front end and

- code generator

in target code

Therefore, the PEARL compiler can be implemented an

target computers not having a PL/I compiler.

Of course PEARL specific run time routines and operating

system functions have to be implemented too an the target

computer in order to execute PEARL programs there.

The PEARL compiler can be also used for cross compilation :

by reason of the characterized compiler technology it can

be installed on every computer having a code generator or

a PL/I compi!er able to translate GBLl programs, e.g. IBM

or Siemens 7.760.

In addition the PEARL compiler can be transported to

FORTRAN or PASCAL computers via a transformer from

ILl to ANSI-FORTRAN or PASCAL in order to work for

this FORTRAN or PASCAL computer or tobe used there

as cross compiler for other target computers.

3. Existing Components of the PEARL Programming System

The portable PEARL programming system of WERUM consists

of the following components:

Compiler (front end and code generator)

Kernel of the PEARL operating system

Run time package for binary and process I/O

Run time package for formatted I/O

Symbolic debug system

Real time data base system.

PEARL-Rundschau, Heft 1, Band 3, April 1982

Up to now the run time routines for PEARL specific

arithmetics, operators for bit and character strings,

procedure organisation, array handling etc. were implemen­

ted computer dependent.

In case of HP 1000 a portable PEARL specific linker was

implemented by the Technical University of Berlin in order

to check the interfaces between the modules of the PEARL

program.

Besides this, standard components of the target computer

are used.

3.1 Compiler

The PEARL compiler translates PEARL programs to

assembler or BRF. Because of its modular structure it

only needs a segment of 50 KB to run; therefore it can

operate on small computers. In spite of this it is able to

translate "arbitrary" big programs.

The handling of the various compiler parameters

corresponds to the handling of the other compilers of

this computer.

Beside other functions, these parameter can be used

to produce listings of the source program and of the

translation result. In the assembler listing or BRF Usting

references to the corresponding source lines are included.

In addition the compiler produces a cross reference !ist

of all objects of the program showing their source lines

of definition and use.

By compiler parameter index checking and reference

checking may be switched on or off.

The compiler analyses programs thoroughly and exactly.

The error messages consist of a text together with a

reference to the source line causing the error.

A preprocessor allows to include program pieces from

text files (%INCLUDE) and to compile conditionally

(%IF).

The evaluation of the system parts of PEARL programs

is driven by a so-called configuration !ist describing all

configuration possibilities of the target computer. If

these possibilities are to be extended, e.g. when adding

a new peripheral device, this configuration can be

adapted easily by the user himself. The compiler reads

the configuration dynamically for any compilation; this

is necessary in case of several cross compilations for

different target configurations.

On request an optimizing version of the compiler is

available performing the following optimizations when

setting the corresponding parameter:

Addresses of components of structures and referenced

objects are kept as lang as possible in order to avoid

more than one address calculation for identical

objects.

Common sub-expressions are calculated only once.

No index calculation at run time for fixed array

indices.

The compiler is programmed in GBLl, a proper PL/I

subset.

3.2 Kernel of the Operating System

31

WERUM has developed a portable kerne! of a PEARL

operating system, called BAPAS-K, for the PEARL spe­

cific organisation and_ execution of tasks, their synchroni­

sation and process I/0. BAPAS-K is programmed computer

independently in GBLl; therefore this kerne! can be

transported automatically to the target computer where

;ts open interfaces are closed by hand.

BAPAS-K can be added to an existing hast operating

system; it can also operate without any hast operating

system.

3.3 Run Time Package for Binary 1/0

The run time package BAPAS-FILE contains all run

time routines necessary for the PEARL specific organi­

sation of files and execution of READ and WRITE state­

ments. The interface of these computer independent,

portable routines to the target computer consists of

suitable control blocks and driver calls.

BAPAS-FILE is programmed in PEARL; therefore it

can be transported automatically by the PEARL com­

piler to target computers.

3.4 Run Time Package for Formatted I/0

Analogously to BAPAS-FILE the run time package

BAPAS-FORMEA contains all computer independent

run time routines necessary to execute PUT and GET

statements according to the PEARL semantics.

BAPAS-FORMEA is programmed in PEARL; therefore

it can be transported automatically by the PEARL com­

piler to target computers.

3.5 Symbolic Debug System

The symbolic debug system allows to test interactively

PEARL programs by use of PEARL like commands on

hast and target computers. It is programmed portable

in GBLl and PEARL.

32

Version 1 for Small Target Computers

The first version offers the following possibilities an

PEARL level:

Une trace

Breakpoints at lines

Display of values of variables.

This version is already implemented an HP 3000,

NORD 10/100 and Siemens 330.

Version 2 for Medium Target and Hast Computers

The second version offers the following possibilities

an PEARL level:

Une, labe! and call trace

Breakpoints at

- Unes and labels

- Entries and exits of tasks and procedures

Display and change of values of variables

Display and change of states of tasks, semaphores

and bolts.

This version can be installed an hast target computers

with 128 KB and more. When being installed an a hast

computer the PEARL operating system of the target

computer and the time scale are simulated (by means

of BAPAS-K) in order to handle tasks in the right

sequence.

Version 2 is already implemented an HP 3000,

NORD 10/100 and Siemens 330.

Version 3 for Hast Computers

The third version has been developed for hast computers.

In addition to version 2 it contains the following aids:

Simulation of the run time behaviour of the target

computer an statement level

Simulation of the I/O of the target computer by

means of

Dialogue with the user

- Anti tasks

- Files with test data

Breakpoints at

Time events (analog to PEARL schedules)

- Interrupts

- I/O statements

Deadlock analysis

Interrupt statements.

Version 3 is already implemented an HP 3000, NORD 10

and Siemens 330.

PEARL-Rundschau, Heft 1, Band 3, April 1982

3.6 Open Real Time Data Base System

In order to support the use of PEARL in automation

systems with data base oriented problems WERUM has

developed the open real time data base system BAPAS-DB

allowing PEARL tasks and users (via terminal) to access

common data concurrently. Important features of

BAPAS-DB are:

Interactive Data Description Language DDL for

the data base administrator.

Interactive Query Language QL for users.

Data Manipulation Language DML to access the

data base in PEARL tasks independently of the chosen

access strategies.

Concurrent access by users and PEARL tasks with

implicit synchronisation an record level.

Different data sets may be accessed by different

access strategies.

Access strategies can be exchanged or added without

changing the interfaces·to DDL, QL and DML.

(The system is open.)

By reasons of these properties BAPAS-DB can be used

very flexible in automizing technical processes or it can

be adapted to meet special requirements in parallel to

the production of the application software.

DDL, QL and DML offer the following functions:

Data Description Language DDL

Data Base Level

- Creation and deletion of data bases

- Definition, modification and deletion of access

rights

- Definition, modification and deletion of admini­

stration data

Data Set Level

- Creation and deletion of data sets

- Definition of the structure of the records of

a data set

- Definition, modification and deletion of access

rights

Access Strategies

Introduction of new access strategies

Attaching access strategies to data sets.

Query Language QL

Searching records satisfying given conditions which

can be complex logical combinations of all components

of the records.

PEARL-Rundschau, Heft 1, Band 3, April 1982

In this sense BAPAS-DB is a relational data base

system.

Output of found records to terminal, printer or data

sets.

Update of records.

Deletion of records.

Insertion of new records.

Data Manipulation Language DML

Specification of data sets of the data base.

Searching records satisfying given conditions which

can be complex logical combinations of all components

of the records.

Use and update of found records.

Deletion of found records.

Insertion of new ,·ecords.

By standard, BAPAS-DB contains access strategies for

sequential (UFO, FIFO) and direct access (Hash, B*­

Tree) together with functions for recovery and chaining

data sets. lt is programmed portable in GBLl and PEARL.

Installations have been made on NORD 10, Siemens 330

and Siemens R 30.

The development of BAPAS-DB has been sponsored by

the German Ministry for Research and Development

wi thin the projects PDV /PFT of Kernforschungszentrum

Karlsruhe GmbH.

4. Computers where PEARL Programs Can Be Translated

The PEARL cornpiler is imple'Tlented on the following

computers:

Amdahl 4 70/ 6

Hewlett-Packard HP 1000

Hewlett-Packard HP 3000

Norsk Data NORD 10 S and NÖRD 100

Siemens 310 and 330

Siemens R 30

Siemens 7.760

Siemens 404/3.

The implementation for

Intel 8086

is in preparation. The compiler can be transported to

PL/I, FORTRAN and PASCAL computers without producing

a new code generator.

Number of installations: more than 25.

5. Computers where PEARL Programs Can Be Executed

The compiled PEARL programs can be executed on the

following compufers:

Hewlett-Packard HP 1000

Hewlett-Packard HP 3000

Intel 8086

Norsk Data NORD 10 S and NORD 100

RDC (Really Distributed Computer Contra! System

of the Fraunhofer Institute IITB, Karlsruhe)

Siemens 310

Siemens 330

Siemens R 30

Siemens 404/3

The following table shows the variant possibilities of

installations. In this table, x means that this version

is insta!led, and o means that this version can be installed

in short time.

Compilation

Siemens 404/3 X

Siemens 7.760 0 0 0 0 X X X X

Siemens R 30 0 0 X 0 X X X X

Siemens 330 X X X X X X X X X

Siemens 310 X X

NORD 10/100 0 0 0 X 0 0 0 0

HP 3000 X X 0 0 0 0 0 0

HP 1000 X

Amdahl 470 0 0 0 0 0 0 0 0

Execution

0 0
I'\

0 0 0 I'\ :;;:-..... I'\ 0
\D

..._
I'\ I'\ D:'.'. -<t 0

0 0 CO Cl) Cl) Cl) Cl)
0 0 0 C C C C
0 0 CO 0 Ql Ql Ql Ql I'\ "iii D:'.'. u E E E E
0.. 0.. 0 0 Ql Ql Ql Ql

I I .s z D:'.'. üi üi üi üi

6. Conditions

6.1 Form of Delivery

The programming system can be delivered partially or

at whole on magnetic disk, tape or floppy disk in the

33

form generated by the code generator, FORTRAN,

PASCAL or PL/I compiler. Sources and technical documen­

tation can be delivered on request.

34

6.2 Training, Documentation

The implemented PEARL subset is described in

PEARL Language Reference Manual

Reg. FB 141/8008. WERUM, Lueneburg.

This manual is also published as book:

Wulf Werum, Hans Windauer

Introduction to PEARL

Process and Experiment Automation

Rea!time Language

Description with Examples

Braunschweig: Vieweg 1982.XI, 183 S.

ISBN 3-528-03590-0.

General or computer dependent user manuals and training

courses are available on request.

6.3 Guarantee, Maintenance

The guarantee time is one year after acceptance.

Afterwards a maintenance contract is offered containing

fast removing of errors and deli very of re!eases.

7. References

Amdahl 470/6: GRS, Garching: Safety related analysis.

HP 1000: Technical University of Berlin: Process

and experiment automation.

HP 3000: IRT, Munich: Development of software

for broadcasting / television purposes.

Intel 8086 :

NORD 100:

NORD 10 S:

RDC:

Siemens 310:

Siemens 330:

Siemens R 30 :

PEARL-Rundschau, Heft 1, Band 3, April 1982

IITB, Karlsruhe: Process control.

Halden Reactor Project, Halden, Norway:

Disturbance analysis system, re!iability

investigations.

Technical University of Braunschweig:

Contra! of a data base machine.

WERUM, Lueneburg: Development

of systems software.

IITB, Karlsruhe: Process control,

programming of industrial robot systems.

Thyssen AG, Duisburg: Process control

in steel factories.

IITB, Karlsruhe: Development of process

control software.

IITB, Karlsruhe: Cross compilation

for RDC.

WERUM, Lueneburg: Development of

systems software and process control

software.

IITB, Karlsruhe: Development of process

control software, implementation of a

software engineering environment for

process control engineers.

Siemens 404/3: Erprobungsstelle 71 der Bundeswehr,

Eckernförde.

DFVLR, Oberpfaffenhofen: Experiment

automation.

Siemens 7.760: IITB, Karlsruhe: Cross compilation for

RDC.

PEARL-Rundschau, Heft 1, Band 3, April 1982

lndustrial Applications of PEARL

Dr. H. Steusloff, Karlsruhe (11TB)

Summary

The value of a programming languags may only

bs dstsrminsd by application sxpsrisncs. Ths

languags PEARL (Procsss and Experiment Auto­

mation Rsaltime Languagsl [1 J has bssn dssign­

sd to bs an application programming languags

for all kinds of rsal-tims systsms. To show

ths potential of this languags, four applica­

tions from different arsas will bs dsscribsd

in ths following. Ths different applications

covsr industrial procsss control (automation

of soaking pit furnacss, control of power uti­

lity nstwork), an industrial data communica­

tion nstwork and ths on-line coordinats trans­

formation for an industrial robot systsm.

1. Control of 2B Soaking Pit Furnacss by a

Distributsd Microcomputsr systsm, Programm­

ad in PEARL

Ons of ths big Gsrman stssl companiss, ths

THYSSEN AG at Duisburg, FRG, dscidsd to rs­

placs ths analog control instrumsntation of

thsir soaking pit furnacss by a distributsd

computsr control systsm. Sincs IITB had ds­

vslopsd a DISTRIBUTED MICROCOMPUTER SYSTEM

(RDC-Systsm) for industrial applications,

including a MULTICOMPUTER-PEARL-programming

systsm, a coopsration was sstablishsd to per­

form an industrial pilot installation of this

systsm.

Soaking pit furnacss ars ussd for ths (rs)hsat­

ing of stssl ingots to an uniform tsmpsraturs,

ready for milling. Ths furnacss ars hsatsd by

gas (usually blast furnacs gas) and contain up

to sight ingots of about 10 tons sach. Each fur­

nacs rsquirss ths control of four valuss:

furnacs (ingot) tsmpsraturs

furnacs prsssurs

psrcsntags of oxygsn in ths combustion gas

tsmpsraturs of ths sxhaust gas

35

Ths controllsd variables ars ths combustion air

flow, ths gas/air flow ratio, ths sxhaust gas

flow and ths flow of cooling air. All of thsss

controlloops should bs opsratsd by dirsct digi­

tal control (DDC).

Ths rsquirsmsnts for this projsct wsrs dsfinsd

as follows:

control of 2B indspsndsnt furnacss

one csntra1 control-room systsm

high control accuracy rsquirsd

high availability of ths control systsm

rsquirsd

opsn systsm rsquirsd

high flsxibility of furnacs opsration.

Th& following spscial rsquirsmsnts had to bs

mst dus to spscial propsrtiss of ths fur­

nacs procsss:

adaptive control nssdsd dus to

changss in ingot status (s.g. cold/hat)

changss in ths hsat squivalsnt of ths

hsating gas

changss in furnacs opsration mods

fast rsacting control: low time constants

of gas hsat squivalsnt and prsssurizing fans

highly disturbsd msasursd valuss for most

procsss data (oxygsn, prsssurss, gas flowl

rsquirs fast digital filtsring

rsmots push-button contro 1 of gas and air

valvss via ths csntral opsrator pansl sys­

tsm, ovsrriding ths local DDC control

safsty control of furnacs opsration to bs

intsgratsd into the DDC-systsm.

An outlins of ths distributsd microcomputsr

systsm is shown in fig. 1.

36

FIELD DEVICES

AUXILIARY
OPERATOR
PANEL

Break toleratlng bualln•

Decentrallzed communlca.Uon

Documentatlon,Pro11rammln11 Proceu operat1n11

Perlph.

Dlatrlbuted Procesa Control Computer System

RDC (11TB)

Each of tha soaking pit furnacas is auto­

matad by ona microprocassor station (MCS).

Each MCS is aquippad with a procass control

microprocassor (P;uP), a sat of procass I/0-

davicas, adaptad to tha raquiramants of tha

corrasponding furnaca and a communication

microprocassor (L;uP). As a cantral unit of

aach MCS, fig. 1 shows an intarnal bus-switch

with tha ability of connacting or saparating

tha thraa intarhal partial bussas to tha I/0-,

tha P;uP- and tha L;uP-unit. This bus-switch

unit (BSU) also contains tha MCS arror datac­

tion unit and switchas tha partial bussas

according to tha actual arror conditions. Oua

to thasa faaturas, tha RDC-systam is fault

tolerant, amploying tha principla of dynamic

radundancy. To activata this radundancy in a

dacantralizad mannar, all status information

is communicatad to all MCS.

Tha nacassary high transmission rate on tha

communication buslina has baan achiavad by

an optical fibar lina with a 350 Kbits/sac

PEARL-Rundschau, Heft 1, Band 3, April 1982

astablishad by this powarful communication

link togathar with arror dataction aquipmant

in aach MCS, alternative data ways and ovar­

dimansionad aquipmant in aach MCS, as wall

as soma spare processor-tima of the micro­

CPU's.

Thara ara two spacial computar stations in

tha systam. Tha first ona (lowar right hand

sida in fig. 1) is usad for procass-oparat­

ing and is aquippad with two color-scraan­

input/output-systems, amploying light-pens

and virtual kayboards for tha command input.

This systam sarvas for oparating 2B furnacas

as wall as for suparvising tha corrasponding

2B distributad computar stations MCS and

thair communication.

On tha lowar left hand sida, fig. 1 shows

tha programming and documantation systam.

Both systams ara connactad by communication

links and cross-ovar-switchas for the pari­

pharal units. Tha programming systam sarvas

as dynamic radundancy for tha procass-oparat­

ing systam.

Tha softwara systam within aach MCS, com­

pletaly wri ttan in MUL TICOMPUTER-PEARL, [2],

consists of a local PEARL oparating systam,

a natwork oparating systam and tha PEARL appli­

cation programs. MULTICDMPUTER-PEARL aspacial­

ly supports tha programming of distributad

systams by adding structural dascription of

hardwara and program systams as well as I/0-

dataways to PEARL. Tha application programs,

comprising adaptive and fast raacting DOC

(min. sampling time 100 msec), consist of B

MODULES, containing 24 TASKS and 26 PROCEDURES.

This modularization was nacassary, bacausa

threa programmars wara working on tha softwara

project in parallel.

The structuring faaturas of PEARL vary wall

supportad this taam work. Espacially tha usar­

dafinad data typas and tha afficient accass

to thasa data via REFERENCES provad to ba vary

valuabla. Tha possibility of dafining arrays

of structures allowad a vary clear and documan­

tation supporting layout of tha data basa for

the cantral control-room systarn. Tha ambaddad

transmission rate and a ring-shapad structura. PEARL-featuras for I/0, tasking, scheduling

•ynamic, "function-sharing" radundancy is and synchronization togathar with the MULTI-

PEARL-Rundschau, Heft 1, Band 3, April 1982

COMPUTER-PEARL extensions, decreased the cod­

ing effort. Concerning the PEARL-application

programs (36 KWords), we believe that we saved

up to 40 % compared with ASSEMBLER-programming.

At present, the planned 28 soaking pit furnaces

are under computer control, and we can sum up

the experiences. The control of the furnaces

has been improved substantially, compared with

analog controli the main reasons ars adaptive

controllers and digital filtering of the pro­

cess signals. The improved control also re­

sults in saving of heating snergy. Another ad-
1

vantage of the new system is the availability

of all furnace status information in the con­

trol-room via the color-screen-input/output­

display system. This facilitates an optimal

ovsrall operation of the soaking pit furnace

plant. The principal idea of the dynamic re­

dundancy, supportsd by MULTICOMPUTER-PEARL,

has shown its advantages by providing an over­

all availability of the computer system of

0,9996 during the first two years of opera­

tion (6 hours down time during more than

16,000 hours of operation).

2. Industrial Data Communication Network

Big industrial companies with spatially wide­

spread plants havs the problem of intercon­

nscting the plant computers to each other

and to the csntral disposition computing csn­

ter. Again, THYSSEN AG decided to install a

data communication network on the basis of

the above mentioned RDC-system of IITB. The

following requirements had tobe met:

up to 24 lines per network-node, arbitrar­

ily assignable to net-lines and partici­

pant-lines

different protocols on participant-lines

participants of different "intelligence"

bit transparent packet-switching

packet-interleaving

automatic routing, controlled by table­

driven strategy (no automatic strategyl

max. throughput per node: 480 KBaud

collection and documentation of through­

put data, errors, network status

automatic downline loading of all nodes.

37

These requirements are met by the following

system:

application of packet-switching communi­

cation system, capable of being extended

to meet X.25

application of multi-microprocessor-nodes

with central microcomputsrs for

routing

end-to-end acknowledgement control

intermediate package-storage

network supervision

up to 24 pr.otocol processors per node for

various protocols.

Nods-software written in PEARL:

16 MODULES

30 TASKS

operating system: 4 KWords

packet-~uffer: 1 MODULE, 2 KWords

application program: 24 KWords.

Ths structur~ of such a data communication

systsm is shown in fig. 2. There are ssveral

nodes, arbitrarily connected by net-lines.

The locally neighbored participants are con­

nsctsd to the nodes by participant-lines,

this structure allows an application-matched

layout of the network topology with respect

to high availability of data ways. At present,

the network contains four nodss with about

15 participants. The bsnefits of PEARL for

programming these nodes are as follows:

efficient buffer and queue administration

by REFERENCESi

extensive use of SEMAPHORES for the co­

ordination of asynchronous activitiesi

use of their multi-REQUEST/RELEASE prop­

erty for the execution of queusd ordersi

embedded real-time facilities of PEARL

simplify the processing of asynchronous

events as well as the programming of

the scheduled network testing facilities,

application-matched data structures

facilitats an efficient paging mode of

the packet-buffers.

Compared with ASSEMBLER-programming, webe­

lievs that we achieved savings of about 30 %

during the design phase (the data base was

38 PEARL-Rundschau, Heft 1, Band 3, April 1982

Data-Network

P: Partlclpant

N: Node

DAT A-NETWORK FOR INDUSTRIAL PLANT COMPUTER COMMUNICATION

A Locel -, Node Operating 1 1 1 1 1 1 1

NODE III III
(.) ::,
C - ·- ... - 111- ar:
III PROCESSOR Cl ...

i !
1

0 ...
ii:

-.
V

(RDC)

Protocol 1

Protocol 2

Protocol 3

• • 24 LINES

• MAXIMUM • • •
Protocol 22

Protocol 23

Protocol 24

< zao >

---• • • • • • • • --
-

CONFIGURATION OF A NODE

designed using PEARL). During the coding

phase we saved about 40 % compared with AS­

SEMBLER, due to the program structuring fea­

tures of PEARL (up to 4 people programming

in parallel). During the test phase we saved

about 30 %, because the queue and buffer ad­

ministration was nearly free of errors. Also

this application, though being system-pro­

gramming-oriented, showed the advantages of

the language PEARL with embedded real-time

facilities.

3. Control of a Power Distribution Network

OBAG is a regional power utility in eastern

Bavaria, FRG. Its distribution area covers

about B.500 sq.miles. Thus OBAG is the second

largest power utility in the FRG, with respect

to the distribution area. OBAG operates four

regional control centers for 110 kV-systems

and 20 kV-systems. Each center controls approx.

fourty kV-nodes and thirty 110/20 kV-substa­

tions [3].

The control centers perform the following

tasks:

monitoring of the actual system status

detection of all changes of the system

status (messagesl

output of visual and acoustical alarms

on receipt of messages

logging and filing of all events during

operation

PEARL-Rundschau, Heft 1, Band 3, April 1982

boundarv checks of all relevant system

values

sorting of messages according to tech­

nological and ergonomic criteria

display of information on semigraphic

visual display units (VDU)

processing and output of commands given

via a custom-designed keyboard reflecting

the technology of the process.

DBAG imposed the following additional re­

quirements:

Computer control system for the above

mentioned tasks should be easily trans­

ferable to further control centers

(portability! l.

Since new control centers are built only

every five years, the software must be

computer-independent to a very high de­

gree, because computer technology showed

to change very rapidly.

The computer system has to maintain very

high reliability.

The software system, especially the data

base, should be easily and online adapt­

able to changes or new installations in

the power network.

The ßOlution is a double-computer system

which maintains the required high reliabi­

lity. The concept of dynamic redundancy is

applied: During normal system status, com­

puter no. 1 performs all the control tasks

and the dialog. During this time, computer

no. 2 is used for programming, testing and

if necessary, for an interactive changing

of the data base and the program system. If

computer no. 1 fails, computer no. 2 takes

over the control tasks and the dialog. All

programs are written in Basic-PEARL.

DBAG reports overall cost savings of up to

40 % compared with ASSEMBLER-programming

which is of particular interest because of

actually existing experienve with ASSEMBLER­

programming of the same application system.

39

much improved documentation of the program

system, especially the documentation of the

data base.

4. Coordinate Transformation for Industrial

Robots

Advanced industrial robot systems utilize in­

formation from the external, Cartesian world,

to online determine the actual path coordina­

tes for their movement. This information co­

mes from path-programming systems as well as

from e.g. image-processing sensors. It is the

task of a robot to move e.g. the hand center

point along a desired path or to a desired
point, as determined by that external in­

formation. In order to do so, a multi-axis

robot needs positional information for each

single axis as setpoint values for the

axis controllers. Thus we have to solve

the problem of .transforming the external,

Cartesian information (related to a x,y,z­

coordinate system) into setpoint values for

the robot control (fig. 3).

Depending on the desired path velocity and

accuracy, path following robots need a very

fast online coordinate transformation to

provide the controllers with new setpoint

values in time. For modern robots with path

velocities of mors than 50 inch per second,

it is necessary to perform the coordinate

transformation in less than 100 msec.

This requirement becomes ambitious, consid­

dering the type of calculations tobe per­

formed in coordinate transformation:

e

CDStY.

Ia (ilz
ARCSIN a (m * a (nl

CDS (A + ARCCDS

+ ARCCDS

B CDS 8

C /cTise

. ...)

The necessary operations are a sequence of

transcendent functions like the ARCSIN, the

ARCCDS, the ARCTAN as well as the calcula-

The error rate during the programming process tion of square roots. These mathernatical

was low. At the same time it was possible to functions usually are derived from series

reduce the project management cost as well calculations with floating point numbers as

as the maintainance cost. Dne of the out- operands. Here we get problems with accuracy

standing experiences of DBAG was the very as well as with calculation speed.

40

POSITIONAL

SETPOINT

S(X,Y,Z)

COOIIDINATE

TIIAIIISFOIIMATION

W(3)

W(1)

W(2)

W(4)

W(5)

PEARL-Rundschau, Heft 1, Band 3, April 1982

ACTUAL POSITION AXIS#3

CONTROLLER

(AXIS#3)
DRIVE#3

.,_...,..,_..W(III)

Coordlnate Transformation .for lndustrlal Robots

In programming such a coordinatB transforma­

tion, it would bB dBsirablB to USB a highBr

languagB for two rBasons: lt takBs s • mB timB

to fit rathBr c • mplicatBd mathBmatical algo­

rithms to thB spBcial robot construction.

ThBrBf • rB, it should bB possiblB to transfBr

thB tBstBd algorithm to othBr robot controls,

sBrvicing thB samB robot. In addition, it is

not Basy to program such a complicatBd algo­

rithm in ASSEMBLER. On thB othBr hand, high-

paramBtBrs than with debugging. ThB overall

savings werB about 40 % by thB USB of PEARL

for thB implBmentation of thB coordinatB

transformation program.

5. Conclusions

The status of PEARL, its languagB elBmBnts as

WBll as numBr• us applications havB shown that

PEARL is a gBnBral purp • SB procBss automation

Br lBvel languagBs arB thought to produce pro- programming language ready to usB, available

grams with low time BfficiBncy. With its ro- on the market, and wBll provBn. So far thB

bot pr• jBct IITB wanted to find out what could experiBncB with PEARL shows that all thB

bB achiBVBd, using thB ROC-systBm and PEARL. approachBd application problems havB beBn

solved efficiBntly, and that thB languagB

ThB solution is a vBry standard PEARL-program concBpt is ablB to support new scientific

for the coordinatB transformation of a 5-axis- findings too; BSpBcially thB OATION concept

robot. ThB computation timB for this coordi­

natB transformation is approx. 50 msBc. All

thB mathBmatical functions arB calculatBd by

SBriBs; for thB sakB of calculation accu-

still will show its capabilitiBs concerning

distributBd and synchronizBd data communi­

cation up to messagB systBms and rBndBzvous­

tBchniques. In addition, thB advantagBs of

racy and storage Bfficiency no function-tables languagB defined rBal-timB fBatures providB

for thB trigonomBtric functions wBrB usBd.

ThB comparison with an ASSEMBLER-program of

Bqual functions shows that thB run-timB of

thB PEARL-program is about 1.B timBs longBr

than thB ASSEMBLER-program. On thB othBr hand,

thB achiBVBd 50 msBc cyclB-timB is sufficient,

and the savings in program dBvBlopment-time

are considerablB whBn using PEARL. SomB of

thB rBasons arB, that during thB design of

thB program thB mathBmatical Bquations di­

rBctly can bB writtBn in PEARL. TherBfore,

the coding timB dBcrBasBs significantly, and

the tBst phasB is m• rB concBrnBd with tuning

for a uniquBly advantagB • us position of PEARL

in thB fiBld of m• dBrn application-orientBd

rBal-timB programming languages.

6. RBfBrBnCBS

[1] DIN 66253, part 1 (197B]. Programmier­

sprache (Programming languagB] PEARL,

Basic-PEARL. TentativB Standard. • But­

schBs Institut für Normung (DIN], BBr­

lin, FRG.

PEARL-Rundschau, Heft 1, Band 3, April 1982

DIN 66253, part 2 (1980). Programmier­

sprache (Programming language) PEARL.

Full-PEARL. Draft Standard. Deutsches

Institut für Normung (DIN), Berlin, FRG.

[2] Steusloff, H. U. (1977). Zur Programmierung

von räumlich verteilten, dezentralen Pro­

zeßrechensystemen. (Programming Spatially

41

Distributed, Decentralized Process Comput­

ing Systems). Doctoral Dissertation, Uni­

versität Karlsruhe, FRG.

[3] U. Mayr (1981). New Tools for a more

Flexible Control of Power Systems with

Process-Control Computers. PEARL and

Interactive Systems. DBAG, Regensburg,

FRG.

42

Literature on PEARL

Looking for literature is tedious, particularly
when it isn't known where the information ist to
be found, or when it isn't known whether anything
at all has been published in the area of interest.
The PEARL Association would therefore like to
offer a running literature service to its members.
This is a project that must be allowed to grow.
Sources must be developed, material must be
collected, and a classification system must be
established. In this area, we would be happy to
get your support. Perhaps you remember a few good
publications that we could use about PEARL or its
applications that have particular technical or
historic interest. We thank you for any references
you can offer.

Now for the beginning:

General Descriptions

T. Martin:
"Die Entwicklung der Realzeitprogrammiersprache
PEARL im Rahmen des Projekts PDV"
KfK-Nachrichten, Volume II~ 1/79, Karlsruhe
A survey paper about the development of PEARL,
its basic concepts, and available compilers.
Includes an illustrative application example.

T. Martin:
"PEARL at the Age of Three"
Proceedings of the 4th IEEE Conference on Software

' Engineering, München, 1979
IEEE Cat. No. 79 Ch 1479-5C, pp 100 ff.

T. Martin:
Experience with PEARL, in:
REAL-TIME DATA HANDLING AND PR0CESS C0NTR0L;
H. Meyer (ed.), North Holland Publishing Co.,
Brussel, Luxembourg, 1980, pp 375 - 391

Gives a summary about available PEARL compilers
and about a few typical applications.

T. Martin:
Realtime Programming Language PEARL;

PEARL-Rundschau, Heft 1, Band 3, April 1982

concept and characteristics
Proceedings Compsac 1978,
IEEE Cat. No. 78 CH 1338-3C, pp 301 - 307

Discusses the general concepts of PEARL and
gives an application example.

T. Martin:
Die Förderung von PEARL im Projekt "Prozeß­
Lenkung mit Datenverarbeitungsanlagen"
des 2. und 3. DV-Programms der Bundesregierung.
Regelungstechnik, Volume 25, No. 10/1977
0ldenbourg Verlag, München.

Describes the development of PEARL and dis­
cusses its relative position in the area of
realtime languages.

T. Martin:
Industrielle Erfahrung mit der Realzeit­
Programmiersprache PEARL.
Regelungstechnische Praxis, Volume 21,
No. II/1979, pp 63 - 64.

Short report of the conference
"Process control computer" of the 'VDI/VDE-GMR'
March 1979

T. Martin:
Experience with the Industrial Realtime
Programming Language PEARL; (paper 7.1)
1979 Canadian Conference on Automatie Control
(15 p)

A relatively detailed description of the concepts
of PEARL with an application example

Textbooks:

Wolf Werum, Hans Windauer:
Introduction to PEARL

Process and Experiment Automation Realtime
Language
Description with application examples
Braunschweig: Vieweg Verlag, 1982 (Engl.Edition)

PEARL-Rundschau, Heft 1, Band 3, April 1982

This book describes the most important language
elements of the realtime programming language PEARL
(Process and Experiment Automation Realtime
Language) and explains them with many examples.
It was written primarily for users of process
control computers who have already written
realtime programs in a higher order language.

Axel Kappatsch, H. Mittendorf, P. Rieder:
PEARL
Systematische Darstellung für den Anwender
(Systematic Description for the Application
Engineer)
With 50 figures, 26 tables and a comprehensive
application example.
München: 0ldenbourg Verlag, 1979

This book is aimed primarily at users who have
certain familiarity with practical programming.
The description of the language medium is kept
i:1formal and application-independent, although
many examples are used to clarify the ideas.

The description of the process environment

required in PEARL is explained by means of
examples of three existing implementations.
The last chapter is dedicated to a detailed
example of a real application (with addition
of a detailed description of the problem and
the complete PEARL listing).

D. Heger, H. Steusloff, M. Syrbe:
"Echtzeitrechnersystem mit verteilten Mikro­

prozessoren"
(Realtime Computer System with Distributed
Microprocessors)
Forschungsbericht des Bundesministeriums für
Forschung und Technologie, BMFT-FBDV 79-01,
April 1979

This report describes the structure of a
decentralized computer system for the control
of industrial processes. It comprises hardware,
redundancy concepts, man-machine-communication
and software support. This software support
includes PEARL for multi-computer systems,
dynamic loaders, processor and network operating
systems.

G. Bonn, L. Lorzen:
Control, Synchronization and Communication

with Parallel Processors
Mitteilungen aus dem Fraunhofer-Institut für

Informations- und Datenverarbeitung, 2-80,
Karlsru:1e, April 1980, pp 36 - 40.

The report describes the principles of coopera­
tion between parallel processes and examines
the properties of PEARL with respect to control,
synchronization and communication between
parallel processes.

W. Hinderer:
Reconfiguration and Restart in Fault-Tolerant
Systems

Mitteilungen aus dem Fraunhofer-Institut für
Informations- und Datenverarbeitung, 2-80
Karlsruhe, April 1980.

Fault tolerance is becoming an increasingly
important characteristic of complex systems.
In the RDC system (Really Dristributed Control
System) fault tolerance was achieved by means
of dynamic redundancy obtained by distribution

of functions. A fault-tolerant distributed
process control system programmed with multi­
computer PEARL was implemented. Amongst other
ways I i t i s shown how the restart of such systems
can be handled through a transformation of
(PEARL) programs into Petri nets and through
the establishment of "dynamic cuts" in these
nets.

PDV Reports on PEARL

43

0nly those reports that are neither out of print
nor out of date have been listed, exept the reports
rr•arked with an asterisk which are fundaments for
all proceeding PEARL Implementations.

* KFK-PDV 1, 1973 Timmesfeld, K.-H. (12 Co-Autoren)
PEARL-A Proposal for a Process and
Experiment Automation Realtime

L.anguage

KFK-PDV 56, 1975 scs' Hamburg
MULI - Multi Level Dialog System

KFK-PDV 75, 1976 Arbeitskreis ASME
Spezifikation CIMIC/1

KFK-PDV 76, 1976 ESG, München
ASME-PEARL-Subset/1

44

KFK-PDV 100, 1976 ASME
Programmieranleitung für das
ASME 1-PEARL-Subset

KFK-PDV 110, 1977 KfK, Karlsruhe
Tagungsband zum Aussprachetag PEARL
(2. Auflcrge)

~KFK-PDV 120, 1977 PEARL-Arbeitskreis
Basic PEARL Language Description

KFK-PDV 129, 1977 Martin.T.
The Development of PEARL

~KFK-PDV 130, 1977 Full PEARL - Language Description

KFK-PDV 141, 1977 Kappatsch,A.
PEARL - Survey of Language Features

KFK-PDV 155, 1978 Alt, M.
Programmpaket zum Testen von Basic
PEARL-Implementationen

KFK-PDV 164, 1978 Wiedenmann, R.
Untersuchung der Eignung der Prozeß­
rechnersprache PEARL zur Program-

PDV-E 65

PDV-E 66

PDV-E 67

PDV-E 83

PDV-E 103

PEARL-Rundschau, Heft 1, Band 3, April 1982

Wiedenmann:
ASME-PEARL/1
Beschreibung der Schnittstelle PEARL­
Compiler-Assembler (AEG 60-50)

Zeh:
ASME-PEARL/1
Beschreibung der Binder- und Organisations­
programme im PEARL-Compilersystem des IRP

Ghassemi:
ASME-PEARL/1
Beschreibung des Codegenerators im PEARL­
Compilersystem des Instituts für Regelungs­
technik und Prozeßautomatisierung

Holleczek:
Das Filehandling für den "Erlanger"
ASME-PEARL-Subset

Alt, Mayer, Geiger:
Testprogrammsystem für BASIS-PEARL-Imple­
mentierungen

mierung von Automatisierungsverfahren PDV-E 104
der zyklischen Prozeßdatenerfassung

Prester:
Die graphische Ein-/Ausgabe des Erlanger
ASME-PEARL-Subsets

KFK-PDV 171, 1979 Martin (Hrsg.)
Industrielle Erfahrungen mit der
Prograrrmiersprache 'PEARL'

KFK-PDV 179, 1979 Gmeiner, Hommel (Hrsg.)
Testen und Verifizieren von
Prozeßrechnersoftware

PDV Development Notes

Only those development notes that are neither out
of print nor rendered out of date by technical
development are listed.

PDV-E 63

PDV-E 64

Kluttig, Alt:
Beschreibung des Macroübersetzers STAGE 2
als Hilfsmittel zur Realisierung der Pro­
zeßrechnersprache PEARL auf dem Prozeßrech­
ner Di etz "mi nca l 621"

Helfert:
ASME-PEARL/1
Implementation des PEARL-Compileroberteils
auf der AEG 60-50 des IRP

PDV-E 107 Winkler:
Ein Vergleich von Pascal-E mit PEARL

PDV-E 112 Brack, Kremer:
Anwendung der höheren Programmiersprache
PEARL im komplexen Modell eines flexiblen
Fertigungssystems

PDV-E 119 Rössler:
PEARL-Betriebssystem für den Z80

PDV-E 122 Elzer:
Das Sprachentwicklungsprojekt des
US-Verteidigungsministeriums

PDV-E 125 Inderst:
PEARL-Test- und Bedien-System für die
ASME

PDV-E 126 Ghassemi:
Untersuchung der Eignung der Prozeß­
programmiersprache PEARL zur .Automati­
sierung von Folgeprozessen

PEARL-Rundschau, Heft 1, Band 3, April 1982

PDV-E 128 Eichenauer, Lucas, Zeh:
Schlußbericht über die Entwicklung
eines portablen Compiler-Oberteils
für Basic PEARL nach DIN 66253E

PDV-E 131 Alt:
Progralllll Package for Testing Basic
PEARL Implementations

PDV-E 133 Eichenauer, Henn, Lucas, Zeh:
Spezifikation der Zwischensprache
CIMIC/P

PDV-E 134 Eichenauer, Henn, Lucas, Zeh:
Anpassung von CIMIC/P an Basic-PEARL

The PDV development notes and the PDV
reports are available from:

Kernforschungszentrum Karlsruhe
GmbH
Projekt PDV / PFT
Postfach 3640
7500 Karlsruhe

A complete catalogue of all PDV-reports
(up to Feb. 1979) is available under the
number

KFK-PDV 167

45

	doc03260620181025132541
	doc03260720181025132550
	doc03261020181025132857
	doc03261120181025133122

