
CVSM 2013 Challenge:

Recognizing High-level Edit Operations in Evolving Models

Timo Kehrer
Software Engineering Group

University of Siegen
kehrer@informatik.uni-siegen.de

Christian Gerth
Department of Computer Science

University of Paderborn
gerth@uni-paderborn.de

Abstract

In Model-Driven Engineering (MDE), models are sub-
ject to continuous change and typically exist in many
versions during their lifetime. To support an efficient
MDE, fully featured development environments are a
necessity that in particular must enable the compari-
son of different versions of models. However, currently
available comparison tools operate on low-level, some-
times tool-specific model representations and result in
elementary difference representations. The resulting
difference representations are often not understand-
able. Tool users rather prefer differences to be re-
ported in terms of high-level edit operations, e.g. as
offered by modern graphical editors, to present and
handle model differences and to analyze the evolu-
tion of models. In this paper, we present two par-
ticular challenges for the detection of high-level edit
operations between model versions in the absence of
a change-log.

1 Introduction

The comparison of models is an essential part in
Model-Driven Engineering (MDE) of software sys-
tems. In MDE, models are refined in team environ-
ments and several different versions of a single model
are created. In order to merge the different model ver-
sions into an integrated version, differences between
the models have to be considered. In scenarios where
applied changes are not recorded in a change log, the
differences between versions are identified by compar-
ing the model versions. The identified differences are
then represented and visualized appropriately that a
human user can inspect the differences and can select
a subset of the differences that shall be resolved by
applying edit operations in an integrated model ver-
sion [7].

For that purpose, a difference representation must
be able to represent all possible differences that can
occur between two models in order to transform a
source model into a target model. In addition, based
on a representation it must be possible to resolve a
difference. Furthermore, similar to the merging of
textual documents, models may also be merged by
users with a limited background and knowledge re-

garding the model representation. These users shall
be supported to inspect and resolve certain differ-
ences in order to obtain an integrated model version.
For that purpose, the representation of differences be-
tween model versions has to fulfill specific require-
ments concerning user-friendliness. For instance dif-
ferences must be displayed in a form that is under-
standable by a business user, e.g. by grouping related
differences that need to be resolved together.

As a consequence, the granularity of the difference
representation is of uttermost importance for model
comparison tools. In the remainder of this paper, we
present two challenges for the recognition of high-level
edit operations between model operations for two dif-
ferent types of model. In Section 2, we consider the
evolution of model transformation rules and in Sec-
tion 3, we address the detection of high-level opera-
tions between process models.

2 Evolution of Transformation Rules

The modeling language which is subject of the first
challenge is the graphical model transformation lan-
guage provided by the EMF Henshin toolset [4]:
Transformation rules are represented as EMF models
[2] and can be comfortably edited using the graphical
“Henshin integrated editor”.

Figure 1: Bank metamodel serving as “type graph” of
the sample transformation rules

The evolution scenario itself is based on the
“Bank Accounts” example from the Henshin online

Softwaretechnik-Trends 33:2, Mai 2013 87



Figure 2: Transformation rule transferMoney ; revision v1 (top) and v2 (bottom)

tutorials[6]. The tutorial shows some of the basic con-
cepts of the Henshin transformation language and tool
environment. Basically, the example defines

• a simple metamodel for representing clients and
accounts of a bank (s. Figure 1), and

• shows how to realize a couple of sample transfor-
mations as Henshin transformation rules.

A more detailed introduction into the bank example
as well as in-depth descriptions of the transformation
rules are provided on the Henshin website.

As an example, Figure 2 shows two revisions of the
Henshin transformation rule transferMoney. The two
transformation rules represent a typical evolution step
of the underlying transformation system. Revision v1
serves as base revision of the example. In revision
v2, transferring money is restricted to bank internal
money transfers, i.e. the accounts a1 and a2 must be
contained by the same bank instance. Syntactically,
v1 has been refine into v2 as follows:

1. createPreserveNode(“transferMoney”, “b”,
Bank): Create a preserve-node (i.e., a node
being part of the intersection of the LHS- and
the RHS-graph of the rule “transferMoney”)
which is of type Bank and which is named “b”.

2. createPreserveEdge(b, a1, accounts): Create
a preserve-edge of type accounts from the
preserve-node b created in step 1 to the existing
preserve-node a1.

3. createPreserveEdge(b, a2, accounts): Create
a preserve-edge of type accounts from the
preserve-node b created in step 1 to the existing
preserve-node a2.

Figure 3: Results for comparing transferMoney v1
and v2 using EMF Compare

Consequently, this sequence of editing steps repre-
sents the expected result of a comparison of both
revisions of transferMoney. Of course, editing steps

88 Softwaretechnik-Trends 33:2, Mai 2013



X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

V
Source
Model

Prepare
Credit Card

< 3.5

3.5

Record
Customer
Data

Compute
Customer
Scoring

X X

Check
Customer
Data

Retrieve
add. Data

V1

Editing Operations (V,V1)

Set Daily
Withdrawal

Limit

X X

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Prepare
Credit Card

< 3.5

3.5

Set Daily
Withdrawal

Limit

Check
Customer
Data

Figure 4: Two Versions of a Business Process Model

2. and 3. may be reported in inverse order as they are
sequentially independent of each other.

Figure 3 shows the result comparing transferMoney
v1 and v2 using EMF Compare [3]. Although a pre-
cise matching has been obtained based on persistent
IDs, the low-level changes derived from the matching
are far apart from reflecting the original sequence of
editing steps that have been actually performed.

To participate in this challenge, we invite submis-
sions that address the recognition of applied high-level
edit operations as available in the graphical Henshin
editor.

3 Evolution of Business Process Mod-
els

As a second challenge for the recognition of applied
high-level edit operations, we consider the concurrent
development of business process models in a team en-
vironment, e.g. during the development of a service-
oriented software system. Figure 1 visualizes such a
multi-user scenario. There, two process models in the
Business Process Model and Notation (BPMN) lan-
guage are shown that describe the necessary steps to
open a banking account for a customer in a bank. The
source model V was created first and afterwards V was
refined into the version V1.

The intention of the refinement of version V into
V 1 was as follows:

1. InsertCyclicFragment(V , fLoop, “Record Cus-
tomer Data”, “Compute Customer Scoring”): In-
sert a cyclic fragment fLoop into the process
model V between the tasks “Record Customer
Data” and “Compute Customer Scoring”.

2. MoveTask(V , “Check Customer Data”,
Start Event, “Record Customer Data”,
Exclusive − MergefLoop, Exclusive −
DecisionfLoop): Move task “Check Cus-
tomer Data” in process model V from its
original position between the Start Event
and “Record Customer Data” into the

cyclic fragment fLoop at the specified posi-
tion between Exclusive − MergefLoop and
Exclusive − DecisionfLoop.

3. InsertTask(V , “Retrieve additional
Data”, Exclusive − DecisionfLoop,
Exclusive − MergefLoop): Insert a task
“Retrieve add. Data” into the cyclic
fragment fLoop at the specified position
between Exclusive − DecisionfLoop and
Exclusive − MergefLoop.

This sequence of high-level compound operations
represents a result of a comparison of both process
model versions1, which we claim is understandable by
a user. The understandability of the difference repre-
sentation could be improved by providing visual feed-
back in terms of highlighted model elements in the
process model whenever an edit operation is selected.

Analogously to the high-level edit operation detec-
tion between transformation rules, we compared the
process model versions using a comparison approach,
which results in low-level, elementary edit operations,
e.g. by using EMF Compare [3]. The resulting change
log Δ(V, V 1) that represents the differences between
the process model versions is shown in Figure 5.

Based on elementary edit operations it is difficult to
grasp the actual high-level logical/structural change
that was applied to obtain the process model V 1. In
general, even simple differences result in a multitude
of elementary operations. In addition, based on ele-
mentary operations it is difficult to identify, which dif-
ferences can be resolved independently, i.e. without
the necessity to resolve other differences in advance.
As a consequence, merging two process model versions
using a difference representation based on elementary
edit operations becomes a trial-and-error approach.

To participate in this challenge, we invite submis-
sions that address the recognition of applied high-level
differences in the evolution of process models and rep-

1Please note, the editing operations 2. and 3. are sequentially
independent of each other and may be reported in inverse order.

Softwaretechnik-Trends 33:2, Mai 2013 89



Δ(V, V 1)

DeleteEdge(V , e2, “Record Customer Data”, “Compute
Customer Scoring”)

InsertNode(V , Exclusive − JoinfLoop)

InsertNode(V , Exclusive − SplitfLoop)

InsertEdge(V , e11, “Record Customer Data”,
Exclusive − JoinfLoop)

InsertEdge(V , e12, Exclusive − SplitfLoop, “Compute
Customer Scoring”)

DeleteEdge(V , e0, Start, “Check Customer Data”)

DeleteEdge(V , e1, “Check Customer Data”, “Record
Customer Data”)

InsertEdge(V , e13, Start, “Record Customer Data”)

InsertNode(V , “Retrieve additional Data”)

InsertEdge(V , e14, Exclusive− JoinfLoop, “Check Cus-
tomer Data”)

InsertEdge(V , e15, “Check Customer Data”,
“Exclusive − SplitfLoop)

InsertEdge(V , e16, “Retrieve additional Data”,
“Exclusive − JoinfLoop)

InsertEdge(V , e17, “Exclusive − SplitfLoop, “Retrieve
additional Data”)

Figure 5: Change Log Δ(V, V 1) consisting of Change
Operations that represent the Elementary Differences
between the Process Models V and V 1

resent these differences in terms of intuitive, high-level
edit operations.

4 Conclusion

In this proposal for a CVSM 2013 challenge, we ad-
dress the problem of how to semantically lift low-level
differences, which are produced by currently avail-
able differencing engines for models, towards user-
comprehensible, intuitive edit operations. In both of
our examples, only a small number of high-level edit
operations has been applied. However, each of these
applied high-level editing steps causes a considerable
amount of low-level differences in terms of elementary
edit operations.

As a consequence, to provide fully-featured de-
velopment environments for Model-Driven Engineer-
ing (MDE), there is strong necessity for adapt-
able approaches that are able to detect high-level
edit operations on evolving models. The example
can be downloaded from the CVSM 2013 webpage:
http://pi.informatik.uni-siegen.de/CVSM2013

Acknowledgement

This work was partially supported by the DFG (Ger-
man Research Foundation) under the Priority Pro-
gramme SPP1593: Design For Future - Managed Soft-
ware Evolution.

References

[1] Biermann, E., Ermel, C., Taentzer, G.; Lift-

ing Parallel Graph Transformation Concepts to
Model Transformation based on the Eclipse Mod-
eling Framework; ECEASST 26; 2010

[2] EMF: Eclipse Modeling Framework;
http://www.eclipse.org/emf; 2013

[3] EMF Compare Project;
http://www.eclipse.org/emf/compare/; 2013

[4] EMF Henshin;
http://www.eclipse.org/modeling/emft/henshin/;
2013

[5] Heckel, R.; Graph Transformation in a Nutshell;
in: Electronic Notes in Theoretical Computer
Science (ENTCS), Volume 148, Issue 1, Febru-
ary, 2006

[6] Krause, C.; Henshin Example: Bank Accounts;
Available from the Henshin website [4]; 2013

[7] Küster, J. M., Gerth, C., Förster, A., Engels,
G. Detecting and Resolving Process Model Dif-
ferences in the Absence of a Change Log; in:
Proceedings of the 6th International Conference
on Business Process Management (BPM’13),
Springer (Berlin/Heidelberg), LNCS, vol. 5240,
pp. 244-260, 2008

90 Softwaretechnik-Trends 33:2, Mai 2013


	CVSM 2013 Challenge:
	Abstract
	1 Introduction
	2 Evolution of Transformation Rules
	3 Evolution of Business Process Models
	4 Conclusion
	Acknowledgement
	References




