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Synchronization of MPI One-Sided Communication
on a Non-Cache-Coherent Many-Core System

Steffen Christgau and Bettina Schnor
Institute for Computer Science

University of Potsdam
August-Bebel-Straße 89

14482 Potsdam, Germany
{christgau,schnor}@cs.uni-potsdam.de

Abstract—This paper discusses the design and implementation
of MPI’s general active target synchronization on the Intel Single-
Chip Cloud Computer, a non-cache-coherent many-core CPU.
Measurements show a performance benefit of a factor of four
compared to the default SCC-tuned MPI implementation and
demonstrate the feasibility of implementing efficiently a shared
memory protocol despite the lack of cache coherence. Further, a
classification of implementation designs of MPI’s general active
target synchronization is presented.

I. INTRODUCTION

Cache coherence has been present in multi-CPU and multi-
core CPUs since decades. However, with increasing memory
bandwidths the bandwidth of the coherence interconnect traffic
becomes challenging [1]. This problem gets even more critical
with increasing core count in many-core CPUs. Therefore, the
investigation of algorithms for non-cache-coherent architec-
tures becomes an important topic.

Previous work [2] has shown that true one-sided communi-
cation based on shared memory systems is feasible even when
cache coherence is managed in software. This paper presents
the design and performance analysis of MPI’s synchronization
methods used in the SCOSCo approach [2] for one-sided com-
munication (OSC) on the Intel Single Chip Cloud-Computer
(SCC) [3], a non-cache-coherent (nCC) architecture.

Since version 2.0, the Message Passing Interface (MPI)
standard includes one-sided communication which has been
extended in the subsequent versions [4]. Figure 1 shows
pseudo-code for only two communicating processes.

Within the MPI standard, memory for remote memory
access (RMA) operations is logically attached to a window
object. Remote memory is addressed together with that win-
dow object and the rank, the numerical process identifier. The
creation of a window object is a collective operation, i.e. all
processes inside a group (communicator) have to participate
in the construction. MPI_WIN_CREATE can be used to create
a window inside a given communicator and associates that
communicator to the created window object. Subsequent RMA
operations, like PUT, GET and ACCUMULATE [4, §11.3],
operate with the returned window object, but must be non-
blocking according to the standard.

origin process (rank 0) target process (rank 1)

MPI_WIN_CREATE MPI_WIN_CREATE
MPI_WIN_START(win,Gs = {1}) MPI_WIN_POST(win,Gp = {0})

MPI_WIN_WAIT(win)MPI_WIN_COMPLETE(win)

MPI_PUT(win, rank=1, ...)

ac
ce

ss
ep

oc
h

ex
po

su
re

ep
oc

h

Fig. 1. PSCW Synchronization in MPI One-Sided Communication

II. OSC SYNCHRONIZATION

While message-passing communication includes both data
transfer and synchronization between sender and receiver,
these functions are separated in the OSC model. In general,
RMA operations are only allowed after synchronization calls
have been issued. An origin performs accesses during an
access epoch only. Vice versa, a target allows such accesses
only within an exposure epoch.

Previous work already discussed the optimization of MPI’s
fence synchronization [5]. This paper addresses general active
target communication, which provides a flexible mechanism
to synchronize processes. Based on the names of the methods
that have to be invoked in that scheme, the synchronization is
often also referred to as PSCW synchronization. An example
of its usage for one origin and one target process is shown in
Figure 1.

In contrast to the fence synchronization, PSCW allows
to synchronize only a subset of the processes that created
the window object. In addition, it allows an application to
explicitly open access and exposure epochs. An origin opens
and closes an access epoch with the MPI_WIN_START and
the MPI_WIN_COMPLETE calls. In the START operation, an
origin names the processes it (potentially) communicates with
during the opened access epoch. The processes are given as
a list of ranks, called start group Gs. On the other hand, a
target invokes MPI_WIN_POST to open an exposure epoch
and names the processes from which RMA operations are
allowed (post group, Gp). However, the named processes
are actually not required to access the target’s window, but
only these are allowed to do so. At the end of an exposure
epoch, MPI_WIN_WAIT is issued to wait for a notification

5



TABLE I
CLASSIFICATION OF SYNCHRONIZATION PROTOCOLS FOR MPI ONE-SIDED

COMMUNICATION.

class epoch start communication overlap

deferred non-blocking delayed to epoch’s end no
immediate blocking prompt yes
trigger-only non-blocking prompt yes

that RMA operations have been completed and the window
can be accesses without remote interference.

III. CLASSIFICATION OF MPI SYNCHRONIZATION
IMPLEMENTATIONS

MPI implementations may implement the synchronization
calls in different ways. Gropp and Thakur [6] define two
options: immediate and deferred.

For deferred synchronization (used in MPICH, e.g.), the
execution of methods that open epochs and perform RMA
operation is delayed until the end of an epoch. This allows
an MPI implementation to merge and optimize multiple of
such communication calls. The downside is that optimizations
like the overlap of communication and computation are not
possible.

Within the immediate class (employed by MVAPICH for
InfiniBand), the synchronization calls at the beginning of an
epoch (POST and START) perform the synchronization imme-
diately when they are invoked. Usually, this leads to blocking
implementations. However, origin and target are ready for
communication after synchronization. Since communication
calls need to be non-blocking, immediate synchronization
offers the possibility for communication computation overlap.

In addition to the classification from [6], we identify a
third class that combines the advantages from deferred and
immediate synchronization (see Table I). In the trigger-only
variant, the starting synchronization calls initiate operations
but do not block to wait for completion of the synchronization.
This task is shifted to the communication calls, like PUT and
GET, that check for those target processes to be synchronized.
If the synchronization is still not finalized, the communication
call blocks until its single target process has synchronized.
In such a case, the call violates the standard. The benefit
of this approach (presented in [7]) is that a process waits
for process synchronization when it is actually required. In
addition, after the initial synchronization with a particular
target is completed, all subsequent communication with that
process can be performed promptly.

IV. MPI PROCESS SYNCHRONIZATION ON THE SCC

No current MPI implementation efficiently supports PSCW
synchronization on an nCC many-core chip. This section
presents the design of such a scheme for the Intel SCC.

A. The Intel SCC

The Intel SCC [3] is an experimental tiled many-core
chip with 48 Pentium (P54C) cores. Each tile contains two

Tile

L2

L2 Core

Core

MPBMIUR

MC

MC

MCcores
0+1

cores
10+11

cores
24+25

cores
30+31

Fig. 2. Overview of the Intel SCC

cores. A router connects each of the 24 tiles to an on-chip
network as illustrated in Figure 2. Also, four DDR3 memory
controllers are attached to the network. The mesh interface
(MIU) unit on each tile translates memory accesses by the
cores to network packets and vice-versa. The unit performs
a configurable address translation that determines the actual
destination of a memory access. If more than one MIUs are
configured to translate to the same network address shared
memory is created. Further, the MIU contains one atomic test-
and-set register per core that has mutex-like semantics.

Although each core has two cache levels, the hardware
provides no support for cache coherence at all. This compli-
cates the usage of shared memory in the common sense. In
consequence, message passing is the most adequate program-
ming model for this on-chip cluster. To support this, each tile
possesses a 16 KB SRAM-based so-called Message Passing
Buffer (MPB) that enables fast on-chip data transfer without
using the external DDR3 memory.

In the default configuration, the MIU provides access to
16 MB per memory controller that is shared between all cores
and is called legacy shared memory. However, accesses to this
memory have to be performed carefully due to the missing
cache coherence.

In addition, different memory types are supported. Most
relevant for this work is the non-cacheable memory (NCM)
type which bypasses all cache levels. It has been shown that
usage of this memory can provide better latencies over other
(cached) memory types [8].

On top of SCC’s hardware, the MPI implementation
RCKMPI [9] was developed. It is based on MPICH [10],
thus inherently message-based, and exploits the MPB. Due to
the derivation from MPICH, the implementation of one-sided
communication, including the process synchronization, is also
message-based [11].

B. SCOSCo process synchronization

The design of the PSCW synchronization is developed in
the context of the implementation of SCOSCo [2], a software-
managed cache coherence protocol for one-sided communica-
tion.

To efficiently implement the PSCW synchronization pattern
on the SCC, the message based approach of RCKMPI is
dropped. Instead, the presented solution is based on an opti-
mization of MVAPICH for shared memory systems [7] which
belongs to the trigger-only class. It is demonstrated in the
following that this approach can be successfully implemented
on the non-cache-coherent Intel SCC.
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target origin target
(rank = 1) (rank = 0) (rank = 2)

POST(Gp={0}) set match vector entry
1CC

WAIT

WAIT returns
0

0 0 match vector

1 0
START(Gs={1,2})

PUT(1,...)

PUT(2,...)

1 1

PUT returns

decrement CC decrement CC
COMPLETE 0 0

POST(Gp={0})set match vector entry

1

WAIT

WAIT returns
0

Fig. 3. Sequence diagram of the implemented synchronization protocol for two target processes (left and right) and a single origin (center).

The SCC’s ability to define shared memory is exploited
to store and access synchronization data. For this purpose,
a memory region called window database is reserved inside
the legacy shared memory (see above). Therein, the required
synchronization data structures are allocated. A bit vector for
the start of an epoch (called match vector) and completion
counters are used as space-efficient means for synchronization.
For polling these data structures efficiently, uncached memory
is used to circumvent coherence problems.

1) Window Creation: The synchronization data structures
are allocated in the legacy shared memory which is accessible
by all processes in the system. The allocation is distributed
among the four memory controllers to avoid contention of the
controllers when the match vector and completion counters are
polled. This issue was observed in preliminary experiments
especially when synchronization was executed in memory-
bound applications. Therefore, depending on the core a MPI
process is running on, it allocates the synchronization data
inside the legacy shared memory such that the nearest (Man-
hattan distance) memory controller is used for accesses.

The actual allocation is performed during the collective
window creation. Since it is unknown to a process whether
it becomes target or origin for the created window, space for
both match vector (for origins) and completion counter (for
targets) is reserved. The size of the bit vector is equal to the
window’s communicator size. Memory is allocated atomically
(with the help of the test-and-set registers) by reading and
advancing an offset, which is stored in the windows database,
by the amount of allocated memory.

The obtained offset of the reserved memory is exchanged
by an MPI all-to-all operation between all the n processes
which create the window. Consequently, each process knows
the base location of all other processes’ synchronization data.
Since the match vector size is known locally (and is equal
among all processes), the position of the completion counter
can be derived locally as well. This approach leads to data
duplication of the exchanged offsets which scales with n2.
However, it can be compensated by storing all offsets in

the shared memory as well. Anyhow, this is left out of the
prototypical implementation.

2) START and POST: When a POST operation is issued
by a target process, it iterates through the post group Gp that
contains all origins (see Section II). To notify each of them,
the address of the according match vector in the legacy shared
memory is determined. Then, the test-and-set register of the
origin’s core is locked to prevent concurrent modifications (see
Algorithm 1) Subsequently, the byte containing the according
bit is read, locally modified and written back using uncached
memory. Cached memory is unsuitable for this use-case since
it would require an explicit write-back of the according cache
line. Such an operation is not supported by the SCC’s cores.
Only a write-back including an invalidation of the whole cache
is available in the instruction set. However, it is obviously far
slower than using uncached memory. In addition, the match
vector is not accessed by the targets for any other purpose
which makes caching unnecessary anyway.

Algorithm 1 Pseudocode for START and POST
function START(Gs: Group)

start ranks← ranks of procs ∈ Gs

end function

function POST(Gp: Group)
CC ← |Gp| . init completion counter
for all origins ∈ Gp do . notify all origins

core ← CORE OF PROC(origin)
LOCK TSR(core)
match vector[core][local rank] ← 1
UNLOCK TSR(core)

end for
end function

On the origin side, the START function performs only
bookkeeping operations, like storing the ranks of the processes
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from the start group Gs (see Section II). Polling the match
vector is shifted to the communication calls, like PUT and
GET. However, these calls only check for the according target
process to have synchronized. Thus, the implementation is
classified as trigger-only (see Section III).

Polling is performed with uncached memory since cached
reads would prevent the origin to observe a post operation.
In addition, caching of the match vector is dangerous in any
case. Suppose a match vector is stored in the origin’s cache
and that it can successfully communicate with all targets of the
current access epoch. Independent from this, another target of
a subsequent access epoch (but of the same window) performs
its POST call and modifies the match vector in main memory.
Due to the missing coherence, the cached copy is unchanged,
but now becomes invalid. In case the origin’s cache evicts
the line (due to memory accesses by computation, e.g.) that
contains the cached and outdated match vector, it overrides
the manipulated match vector in the main memory. This would
cause a deadlock as the origin would check for a post operation
that actually took place but its effect was destroyed by the
origin itself and leads to an infinite loop.

However, to speed up polls of already synchronized targets,
a local and cacheable copy of the match vector is employed.
Inside a communication call the cached vector copy is checked
first. If there was no POST operation, the uncached match vec-
tor is polled and upon detection of the target’s post operation,
the cached copy is updated.

3) COMPLETE and WAIT: At the end of its access epoch,
i.e. in COMPLETE, the origin resets the entries corresponding
to the targets in Gs in the match vector and in its copy.
Subsequently, it decrements the targets’ completion counters.
However, the notification of completing an access epoch can
only be performed after an origin has successfully started its
matching exposure epoch. Only then, the target’s completion
counter is in a valid state and can be modified when the origin
completes. Thus, an origin first ensures that every targets in
Gs has synchronized (see Algorithm 2).

Then, it iterates through all targets and decrements their
completion counter. Similar to the targets’ accesses on the
match vector, the completion counter is accessed with un-
cached memory (see Figure 3). Further, to make the decrement
atomic, the test-and-set registers of the target’s core are used.

On the target’s side, the WAIT call polls the completion
counter with uncached memory as well to observe the decre-
ments made by the origins. Polling is performed until the
counter reaches zero.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of the SCOSCo approach, the
runtime required for synchronization is analyzed. The experi-
ments were conducted on a SCC system with cores clocked at
533 MHz and 800 MHz for the mesh network and the memory
controllers. A total of 32 GB of RAM was installed on the sys-
tem. Each core runs Linux 3.1.4 with platform-relevant patches
applied. Software is cross-compiled using GCC 4.4.6, and
MPICH 3.1.3 was used as the foundation MPI implementation.

Algorithm 2 Pseudocode for COMPLETE and WAIT
function COMPLETE

for all targets ∈ start ranks do . see START
repeat . busy wait for all targets
until match vector[local core][target] == 1
match vector[local core][target]← 0

end for

for all targets ∈ start ranks do . notify all targets
core ← CORE OF PROC(target)
LOCK TSR(core)
CC[core]← CC[core]− 1 . decrement remote CC
UNLOCK TSR(core)

end for
end function

function WAIT
repeat . busy waiting
until CC == 0 . poll with uncached reads

end function

The MPB-based CH3 channel from RCKMPI was merged
together with the modifications from [11] into the MPICH
sources. The synchronization functions were overridden to
implement the approach presented in this work. The resulting
MPI library was compiled with optimization enabled (-O2).

A. Microbenchmark

For measuring the synchronization performance, a mi-
crobenchmark was created that does not include any one-
sided communication like PUT and GET. This enables a fair
comparison with other implementations, for example MPICH’s
deferred approach that performs queued communication in the
COMPLETE routine.

Algorithm 3 Microbenchmark Pseudocode
for i = 0 . . . 1000 do

if rank == 0 then
ts,i ← TIME(START(Gs = {1 . . . k}))
tc,i ← TIME(COMPLETE)

else
tp,i ← TIME(POST(Gp = {0}))
tw,i ← TIME(WAIT)

end if
end for

Consequently, the microbenchmark only uses the PSCW
methods (cf. Figure 1). Further, it consists of a single origin
process that synchronizes with a given number of k targets
as illustrated in Algorithm 3. The runtime of each of the four
PSCW routines is measured by reading the per CPU time-
stamp counter with the RDTSC instruction before and after the
call. The synchronization sequence is repeated 1001 times. In
case of the targets, all recorded times tp,i and tw,i from all k
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Fig. 4. Scaling of PSCW synchronization on the SCC for the target (top) and
origin (bottom) processes.

targets are collected and the medians tp and tw are obtained
from the k ∗1001 samples. Besides outliers caused by process
scheduling only little deviation from the reported values was
observed: For all measurements, the first and third quartile of
the four measured timings never deviated by more than 5%
for origin and 10% for targets from the according median.

A synchronization at the beginning of each synchronization
loop is omitted since after one iteration the processes are syn-
chronized anyway. Additionally, using an MPI barrier caused
fluctuations in the measurements because the origin process
might leave the barrier later than some targets depending
on the number of started processes. In the experiments, the
benchmark was compiled with optimization enabled (-O2).

B. Scaling

The microbenchmark was used to analyze the scaling of the
implemented synchronization scheme. It was executed for up
to 32 processes (1 origin, up to k = 31 targets). The SCC
provides more cores but using (nearly) all of them questions
the usage of the PSCW scheme. In such cases, fence is more
appropriate.

The results for target and origins are shown in Figure 4.
The cores with numbers up to 31 (see Figure 2) were used for
this analysis.

The presented results show a nearly constant runtime for the
START and POST operations. For POST, this can be accounted
to the usage of only one origin process in the experiment.
In case of START, the constant runtime is attributed to the
trigger-only design of the synchronization protocol which does
not involve any communication in that routine. Thus, the
observed latency is introduced by MPI library overhead only.

Contrary, the COMPLETE and WAIT runtime exhibit linear
scaling. Concerning the COMPLETE call, this has two reasons.
First, the origin needs to notify all targets which is done in
a loop and thus causes linear scaling behavior. To do so, it

 0

 50

 100

 150

 200

 250

 300

 0  4  8  12  16  20  24  28  32

a
g

g
re

g
a

te
d

 la
te

n
cy

 /
 u

s

number of targets

origin (shared memory)
target (shared memory)

origin (MPICH message based)
target (MPICH message based)

21.7

49.1

115.2 115.9

156.2
170.9

5.7
13.4

25.8

46.5
63.3

76.4

Fig. 5. Comparison of target and origin synchronization times to and tt.
Numbered labels inside the plot are given for the target processes.

has to wait for all target to be synchronized (cf. Section IV-B)
which also scales linearly. This consequently affects the WAIT
on the target side which therefore shows linear scaling as well.

C. Comparison to MPICH’s Message based approach

Next, the SCOSCo synchronization was compared against
the default RCKMPI implementation that uses MPICH’s mes-
sage based CH3 synchronization [11] but transfers messages
over the on-chip MPB (see Section IV-A). The microbench-
mark and the methodology from Section V-B were reused.
However, the recorded median times of the origin, i.e. ts and
tc, were summed, giving the total time to required to perform
the PSCW synchronization on the origin side. The same was
done for the recorded median of the target times (tp and
tw) leading to tt. Figure 5 shows the obtained to and ts for
both RCKMPI/MPICH and SCOSCo as well as for different
number of targets.

The results reveal that despite RCKMPI’s usage of the fast
on-chip message passing buffer [11], the performance of the
message-based synchronization from MPICH delivers laten-
cies more than four times higher (e.g., 13 targets: 25.8 µs vs.
115.2 µs) than the SCC-aware approach. This can be explained
by the overhead of message assembly, sending, reception
and processing by MPICH’s internal progress engine. This
underlines that even in presence of a tuned implementation
for message transfer, a shared memory approach is more
appropriate on the SCC. Bearing in mind, this is possbile
without hardware support for cache coherence.

VI. SUMMARY AND CONCLUSION

We presented the design and implementation of the
SCOSCo PSCW synchronization on the Intel SCC, a non-
cache-coherent many-core system. The developed approach
leverages match vector and completion counters located in
shared memory. Even without cache coherence, the approach
delivers linear scaling and outperforms optimized message
based synchronization that utilizes fast on-chip memory. This
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shows that efficient synchronization is feasible also on nCC
architectures.
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Abstract—Besides aspects of HW/SW partitioning, resource
allocation and mapping, also the optimization of the memory
subsystem plays a crucial role during the complex HW/SW
co-design and co-optimization process. Especially for memory
bound applications, like state of the art video codecs, the
memory subsystem has become one of the bottlenecks limiting
the performance gains from parallelization and HW accelerated
approaches. Memory access conflicts, due to the concurrent
access to a shared memory location, are a major source of
this bottleneck. To develop counter strategies and to optimize
the design, an in-depth analysis of all memory access conflicts
is necessary and required. In order to provide this analysis,
we propose a flexible tracing and profiling methodology, which
provides a timing-accurate memory access conflict analysis for
SystemC-based platform simulation models. In a case study this
memory access conflict analysis is performed for a heterogeneous
platform running a parallel high efficiency video coding (HEVC)
intra encoder application. This analysis leads to an optimized
design, which reduces the number of memory access conflicts
and shows significant performance gains for the target video
encoder application.

I. INTRODUCTION

Nowadays the trend in video coding applications goes to-
wards more complex algorithms and more data to process. For
example, the high efficiency video coding (HEVC) standard
supports at its highest level a video resolution of 8K (8192 ×
4320) with 120 frames per second, which results in a raw data
input rate of approx. 6TB 1 per second. A typical approach
to speed up such an application is the parallelization of the
algorithm and/or the acceleration of the most performance
requiring parts of the algorithm by dedicated HW components.
According to Amdahl’s law, the theoretical improvement of
such an approach can be calculated based on the relationship
between improved and not improved portions of the algorithm
but unfortunately most systems did not show the expected
behaviour. One aspect limiting the expected parallelization
improvements can be found in the shared memory, where
the growing number of memory access conflicts increases the
average memory access latency for all components. To avoid
or reduce these memory access conflicts, an analysis of the
developed system and its memory behaviour is an important
requirement.

In order to aid the developer with this optimization task, we
present a performance and memory access analysis tool based

1Assuming a 4:2:0 color coding scheme with a bit-depth of 8Bits per pixel.

on the tracing and profiling of SystemC-based simulation
models. This tool can be used in the early design phase of the
HW/SW partitioning, when only a platform simulation model
is available, as well as in later design phases, like the HW/SW
co-optimization and refinement. The tool collects different low
level trace data events and combines these data to analyse
the memory access characteristics, in particular the memory
access conflicts, of an observed platform simulation model. A
demonstration of the tool’s capabilities is given for a video
coding use case where the analysis of the memory access
conflicts leads to an optimized design, which improves the
overall application performance.

II. RELATED WORK

Memory access analysis approaches can be classified into
intrusive and non-intrusive approaches. Intrusive approaches
collect the trace data by executing a modified version of the
analyzed software. This modification changes the execution
of the software, which affects the timing accuracy of the
collected trace data. Contrastingly, non-intrusive approaches
collect the trace data without modifying the software, typically
by the usage of modified hardware components. For this use,
non-intrusive approaches mostly utilize simulation techniques,
which leads to high execution times, especially in comparison
to intrusive approaches, where the instrumented software often
can be executed directly on the host processor.

However, also intrusive approaches may use simulation
techniques to model some part of the target architecture as
proposed for example in [1]. In this approach a cache simulator
is added to the Valgrind framework [2] to model and analyze
cache related metrics, e.g. number of cache accesses and cache
misses for a generic cache implementation. In this context
the Valgrind framework itself provides the infrastructure for
the instrumentation of the observed software, based on a
dynamic binary analysis (DBA) at runtime. A similar trace
data collection approach is presented in [3], which implements
a Valgrind based profiling tool to recognize memory access
patterns in computational kernels. Therefore all memory ac-
cesses are traced, and then the tool checks if the access pattern
of multiple accesses can be matched to a set of classifiers with
predefined memory access characteristics.

Hardware component instrumentation based approaches can
be found in [4], [5] and [6]. All three approaches are using
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the SoCLib [7] system simulation component library to collect
the trace data, either by adding special hardware monitoring
components [6] or by modifying existing hardware compo-
nents [4] and [5]. Hereby, the analysis in [6] is focussed on
the latency of communication channels and their basic data
structures. In comparison, the analysis in [4] is focussed on
tracing memory accesses to detect and identify potential data
races in a parallel algorithm. An extension of this data race
detection tool is proposed in [5]. This tool additionally traces
the memory access latencies to identify portions in the source
code where a certain contention pattern arises.

A more generic instrumentation approach for SystemC
simulation models is presented in [8]. This approach is based
on the aspect oriented programming paradigm to separate the
implementation of the trace data code from the functional code
of the platform simulation model. In a process called aspect
weaving the trace data code is inserted by a pre-processor
into the platform simulation model to trace different events
from the implementation of the hardware components. By
using this instrumentation approach, [9] automatically traces
all transaction level modeling (TLM) connections between
different SystemC modules, to verify different pre-defined
timing conditions for TLM based data exchanges.

In this paper we present an extension of our non-intrusive
tracing and profiling tool [10]. This extension enables the
collection of memory access characteristics and provides a
memory access conflict analysis. Due to the simulation based
approach, the tool can perform a timing-accurate analysis of all
memory accesses. Moreover, the tool is capable of analyzing
heterogeneous platforms and can also incorporate memory
access data from HW only components into the conflict
analysis. In comparison to the other discussed SystemC-based
approaches, the tool does not require the instrumentation of the
platform simulation model to collect the necessary trace data.
Instead, an automatic platform design analysis is performed to
configure the trace data collection module and to provide an
easy adaption mechanism for new platform simulation models.

The remainder of this paper is organized as follows. In
Section III the simulation based memory access conflict
analysis methodology is described. Based on this analysis
methodology, a case study for a heterogeneous and parallel
HEVC intra video encoder is shown in Section IV. Results for
the suggested optimization of the memory layout are discussed
in Section V and finally a concluding summary is provided in
Section VI.

III. MEMORY ACCESS CONFLICT ANALYSIS

A. Non-intrusive Trace Data Collection

Given a software based executable of the platform simu-
lation model, a simple way to collect the trace data is to
instrument this platform simulation model with a set of trace
primitives, which have to be included at appropriate places. A
downside of this approach is the lack of flexibility, because
the instrumentation code has to be maintained, whenever
the implementation is changed. Furthermore introducing new
components or switching to a new platform simulation model

requires from the developer the additional effort to add this
instrumentation code. In case of SystemC, each platform
simulation model is composed of basic standard components,
e.g. SystemC modules, ports and signals, which enables a more
flexible way to collect the required trace data by instrumenting
these standard components directly.

In SystemC different platform components are either con-
nected by a set of signals, in case of bit accurate designs, or
by a TLM socket, in case of a transaction level model (TLM)
design. Based on this observation it is sufficient to instrument
the SystemC signal class and the TLM socket class to trace a
memory access. For this instrumentation we choose the signal
update function in the common SystemC signal base class and
the transaction start/end functions in the common TLM socket
base class. By adding callbacks from these functions to our
trace data collection module, all signal changes and all TLM
access within each SystemC-based simulation model can be
traced.

Of course for complex designs with hundreds or more sig-
nals, it is not feasible and also not required to trace all changes.
To reduce the set of traced events, a set of relevant events
within the platform simulation model has to be identified. This
identification is based on an automatic design analysis, which
is performed at runtime, after the platform simulation model
has been created. After the SystemC elaboration phase, all
instantiated modules and signals are inspected by the trace data
collection module and a map of design elements and their in-
terconnections is created. Additionally the trace data collection
module analyses static C++ design elements, to enable also the
tracing of changes of SystemC module member variables. This
information is relevant to observe also static design elements,
like a program counter or a register set in an instruction set
simulator, which is required to correlate software and hardware
events in the observed system. Based on this automatically
generated map of SystemC modules and their interconnections
only the tracing of memory access signals is enabled inside the
SystemC simulation kernel, without requiring to instrument or
modify the used platform simulation model.

B. Memory Access Conflict Detection

To create memory access traces, it is necessary to collect
information about the accessed memory address, the accessed
size and the duration of this access. But in case the simulation
model utilizes signals to carry out a memory access, this
information has to be extracted from a set of multiple signals,
each playing a specific role during the memory access process.
Based on a meta-data specification of the signal roles for
different data exchange protocols, the traced signal changes
are combined to provide the required memory access infor-
mation. An exemplary signal role configuration for the virtual
component interface (VCI) standard is shown in Fig. 1.

Given the combined memory access traces from multiple
platform components, e.g. processing elements and/or HW
accelerators, the detection of memory access conflicts can
be realized. In this case a conflict is detected, whenever two
different memory accesses from different sources temporally
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Fig. 1. Combining the traced signal changes to collect different memory
access information.

overlap and the execution of at least one of these accesses is
delayed. The implemented conflict detection process is based
on a windowed approach, where each memory access is stored
in a FIFO buffer and removed, when the end time of the access
is below the start time of a newly detected access. Therefore
only the small set of memory accesses in the FIFO has to
be compared with each other to detect all memory access
conflicts during a simulation model run. For the evaluation
of these conflicts each conflict is either attributed to different
data structures by its traced memory addresses or to different
executed program instructions by tracing the current program
counter.

IV. CASE STUDY

A. High Efficiency Video Coding

The HEVC standard is an example of a block-based hybrid
video coding scheme. In this scheme the input frame is split
into a set of smaller blocks called coding units (CUs), and
each CU is encoded by a combination of prediction, transform
and entropy coding algorithms, as shown in Fig. 2. In case
of the HEVC main intra profile the prediction uses only
reconstructed samples from the current frame facilitating the
spatial correlation between adjacent samples.

For a high video compression efficiency it is beneficial to
adapt the CU size (block size) to the input video data content.
Therefore the encoder supports different CU sizes ranging
from 64×64 to 8×8 samples. To adapt the CU size to the
input video data content, the encoder can decide to use either
the whole CU for the compression algorithm or to split the
CU recursively into four smaller CUs, which leads to a tree
like coding structure called coding tree unit (CTU).

Because these different CU size compression stages could
be executed independently from each other, the encoder algo-
rithm has been parallelized internally by using one task for
each CU size compression stage. This results in five parallel
CU compression kernels, which will be denoted by their depth
in the CTU tree by D0 for size 64×64, D1 for size 32×32,
D2 for size 16×16, D3 for size 8×8 and D3.N for size 8×8
with an additional split of the prediction unit. Additionally
different time consuming parts of the algorithm, like transform,
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Fig. 2. HEVC intra encoder model.
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Fig. 3. Instrumented platform simulation model.

quantization, intra prediction or cost calculation, have been im-
plemented as HW-accelerated components, to further speedup
the platform simulation model. Each of these HW accelerator
components has a set of control registers for programming
and a DMA controller for data exchange. A more detailed
description of the used HEVC intra encoder is given in [11].

The implemented platform simulation model for this use
case analysis contains five ARM instruction set simulators
(ISS) for each of the parallel CU size compression stages, five
HW accelerator components, a worm-hole switched network
on chip (NoC) and two memory components, as shown in
Fig. 3. Most commonly used synchronization data structures
are located in the second memory component RAM2, as
described in [11]. The components for this platform simulation
model are cycle accurate and bit accurate (CABA) components
provided by the SoCLib project [7]. In order to detect memory
access conflicts, all outgoing data connections from processing
elements and HW accelerators will be analyzed and evaluated,
as shown in Fig. 3.

B. HEVC Encoder Analysis

To visualize the distribution of the memory access conflicts,
the collected data is sampled at different time intervals and for
different memory regions forming a spatial temporal grid. In
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Fig. 4 this sampled data is shown for an exemplary encoder
run, where the first three CTUs have been encoded. As can be
seen in this figure, most conflicts are found in the memory
regions marked by the horizontal lines, which contain the
data structures for each CU compression stage. Furthermore
no conflicts can be found in the initialization phase, because
in this phase only one processing element is allocating and
initializing all data structures. Afterwards, the memory access
conflict pattern is quite similar for each encoded CTU, because
the parallel algorithm has frequent synchronization points
inbetween, which results in a similar conflict behaviour.

A summary of the memory access conflicts distribution
in percent for data structures used only by the different
CU compression stages is given in Fig. 5. As can be seen,
in summary most of the memory access conflicts (approx.
74%) can be contributed to these data structures, with an
increase of conflicts towards the lower depth CU compression
stages. The remaining part Remain contains conflicts in data
structures shared between the CU compression stages, like
video data input, bit-stream data output or the reconstructed
picture buffers.

To visualize the conflicts between the CU compression
stages, Fig. 6 shows a memory access conflict matrix, where
a conflict is registered for each pair of involved memory
addresses. As can be seen, each stage interferes with each
other stage in a similar way, but most conflicts are located at
the beginning and at the end of each CU compression stage
data structure.

In summary most conflicts can be located in the data struc-
tures of each CU compression stage with an increase towards
the lower CU compression stages. These memory structures
are quite small (approx. 512KB) in comparison to the overall
memory footprint of the encoder. Therefore a simple counter
measure to reduce the number of memory access conflicts is,
to add further memory components to the platform and to

Fig. 6. Memory access conflict matrix for CU compression stages.

map the CU compression data structures to each of these new
separate memory components. Due to the NoC interconnect,
multiple concurrent accesses become possible as long as these
accesses are routed to different memory components.

V. EXPERIMENTAL RESULTS

In a first experiment each of the five different CU com-
pression data structures is mapped to a separate memory
component added to the platform simulation model. For each
memory component the access latency is configured in a range
from 5 to 50 clock cycles to model different main memory
access delays. As can be seen in Fig. 7, the speedup between
the basic platform simulation model and the model with the
additional memory components increases for higher memory
access delays. In case the memory access delay is small, which
in terms means a fast main memory, the improvement of
the execution time is small, when adding additional memory
blocks. On the other side, systems with slow main memory
will benefit from adding additional memory blocks, which
means for a final design a trade-off is possible between the
memory access delay and the number of memory components.

As shown in the previous section Sec. IV-B, the number of
memory access conflicts increases for lower CU compression
stages. Therefore in a second experiment only a subset of the
CU compression data structures is mapped to the additional
memory blocks, whereas the memory access latency is fixed
at 20 clock cycles. In one configuration, shown on the left
side of Fig. 8, only one single CU compression component is
mapped to a new memory component. Additionally, in another
configuration, shown on the right side of Fig. 8, the number
of mapped CU compression data structure is successively
increased, starting from the lowest CU compression stage,
until all data structures have been mapped to different memory
blocks.

As expected, mapping the D3.N data structures to a separate
memory component, shows the highest speedup in case only
one separate memory component is available. In case multiple
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Fig. 4. Memory access conflict trace over execution time for encoding three CTUs. Vertical lines depict the beginning of a new encoded CTU. Horizontal
lines mark the memory interval containing CU compression data for each stage.
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Fig. 7. Encoder execution time speedup of the optimized platform simulation
model for different memory access latency parameters.

separate memory blocks are available, the distribution of
memory access conflicts can be used to prioritise the mapping
of the different data structures and to explore a trade-off
between performance and HW costs for additional memory
components.

VI. CONCLUSION

This paper presents a simulation based analysis of memory
access conflicts for a heterogeneous multi-core platform. The
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model for different memory mappings.

memory access trace data is collected non-intrusively from
a SystemC-based simulation model. Therefore the SystemC
simulation kernel has been instrumented, which facilitates a
flexible and generic trace data collection approach. In order to
control the trace data collection module, an automatic design
analysis of the SystemC-based simulation model is performed
at runtime. The analysis of memory access conflicts is based
on the collection of all memory access data from each platform
component, e.g. processing elements and HW accelerators.
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By this approach all sources for memory access conflicts are
observed and also heterogeneous designs can be analyzed.

To show the capabilities of the implemented memory access
conflict analysis, a heterogeneous and parallel HEVC intra
video encoder has been examined in a case study. In this
case study the main sources for memory access conflicts have
been identified, which leads to an optimized platform design.
The speedup of this optimized design depends on the initial
memory access latency but even for small latencies (10cc) a
performance gain of 30% and more could be observed. In
future work we plan to extend the analysis tool to perform
an automatic hotspot analysis and to provide automatically a
segmentation of the involved data structures to derive possible
platform optimizations.
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Abstract—
Classical frequency converters are designed as embedded

devices optimized for a specific application-field. But in times
of Industry 4.0 simple frequency converters change to smart
control units and become more intelligent with analysis and
reporting functions to build up smart grids in automation systems
for reducing maintenance costs and increasing productivity. To
realize these new functions, an evaluation is needed, which kind
of computer architectures should be used for these new devices.
Due to more complex algorithms, classical microcontrollers are
not sufficient anymore. Therefore, we show in this paper, if and
how microprocessors in smart control units can benefit from
highly parallel hardware accelerators. Consequently, we propose
to increase the performance of an ARM Cortex-A9 processor by
using an Epiphany III E16 many-core processor as hardware
accelerator for complex analysis tasks. Our results show, that a
speedup of 1.78 can be achieved, while the power consumption
is increased by only 9%.

Index Terms—Smart Sensors, Many-Core Processor, Hetero-
geneous Processor Architecture, Epiphany, Parallella, Embedded
Preprocessing

I. INTRODUCTION

For the control of most electrical engines frequency con-
verters are needed. Therefore, the standard solution is to use
embedded microcontrollers executing simple PID regulators.
Depending on the application area of the electrical engines,
there are different requirements for the control algorithms
regarding performance, latency and power. Especially the
embedded hardware of control units produced in quantity
should be just powerful enough to meet the minimum re-
quirements of a stable regulator. In other application-fields
like power generator systems, they must be highly accurate
to guarantee optimal control. Otherwise power would only
be fed inefficiently to the grid. Moreover, robot arms need
a low latency for fast movements. Beside controlling of
electrical engines, frequency converters can also monitor them.
To fulfill the requirements of the Industry 4.0 a paradigm
shift can be seen from simple frequency converters to more
powerful smart control units with advanced analysis functions.
Simple functions include the determine whether an engine is
running or the analysis of different voltage levels. A more
complex example is the spectrum analysis of the voltage and
current waveforms, for example to detect failures of engines
in a very early state, as it was shown in [1] to monitor
electrical engines on a ropeway. Thus, maintenance costs
can be reduced by additional monitoring information. This

way, parts in an automation system that otherwise become
defective and interfere with production, can be identified and
replaced in time. Furthermore, monitoring information can be
provided actively by the frequency converters itself within big
automation systems. Another optimization, which can be done
by power analysis is feature extraction. Instead of transmitting
all acquired raw samples for monitoring, the amount of data
to transmit can be reduced significantly by preprocessing
the raw values already in the sensor. Thus, only the state
of the according electrical engines has to be transmitted.
Such smart sensors, which combine data acquisition and data
preprocessing, can be the solution to realize big, complex
systems. To execute all these additional tasks on the power
controller, more computing power will be needed.

To gain more computing power, different approaches from
the view of computing architectures are possible. Because
most frequency converters uses only simple microcontrollers
(e.g. ARM Cortex A9), a replacement with a more powerful
device (e.g. ARM Cortex A57) is possible. Although this
way seams to work, the new device becomes more cost
intensive and is also “overpowered” if only a legacy fre-
quency controller is needed. Therefore, we propose in this
paper the usage of parallel hardware accelerators. Using this
methodology, it is possible to optionally put computational
power to a existing device to make it more intelligent or
even smarter. In summary, a possible approach is to use a
common platform with minimum required hardware resources
to provide the main functionalities, like PID controls, which
are always needed for every application. Furthermore, there are
free slots, where additional accelerator cores can be mounted.
These can be necessary to implement more complex filter
operations, reducing latency by processing multiple channels
in parallel, executing more complex regulator algorithms and
the concurrent signal analysis of several channels. Thereby, it
is possible to cover a wider application area and reducing the
development, as well as the production costs. An abstract view
how the described system could look like is shown in Fig. 1.

The goal of this paper is to determine if and how hardware
accelerators can help to put more smartness into power control
units. As starting point of this work, we have chosen the
Epiphany-III many core processor with 16 RISC cores. Due
many different channels which have to be processed in power
control units, this chip seems to be a good choice for process-
ing acceleration. Moreover it has a low power consumption
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Fig. 1. Platform for an extendable frequency converter control unit.

and due to the Network-on-Chip architecture with off-chip
connections, the computation power could be easily increased
by putting multiple devices together. Finally, the Epiphany pro-
cessor is programmable with high-level languages like C/C++
and does not require detailed hardware design knowledge as
it is needed when using for example FPGAs as accelerators.

This paper is structured as follows. Section 1 discussed
the need of smart control units and explains the need of
new architectures for these devices. In the next section some
work is presented, which relates to this topic. In Section 3
the algorithms, which run on such a smart control unit are
analyzed in more detail. The implementation is described in
Section 4. Section 5 presents an evaluation when the usage of
hardware accelerators is useful. We will finish this paper with
a conclusion and a short outlook.

II. RELATED WORK

Most controllers of frequency converters were designed as
highly optimized solutions to reach the needed performance.
In [2], for example, the system is optimized for a small scaled
robot, a controller for quadrocopters was shown in [3] and
a PID using fuzzy logic was presented in [4]. Thus, it is
difficult to find a common platform to save time and costs
in development.

To gain more flexibility and cover a wider application area,
a framework was presented in [5]. Another approach utilizing
Simulink was shown in [6] In [7] an application-specific
instruction set processor (ASIP) was developed to increase
flexibility. However, all these proposals are only useful for the
same kind of algorithms, like PID controls.

However, there are also control algorithms, which differ
drastically from another. For fuzzy logic controllers [8], there
are completely different requirements on the hardware than on
self-tuning regulators [9]. Moreover, for supporting multiple
channels an ability to execute those channels in parallel is
needed. In [10] a robot arm with six degrees of freedom
was presented, multiple channels have to be controlled in
parallel. In [11] even a combination of self-organizing reg-
ulators using multiple channels was presented. The presented
frameworks and tools are not flexible enough to cover such
wide application-fields.

One approach to execute nearly all applications is to utilize
FPGAs. As shown in [12], configurable hardware offers large

flexibility, so the hardware can be reused. In [13] a combi-
nation of a microcontroller and a FPGA was presented to
increase the performance by an accelerator core. However, a
single architecture, can either be designed for high perfor-
mance or low power application-fields. Moreover, applying a
hardware description language, which is needed to configure
FPGAs, increases the development time.

Requirements on the embedded can strongly differ. Beside
applications using small scaled low-energy microcontrollers
like in [14] and [15], there are other ones requiring more
performant hardware, as in [16]. There a DSP serves as
processing unit for high performance motor drives.

To cover also these different types of applications, a simple
programmable and extendable architecture is required. So
our approach is to use a standard embedded architecture,
like an ARM processor as main control unit and many-core
architectures as accelerators, which can be mounted optionally.
A suitable many-core processor is the Epiphany III E16 from
Adapteva. Zain Ul-Abdin demonstrated the performance of the
Epiphany core by executing radar processing algorithms on
it in real-time [17], [18]. Moreover, Reichenbach et al. used
the Epiphany core to execute correlation functions in real-time
[19]. So, this architecture will provide the needed performance
to serve as optional mountable accelerator core to speedup
control and analysis algorithms requiring more performance.

III. ALGORITHMS FOR CONTROLLING AND ANALYSIS
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Fig. 2. Illustration of a frequency converter.

In Figure 2 a frequency converter is shown, converting
frequency and voltage amplitude of the source signal. Thereby
the frequency converter can be divided into a power electronics
part, the Power Unit and into an embedded hardware con-
troller, illustrated as Control Unit. To test an accelerator for
a control unit, a reference design for a three phase current
was implemented. This reference is presented in Figure 3.
On the control unit two main applications are executed:
the controlling, which processes the blocks in green and a
monitoring application, executing the red marked block.

After sampling the voltage and current values of all 3
phases, filtering is needed at the control application, to achieve
a stable regulation. To execute a PID algorithm, the gath-
ered information of all channels has to be transformed into
space vectors. Afterwards, another space vector modulation
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is required to transform the data back. Then a pulse-width
modulation (PWM), which is implemented as a peripheral of
the microcontroller, is used to control the Power Unit.

For a simultaneous analysis while controlling the frequency
converter, a Monitoring unit is implemented. There a compute-
intensive FFT calculation is needed to get the spectrum of
all sampled signals. This spectrum gets analyzed to detect
failures in the system, such as damaged bearings of electric
engines. These errors can then be reported by a communication
interface.

Monitoring
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SamplingFilter

Filter
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transform

dq-
transform

phase
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control
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uu
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uw
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Fig. 3. Realized data flow within the control unit for frequency converters.

IV. RESULTS

To evaluate the algorithms on different architectures, the
Parallella board from Adapteva was used as reference plat-
form. The board owns an Epiphany III E16 many-core pro-
cessor and a Zynq system-on-chip core from Xilinx with an
integrated ARM Cortex-A9 dual core processor. To validate
the approach of utilizing hardware accelerators for frequency
converter control units, firstly all functionalities were imple-
mented on the ARM processor. Then parts of the algorithms
were executed on the Epiphany accelerator to ascertain if there
is a speedup.

A. Speedup of the Execution time

Since the control algorithms of this reference design do
not need much processing power and the code is only poor
parallelizable, even on the two cores of the ARM Cortex-A9,
there was no need to speedup the calculations by using an
accelerator.

For the monitoring algorithm a FFT is required, which
is a highly compute-intensive task. Thus, it was outsourced
to the Epiphany accelerator for relieving the main CPU. To
determine the speedup by an accelerator core, the algorithm
was implemented for FFT calculations of 1, 4 and 8 channels
in parallel. Thereby two different amounts of input values were
considered, with 4096 and 16384 input values. The results
are illustrated in Figure 4. For the implementation on the
ARM core the FFTW 3.2.2 ARM [20] library was used. To
increase the performance of the monitoring algorithm, the
FFT and the peak detection was calculated on the accelerator
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Fig. 4. Measured execution times of different monitoring algorithm configu-
rations.

processor. On the 4096 FFT variant, 4 of 16 Epiphany cores
were allocated for one FFT. So the monitoring algorithm for
1 channel utilizes the Epiphany only up to 25%, what resulted
in a longer execution time. Only for the monitoring of 4 or 8
channels the core is utilized completely. On the FFT variant
with 16384 input values, all 16 Epiphany cores were used for 1
FFT calculation. So the whole accelerator was already utilized
completely for monitoring 1 channel. Monitoring multiple
channels was also executed consecutively as on the ARM core.
In this scenario, a speedup of up to 1.78 was reached.

B. Communication between Processor and Accelerator

With the Epiphany an even higher speedup could be reached
theoretically, but measurements have shown, that the data
transmission to and from the accelerator is the bottleneck
of the system. The fastest way to transfer data between the
Cortex-A9 and the Epiphany is to use the shared memory of
the Parallella. The memory read and write access times of
both processors are shown in Figure 5 and Figure 6.

However, most tasks executed on the Epiphany are memory
bound. Only computing-intensive tasks are suited to be exe-
cuted on the accelerator keeping the amount of communication
transfers between the processors low. Another way to increase
the performance is to use a DMA controller, which moves raw
data from input peripherals directly into the shared memory,
as assumed in IV-A. Thus, the data transmission time can be
reduced and the ARM processor gets relieved.

Due to high transmission times, for the reference design
a benefit in performance is only given by outsourcing the
compute-intensive parts of the analysis application. For the
controlling task the execution time would rise, if the parts of
the calculations would have to be transfered to the accelerator
firstly. This was also estimated by a roofline model, which is
shown in Figure 7.

C. Power Consumption

Apart from performance measurements, on embedded de-
vices power consumption also has to be taken into account.
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Fig. 5. Execution times to transfer data from ARM Cortex-A9 to the Epiphany
on the Parallella board.
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Fig. 6. Execution times to transfer data from the Epiphany to the ARM
Cortex-A9 on the Parallella board.

Therefore, the power consumption was measured during exe-
cution of all algorithms on the ARM processor and while the
Epiphany was activated executing the monitoring algorithms.
As illustrated in Figure 8 the consumption rose by 0.4 W.
The results show, that the whole evaluation board needs 9%
more power if the Epiphany is activated and the performance
increases by 79%. Thus, only 60% of the energy is needed for
the same calculation using the accelerator core.

V. CONCLUSION

To keep up with the requirements of Industry 4.0, power
control units needs to become more intelligent with internal
analysis functions. Therefore, new architecture concepts are
necessary to fulfill these requirements. For a flexible and
scalable solution, we have shown how hardware accelerators
can be used to speedup calculation and allow complex data
analysis already at the sensor.

In this paper we presented two applications, a PID controller
as well as FFT for power monitoring which have to executed
simultaneously at a smart power control unit. The results
show, that for a PID controller a standard ARM 9 core
is sufficient, while for more complex analysis operations a
hardware accelerator is required. Using the Epiphany-III chip
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Fig. 8. Power measurement while executing all tasks on the ARM processor
and enabling the Epiphany accelerator.

from Adapteva, a powerful high parallel embedded computing
architecture is available which can do the FFT processing in
real time and therefore free computational resources at the
ARM core in favor of the PID control executed on it.

In this work, we first evaluated which architectures could
be used for constructing new smart power control units. Using
these results and the presented concept of a flexible and
expendable architecture our next step is to realize an own
PCB using an ARM 9 core with the capabilities to put several
hardware accelerators in this system.
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Abstract: Cryptanalytic algorithms such as dictionary attacks, that test huge numbers
of keys to decrypt a ciphertext to a certain plaintext, need lots of computational re-
sources and efficient coding, but allow large scale parallelism such as many-cores plus
GPUs. Some attacks have profited from a bit-serial data representation, that allows
SIMD-like coding per thread and increases the degree of parallelism. We investigate
the question how to decide for distinct parts of such algorithms whether to code them
in a bit-serial or normal word-parallel manner. Given bit-serial and word-parallel vari-
ants for each part of the cryptographic algorithm, we benchmark the runtime of the
variants, and additionally the runtime of the conversion between the different data rep-
resentations. Then we model the resulting variant selection problem as a direct graph
— in the fashion of a global composition optimization problem — and find the op-
timal runtime by computing the shortest path from source to sink node. We evaluate
our approach with the Advanced Encryption Standard (AES) and demonstrate runtime
advantages.

Keywords: Cryptanalytic Algorithm; Bit-Serial Computing; Global Optimiza-
tion; Performance Tuning; Parallel Algorithm

1 Introduction

In recent years, parallel computing often means heterogeneous parallel computing with
different processor architectures and accelerators such as GPUs. Finding the optimal allo-
cation of work to different execution units thus becomes a non-trivial optimization prob-
lem. This optimization problem is complicated by other aspects as well, such as e.g. the
best choice of a (parallel) sorting algorithm, which depends on the number of items to be
sorted, their pre-sorting state, and the available implementations of different variants of
sorting algorithms on the different execution units. In this manner, performance tuning
of parallel applications has become a complex optimization problem that must be solved
partly at algorithm design time, partly at compile time, and partly at execution time.

In the present work, we consider cryptographic applications like a dictionary attack (cf. e.g.

22



[MvOV97]), that execute millions to billions of decrypt operations on the same piece of
ciphertext, but with different keys. Hence, these applications exhibit a tremendous amount
of independent parallelism. As many encryption algorithms evaluate boolean functions
during their execution, bit-serial (sometimes called bit-slice) computing in SIMD fashion
(see Sect. 2) has been used for long to increase parallelism, improve speed, and reduce
control-flow divergence on GPU architectures.

Our approach to further improve performance is to split a cryptographic algorithm into
distinct parts, and provide both a normal (i.e. word-parallel) and a bit-serial implementa-
tion variant for each part. Additionally, we employ a known routine for data conversion
between the two variants. Now, the application can be modelled in the fashion of a global
composition optimization problem [HK14] as a directed graph, where nodes are variants
attributed with their runtime, and arcs represent the flow of execution, and might be at-
tributed with the conversion runtime if an arc’s head and tail use different variants. By
finding the shortest path from source to sink, the best combination of variants is found.
To our knowledge, this represents a novel use for global composition of program variants,
and has never been used to optimize parallel cryptographic algorithms.

As a case study, we apply our approach to an implementation of the Advanced Encryption
Standard (AES) [Nat01], forecast an optimal mix of variants and demonstrate in experi-
ments that runtime advantages over both purely bit-serial and word-parallel implementa-
tions are indeed possible.

The remainder of this work is structured as follows. In Sect. 2, we summarize basics
about bit-serial computing, while Sect. 3 briefly reviews the global composition of program
variants. In Sect. 4, we briefly summarize the AES algorithm as the object of our case
study, apply the optimization algorithm from Sect. 3, and report our experimental results.
Section 5 concludes and gives an outlook to future work.

2 Bit-serial Computing

Bit-slice processors, i.e. processors with a data width much smaller than a normal word
width — in the extreme case called serial or bit-serial processors — have been known for
long, e.g. in the Connection Machine [KH89]. Typically, a number of these processors
work together in SIMD fashion to operate on data of normal width.

Also, the same concept has been known in software for decades. Biham [Bih97] “view(s)
the processor as a SIMD computer, i.e., as 64 parallel one-bit processors computing the
same instruction” and sees bit-serial computing mainly as a “non-standard representation”
of data. While this may sound strange at first glance, it ensures that all data bits are used by
parallelism, which is often not the case in normal computations, e.g. when the instructions
operate on bytes or even on single bits while evaluating a logical expression.

We illustrate this concept with three small examples: one that favors bit-serial computing,
one that favors normal data representation, and one where it depends on the circumstances
which one is better.
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Assume that we want to evaluate a boolean expression for many parameter values, e.g.
yi = ai ∧ bi for i = 0, 1, . . . , 31. Normally, we code

int i;
int y[32],a[32],b[32];
// ... set values in arrays a and b
for(i=0;i<32;i++) y[i] = a[i] & b[i];

and apply parallelism in the form of loop parallelization. Yet, if we transfer the lowest bits
from each array element a[i] into one variable as such that the bit from a[i] is the ith
bit in as, then we can simply write

int ys,as,bs;
// ... set values in as and bs
ys = as & bs;

If 216 evaluations are to be done, then with 32 threads, each thread would have to do 211 =
2048 evaluations in normal representation, but only 25 = 32 evaluations with bit-serial
representation. If surrounding operations are also expressed in this manner, conversion
of the representation is not necessary. Thus, bit-serial computing is advantageous in this
case.

As a second example, consider that we want to do additions on 32-bit integer variables.
The normal code is obvious and similar to the first example:

int i;
int y[32],a[32],b[32];
// ... set values in arrays a and b
for(i=0;i<32;i++) y[i] = a[i] + b[i];

In bit-serial representation, the data is organized in a manner orthogonal to the normal
representation: variable as[j] contains bit j of each variable a[i] in bit i. This is
illustrated in Fig. 1 for j = 0. Then, addition is performed bit by bit as in a full adder:

int j;
int ys[32],as[32],bs[32],cs[33];
// ... set arrays as and bs, and set array cs to 0
for(j=0;j<32;j++){ ys[j] = as[j] ˆ bs[j] ˆ cs[j];
cs[j+1] = (as[j] & bs[j]) | ((as[j] ˆ bs[j]) & cs[j]); }

Please note that the conversion between the normal and the bit-serial data representations
is nothing more than the transposition of a bit matrix with the variables a[i] and as[i]
(i = 0, . . . , 31) being the row vectors of the matrix and transposed matrix, respectively
(cf. Fig. 2). An efficient algorithm for bit transposition is given in [RSD06], and we will
use a variant in the sequel.
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Figure 1: Corresponding word-parallel and bit-serial data representations.

Obviously, bit-serial representation is not advantageous in this second case, as an addition
is replaced by 6 logical operations, and two assignments are used instead of one.

Finally, assume that we do a table lookup in a constant array defined over bytes.

int i;
uint8 y[32], a[32];
uint8 tab[256];
for(i=0;i<32;i++) y[i] = tab[a[i]];

Here, the bit-serial variant is not straightforward. If we use a 32-bit variable ys[0], that
contains the bit 0 of each variable y[i], then bit i of ys[0] will depend on all bits
of a[i] and on tab. Thus, a table for looking up ys[0] would be infeasibly large.
However, we can express the dependence of each bit of y[i] on the 8 bits of a[i] and
on tab by a boolean function in at most 8 variables, as tab is a constant array.

uint32 ys[8], as[8];
ys[0] = some boolean function on as[0] to as[7];
...
ys[7] = another boolean function on as[0] to as[7];

Hence, depending on the complexity of these boolean functions, the code might be slower
or faster than the original table lookup. For example, if tab[x] would give the number
of bits set in the binary representation of x (where 0 ≤ x ≤ 255), then ys[7] to ys[4]
would be 0, as the maximum number of bits set could be 8 (=00001000 in 8-bit binary),
and ys[3] = as[0] & ... & as[7].
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Figure 2: Graph with 4 program parts, each with 2 variants, taken from [HK14].

3 Global Optimization of Variants

To explain the global composition optimization, we use a very simple example. Consider
an application that proceeds in rounds, where each round consists of two code parts. Each
part is available in two variants A and B. The variants of each part consist of different
code, and different data representation, so that combining variant A of part 1 with variant
B of part 2 involves a conversion of the data representation between part 1 and 2, and
another conversion between part 2 and part 1 of the next round. In the following, ai and bi
denote the numbers of cycles for variants A and B of part i, respectively. Furthermore, c
denotes the number of cycles needed for a conversion in either direction.

If a1 < b1 and a2 < b2, then clearly variant A should be chosen. The same holds if variant
B is better in both parts. We consider the interesting case where a1 < b1 but b2 < a2.
Let us assume that the differences are identical, i.e. d = |a1 − b1| = |a2 − b2|. Then the
combination of variant A in part 1 and variant B in part 2 should be chosen if 2c < d,
because then

a1 + c+ b2 + c < a1 + a2 = b1 + b2 .

Clearly, the same idea can be used if |a1 − b1| 6= |a2 − b2|, but more cases have to be
considered to find the optimum. The idea can also be generalized to more than two parts
and to more than two variants per part.

This problem has been investigated as global composition optimization [HK14], and treats
the variant problem formally by modelling with a directed graph, where each variant for
each program part is a node, attributed with its runtime, and arcs represent the flow of
execution, where each variant of one part is connected to each variant of the following
part (i.e. piecewise complete bipartite). If an arc connects different variants, it is attributed
with the runtime of the conversion code. An example with 4 parts is depicted in Fig. 2
taken from [HK14]. The best combination of variants is found by computing the shortest
path from source to sink. Note that optimization can be done over several rounds [HK16],
so that performance improvements might even be possible if c > d/2.
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4 Case Study

An application domain where mainly boolean operations and table lookups are performed
is encryption. Thus, from the above, bit-serial representation looks advantageous. Also
fixed bit permutations, which frequently arise in encryption, are easy with bit-serial repre-
sentation as only the indices of the as variables have to be permuted accordingly. Biham
[Bih97] already demonstrated that bit-serial representation leads to more efficient imple-
mentation of the Data Encryption Standard (DES). Similar approaches has been imple-
mented for its successor Advanced Encryption Standard (AES) [KS09, RSD06].

We therefore illustrate the so far rather abstract idea of mixing word-parallel and bit-serial
program parts with Advanced Encryption Standard (AES) as a concrete example. AES is
a standard for a symmetric block cipher based on the Rijndael algorithm [DR00], chosen
in 2000 by NIST as the successor to DES and published in 2001 as a standard [Nat01].
Encryption of a data block consists of a number of rounds (10 to 14, depending on key
size), where each round consists of four steps operating on a 4× 4-matrix of bytes: byte-
wise substitution, rotating the matrix rows by different stepwidths, mix the columns by
multiplication with a constant matrix, and bitwise addition of the pre-computed round key
to the data matrix. The following pseudo-code illustrates the computations.

AES(uint8 w[4][4]){ // input byte matrix
for(rnd=0..9){ // 10 rounds for 128-bit key
for(i,j=0..3) w[i][j] = tab[w[i][j]]; // byte substitution
for(i,j=0..3) wtmp[i][j] = w[i][(j+step[j])%4]; // shift rows
for(i,j=0..3){ w[i][j] = 0;
for(k=0..3) w[i][j] += mul(cnst[i][k],wtmp[k][j]); } // mixcols

for(i,j=0..3) w[i][j] = w[i][j]ˆrndkey[rnd][i][j]; // add rndkey
}
return w; }

There have been high-performance AES implementations in software for 8-bit and 32-bit
microprocessors (e.g. the add-round-key step greatly profits on a 32-bit architecture), and
also implementations in hardware for ASICs and FPGAs. In addition, there have been
bit-serial implementations, where all steps have been expressed as evaluation of boolean
functions, so that 32 block encryptions can go on in parallel if 32-bit variables are used
[KS09, RSD06]. The reader might notice that the steps correspond closely to our code
examples from Sect. 2, and the cited implementations proceed like this, in particular they
give a formulation of the subbytes and mixcolumns steps expressed as boolean function
evaluation.

We have implemented both variants1 for a block and key size of 16 bytes and measured the
runtimes in Tab. 1 on a Lenovo W530 with Intel Core i7-3630QM (Ivybridge) quad-core
CPU (up to 2.4 GHz, with 3.4 GHz turbo), 20 GByte of RAM, Windows 7 operating and
OpenWatcom C compiler. We encrypt one block of 16 bytes for 10 million times, and
compute the resulting runtime. As the computation is independent of the concrete content
of the byte matrix w, we used the same block in all encryptions. We do not claim to have

1For the word-parallel variant, we multiplied the measured times by 32 to get comparable results.
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Part word-parallel bit-serial
subbytes 14337 38563
shiftrows 5788 0
mixcolumns 27908 5991
addroundkey 6427 10062
conversion 11856 11856

Table 1: Runtimes of bit-serial and word-parallel implementations of AES. Runtimes are given
without dimension, as they are computed with clock() over 10 million repetitions.

Figure 3: Flow graph of AES variants. Nodes and edges without mark have weight 0.

the fastest implementations for each part, but we strived to have a comparable level of code
quality, so that the comparison is fair.

We clearly see that for the first and fourth steps (subbytes and addroundkey) the word-
parallel variant is faster, while for the second and third steps (shiftrow and mixcolumns),
the bit-serial variant is faster. Figure 3 depicts the flow graph of the variants with the
shortest path highlighted2. Therefore, a mixed implementation looks like in the following
pseudo-code (wp=word-parallel, bs=bit-serial).

AES(uint8 w[4][4]){ // input byte matrix
for(rnd=0..9){ // 10 rounds for 128-bit key
for(i,j=0..3) w[i][j] = tab[w[i][j]]; // byte subst wp
bittranspose(w); // convert representation to bs
shiftrow+mixcolumnbitserial(w); // do next two steps bs
bittranspose(w); // convert representation back to wp
for(i,j=0..3) w[i][j]=w[i][j]ˆrndkey[rnd][i][j]; // add rndk. wp
}
return w; }

We need two conversions per round. We pack steps subbytes and addroundkey as part 1,
and shiftrow and mixcolumns as part 2, and see that for part 1, variant A (word-parallel)
is faster, while for part 2, variant B (bit-serial) is faster. We get

2Note that to get a complete picture, one also has to do the same with start and end in bit-serial representation.
This however leads not to a shorter path in this case.
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Figure 4: Runtimes of different code variants. Corresponding word-parallel (wp) and bit-serial (bs)
code parts have same color but word-parallel variants are dotted. Bit-serial shiftrows really has
runtime 0, but has been denoted by small rectangle for clarity.

Variant Runtime
a1 20764
a2 33696
atot 54460
b1 48625
b2 5991
btot 54616
c 11856

Thus, the bit-serial and word-parallel variants almost have the same runtimes atot and btot.
The optimal path (without conversion cost) is a1 and b2, the add-on for a pure variant is d =
27861 (or 27705, i.e. more or less the same for both variants). The double conversion cost
is 2c = 23712 which is lower, so that the runtime advantage of the mixed implementation
is about 4000 or 7.4%. Figure 4 illustrates the different runtimes.

While this improvement seems not to be very large, it illustrates that in some applications,
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it might be worthwhile to consider this choice. Please note that if conversion would be free
(or almost free by providing hardware instructions for bit matrix conversion), then speed
could almost be doubled.

5 Conclusions

We have presented a novel application of global composition of program variants: using
both bit-serial and word-parallel variants of algorithmic parts in symmetric encryption.
The bit-serial variants allow SIMD parallelism even within a single core, while the word-
parallel variants serialize the threads of computation but avoid the overhead of bit-serial
computation on data items when all bits of a word are needed.

Our case study demonstrates that the AES encryption algorithm can be accelerated com-
pared to purely bit-serial and word-parallel implementations by combining the best parts
of both. The massively parallel execution of AES frequently occurs for good and bad: in
high-performance environments where multiple communications are encrypted simultane-
ously, and in dictionary attacks where attackers try to find the password by decrypting a
known piece of text with all keys from a dictionary, exploiting the fact that many users still
employ existing expressions as a key or password.

Future work will comprise investigation of other use cases, as well as more advanced uses:
between computing on single bits (like in boolean function evaluation) and computing on
full words (like in ordinary arithmetic computation), there are lots of in-betweens, like e.g.
computations on bytes, that still could profit from SIMD parallelism. Such an approach
has already been investigated in the frame of multiple executions for fault-tolerance (cf.
[EFK09]), but not for performance improvement from parallelism.
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1. Aktuelle und zukünftige Aktivitäten (Bericht des Sprechers) 
Die 33. Ausgabe der PARS-Mitteilungen enthält die Beiträge des 12. PASA-Workshops, der die 
wesentliche Aktivität der Fachgruppe im Jahr 2016 darstellt. 
 
Der 12. PASA-Workshop fand am 4. April 2016 in Nürnberg im Rahmen der ARCS-Tagung statt. Der 
Workshop, der aus 4 Vorträgen bestand, war mit ca. 30 Teilnehmern gut besucht. Den Herren 
Professoren Wanka (PASA) und Fey (ARCS) sei für die Organisation des Workshops gedankt. Der 
PARS-Nachwuchspreis wurde in diesem Jahr nicht vergeben. 
 
Unser nächster Workshop ist der  
 

27. PARS-Workshop voraussichtlich am 4. und 5. Mai 2016 in Hagen. 
 

Wegen Erkrankung des Sprechers der Fachgruppe muss auf diesem Workshop im Rahmen einer 
Mitgliederversammlung ein neuer Sprecher gewählt werden. Bereits seit Herbst 2015 führt Professor 
Karl als stellvertretender Sprecher die Geschäfte der Fachgruppe. 
 
Aktuelle Informationen finden Sie auch auf der PARS-Webpage 

http://fg-pars.gi.de/ 

Anregungen und Beiträge für die Mitteilungen können an den stellv. Sprecher (wolfgang.karl@kit.edu) 
gesendet werden. 
 
Wir wünschen Ihnen einen guten Start ins Wintersemester und schon jetzt ein gesundes und 
erfolgreiches Jahr 2017. 
 
Karlsruhe und Hagen, im September 2016  
Wolfgang Karl und Jörg Keller  

 

GESELLSCHAFT FÜR INFORMATIK E.V. 
PARALLEL-ALGORITHMEN, -RECHNERSTRUKTUREN 

UND -SYSTEMSOFTWARE 

INFORMATIONSTECHNISCHE GESELLSCHAFT IM VDE 

PARS 
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2. Zur Historie von PARS 
Bereits am Rande der Tagung CONPAR81 vom 10. bis 12. Juni 1981 in Nürnberg wurde von 
Teilnehmern dieser ersten CONPAR-Veranstaltung die Gründung eines Arbeitskreises im Rahmen der 
GI: Parallel-Algorithmen und -Rechnerstrukturen angeregt. Daraufhin erfolgte im Heft 2, 1982 der GI-
Mitteilungen ein Aufruf zur Mitarbeit. Dort wurden auch die Themen und Schwerpunkte genannt: 

1) Entwurf von Algorithmen für 
• verschiedene Strukturen (z. B. für Vektorprozessoren, systolische Arrays oder 

Zellprozessoren) 
• Verifikation 
• Komplexitätsfragen 

2) Strukturen und Funktionen 
• Klassifikationen 
• dynamische/rekonfigurierbare Systeme 
• Vektor/Pipeline-Prozessoren und Multiprozessoren 
• Assoziative Prozessoren 
• Datenflussrechner 
• Reduktionsrechner (demand driven) 
• Zellulare und systolische Systeme 
• Spezialrechner, z. B. Baumrechner und Datenbank-Prozessoren 

3) Intra-Kommunikation 
• Speicherorganisation 
• Verbindungsnetzwerke 

4) Wechselwirkung zwischen paralleler Struktur und Systemsoftware 
• Betriebssysteme 
• Compiler 

5) Sprachen 
• Erweiterungen (z. B. für Vektor/Pipeline-Prozessoren) 
• (automatische) Parallelisierung sequentieller Algorithmen 
• originär parallele Sprachen 
• Compiler 

6) Modellierung, Leistungsanalyse und Bewertung 
• theoretische Basis (z. B. Q-Theorie) 
• Methodik 
• Kriterien (bezüglich Strukturen) 
• Analytik 

In der Sitzung des Fachbereichs 3 ‚Architektur und Betrieb von Rechensystemen’ der Gesellschaft für 
Informatik am 22. Februar 1983 wurde der Arbeitskreis offiziell gegründet. Nachdem die Mitgliederzahl 
schnell anwuchs, wurde in der Sitzung des Fachausschusses 3.1 ‚Systemarchitektur’ am 20. September 
1985 in Wien der ursprüngliche Arbeitskreis in die Fachgruppe FG 3.1.2 ‚Parallel- Algorithmen und -
Rechnerstrukturen’ umgewandelt. 

Während eines Workshops vom 12. bis 16. Juni 1989 in Rurberg (Aachen) - veranstaltet von den Herren 
Ecker (TU Clausthal) und Lange (TU Hamburg-Harburg) - wurde vereinbart, Folgeveranstaltungen 
hierzu künftig im Rahmen von PARS durchzuführen. 

Beim Workshop in Arnoldshain sprachen sich die PARS-Mitglieder und die ITG-Vertreter dafür aus, die 
Zusammenarbeit fortzusetzen und zu verstärken. Am Dienstag, dem 20. März 1990 fand deshalb in  
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München eine Vorbesprechung zur Gründung einer gemeinsamen Fachgruppe PARS statt.  
Am 6. Mai 1991 wurde in einer weiteren Besprechung eine Vereinbarung zwischen GI und ITG sowie 
eine Vereinbarung und eine Ordnung für die gemeinsame Fachgruppe PARS formuliert und den beiden 
Gesellschaften zugeleitet. Die GI hat dem bereits 1991 und die ITG am 26. Februar 1992 zugestimmt. 

3. Bisherige Aktivitäten 
Die PARS-Gruppe hat in den vergangenen Jahren mehr als 20 Workshops durchgeführt mit Berichten 
und Diskussionen zum genannten Themenkreis aus den Hochschulinstituten, 
Großforschungseinrichtungen und der einschlägigen Industrie. Die Industrie - sowohl die Anbieter von 
Systemen wie auch die Anwender mit speziellen Problemen - in die wissenschaftliche Erörterung 
einzubeziehen war von Anfang an ein besonderes Anliegen. Durch die immer schneller wachsende Zahl 
von Anbietern paralleler Systeme wird sich die Mitgliederzahl auch aus diesem Kreis weiter vergrößern. 

Neben diesen Workshops hat die PARS-Gruppe die örtlichen Tagungsleitungen der CONPAR-
Veranstaltungen: 

CONPAR 86 in Aachen, 
CONPAR 88 in Manchester, 
CONPAR 90 / VAPP IV in Zürich und 
CONPAR 92 / VAPP V in Lyon 
CONPAR 94/VAPP VI in Linz 

wesentlich unterstützt. In einer Sitzung am 15. Juni 1993 in München wurde eine Zusammenlegung der 
Parallelrechner-Tagungen von CONPAR/VAPP und PARLE zur neuen Tagungsserie EURO-PAR 
vereinbart, die vom 29. bis 31. August 1995 erstmals stattfand: 

Euro-Par’95 in Stockholm 

Zu diesem Zweck wurde ein „Steering Committee” ernannt, das europaweit in Koordination mit 
ähnlichen Aktivitäten anderer Gruppierungen Parallelrechner-Tagungen planen und durchführen wird. 
Dem Steering Committee steht ein „Advisory Board” mit Personen zur Seite, die sich in diesem Bereich 
besonders engagieren. Die offizielle Homepage von Euro-Par ist http://www.europar.org/. 
Weitere bisher durchgeführte Veranstaltungen: 
 

Euro-Par’96 in Lyon 
Euro-Par’97 in Passau 
Euro-Par’98 in Southampton 
Euro-Par’99 in Toulouse 
Euro-Par 2000 in München 
Euro-Par 2001 in Manchester 
Euro-Par 2002 in Paderborn 
Euro-Par 2003 in Klagenfurt 
Euro-Par 2004 in Pisa 
Euro-Par 2005 in Lissabon 
Euro-Par 2006 in Dresden 
Euro-Par 2007 in Rennes 
Euro-Par 2008 in Gran Canaria 
Euro-Par 2009 in Delft 
Euro-Par 2010 in Ischia 
Euro-Par 2011 in Bordeaux 
Euro-Par 2012 in Rhodos 
Euro-Par 2013 in Aachen 
Euro-Par 2014 in Porto 
Euro-Par 2015 in Wien 
Euro-Par 2016 in Grenoble 
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Außerdem war die Fachgruppe bemüht, mit anderen Fachgruppen der Gesellschaft für Informatik 
übergreifende Themen gemeinsam zu behandeln: Workshops in Bad Honnef 1988, Dagstuhl 1992 und 
Bad Honnef 1996 (je zusammen mit der FG 2.1.4 der GI), in Stuttgart (zusammen mit dem Institut für 
Mikroelektronik) und die PASA-Workshop-Reihe 1991 in Paderborn, 1993 in Bonn, 1996 in Jülich, 
1999 in Jena, 2002 in Karlsruhe, 2004 in Augsburg, 2006 in Frankfurt a. Main und 2008 in Dresden 
(jeweils gemeinsam mit der GI-Fachgruppe 0.1.3 ‚Parallele und verteilte Algorithmen (PARVA)’) sowie 
2012 in München, 2014 in Lübeck und 2016 in Nürnberg (gemeinsam mit der GI-Fachgruppe ALGO, 
die Nachfolgegruppe von PARVA). 
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PARS-Mitteilungen/Workshops: 
Aufruf zur Mitarbeit, April 1983 (Mitteilungen Nr. 1) 
Erlangen, 12./13. April 1984 (Mitteilungen Nr. 2) 
Braunschweig, 21./22. März 1985 (Mitteilungen Nr. 3) 
Jülich, 2./3. April 1987 (Mitteilungen Nr. 4) 
Bad Honnef, 16.-18. Mai 1988 (Mitteilungen Nr. 5, gemeinsam mit der GI-Fachgruppe 2.1.4 

‘Alternative Konzepte für Sprachen und Rechner’) 
München Neu-Perlach, 10.-12. April 1989 (Mitteilungen Nr. 6) 
Arnoldshain (Taunus), 25./26. Januar 1990 (Mitteilungen Nr. 7) 
Stuttgart, 23./24. September 1991, “Verbindungsnetzwerke für Parallelrechner und Breitband-

Übermittlungssysteme” (Als Mitteilungen Nr. 8 geplant, gem. mit ITG-FA 4.1, 4.4 und GI/ITG FG 
Rechnernetze, wg. Kosten nicht erschienen. siehe Tagungsband Inst. für Mikroelektronik Stuttgart.) 

Paderborn, 7./8. Oktober 1991, “Parallele Systeme und Algorithmen” (Mitteilungen Nr. 9, 2. PASA-
Workshop) 

Dagstuhl, 26.-28. Februar 1992, “Parallelrechner und Programmiersprachen” (Mitteilungen Nr. 10, 
gemeinsam mit der GI-Fachgruppe 2.1.4 ‘Alternative Konzepte für Sprachen und Rechner’) 

Bonn, 1./2. April 1993, “Parallele Systeme und Algorithmen” (Mitteilungen Nr. 11, 3. PASA-
Workshop) 

Dresden, 6.-8. April 1993, “Feinkörnige und Massive Parallelität” (Mitteilungen Nr. 12, zusammen mit 
PARCELLA) 

Potsdam, 19./20. September 1994 (Mitteilungen Nr. 13, Parcella fand dort anschließend statt) 
Stuttgart, 9.-11. Oktober 1995 (Mitteilungen Nr. 14) 
Jülich, 10.-12. April 1996, “Parallel Systems and Algorithms” (4. PASA-Workshop), Tagungsband 

erschienen bei World Scientific 1997) 
Bad Honnef, 13.-15. Mai 1996, zusammen mit der GI-Fachgruppe 2.1.4 ‘Alternative Konzepte für 

Sprachen und Rechner’ (Mitteilungen Nr. 15) 
Rostock, (Warnemünde) 11. September 1997 (Mitteilungen Nr. 16, im Rahmen der ARCS’97 vom 8.-

11. September 1997) 
Karlsruhe, 16.-17. September 1998 (Mitteilungen Nr. 17) 
Jena, 7. September 1999, “Parallele Systeme und Algorithmen” (5. PASA-Workshop im Rahmen der 

ARCS’99) 
An Stelle eines Workshop-Bandes wurde den PARS-Mitgliedern im Januar 2000 das Buch ‘SCI: 

Scalable Coherent Interface, Architecture and Software for High-Performance Compute Clusters‘, 
Hermann Hellwagner und Alexander Reinefeld (Eds.) zur Verfügung gestellt. 

München, 8.-9. Oktober 2001 (Mitteilungen Nr. 18) 
Karlsruhe, 11. April 2002, “Parallele Systeme und Algorithmen” (Mitteilungen Nr. 19, 6. PASA-

Workshop im Rahmen der ARCS 2002) 
Travemünde, 5./6. Juli 2002, Brainstorming Workshop “Future Trends” (Thesen in Mitteilungen Nr. 19) 
Basel, 20./21. März 2003 (Mitteilungen Nr. 20) 
Augsburg, 26. März 2004 (Mitteilungen Nr. 21) 
Lübeck, 23./24. Juni 2005 (Mitteilungen Nr. 22) 
Frankfurt/Main, 16. März 2006 (Mitteilungen Nr. 23) 
Hamburg, 31. Mai / 1. Juni 2007 (Mitteilungen Nr. 24) 
Dresden, 26. Februar 2008 (Mitteilungen Nr. 25) 
Parsberg, 4./5. Juni 2009 (Mitteilungen Nr. 26) 
Hannover, 23. Februar 2010 (Mitteilungen Nr. 27) 
Rüschlikon, 26./27. Mai 2011 (Mitteilungen Nr. 28) 
München, 29. Februar 2012 (Mitteilungen Nr. 29) 
Erlangen, 11.+12. April 2013 (Mitteilungen Nr. 30) 
Lübeck, 25. Februar 2014 (Mitteilungen Nr. 31) 
Potsdam, 7.+8. Mai 2015 (Mitteilungen Nr. 32) 
Nürnberg, 4.+5. April 2016 (Mitteilungen Nr. 33)
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4. Mitteilungen (ISSN 0177-0454) 
 
Bisher sind 33 Mitteilungen zur Veröffentlichung der PARS-Aktivitäten und verschiedener Workshops 
erschienen. Darüberhinaus enthalten die Mitteilungen Kurzberichte der Mitglieder und Hinweise von 
allgemeinem Interesse, die dem Sprecher zugetragen werden. 
 
Teilen Sie - soweit das nicht schon geschehen ist - Tel., Fax und E-Mail-Adresse der GI-Geschäftsstelle 
mitgliederservice@gi-ev.de mit für die zentrale Datenerfassung und die regelmäßige Übernahme in die 
PARS-Mitgliederliste. Das verbessert unsere Kommunikationsmöglichkeiten untereinander wesentlich. 
 
5. Vereinbarung 
Die Gesellschaft für Informatik (GI) und die Informationstechnische Gesellschaft im VDE (ITG) 
vereinbaren die Gründung einer gemeinsamen Fachgruppe 
 

Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware, 
 
die den GI-Fachausschüssen bzw. Fachbereichen: 
 

FA 0.1 Theorie der Parallelverarbeitung 
FA 3.1 Systemarchitektur 
FB 4 Informationstechnik und technische Nutzung der Informatik 

 
und den ITG-Fachausschüssen: 
 

FA 4.1 Rechner- und Systemarchitektur 
FA 4.2/3 System- und Anwendungssoftware 
 

zugeordnet ist. 
 
Die Gründung der gemeinsamen Fachgruppe hat das Ziel, 
 

- die Kräfte beider Gesellschaften auf dem genannten Fachgebiet zusammenzulegen, 
- interessierte Fachleute möglichst unmittelbar die Arbeit der Gesellschaften auf  

diesem Gebiet gestalten zu lassen, 
- für die internationale Zusammenarbeit eine deutsche Partnergruppe zu haben. 

 
Die fachliche Zielsetzung der Fachgruppe umfasst alle Formen der Parallelität wie 

 

- Nebenläufigkeit 
- Pipelining 
- Assoziativität 
- Systolik 
- Datenfluss 
- Reduktion 
  etc. 
 

und wird durch die untenstehenden Aspekte und deren vielschichtige Wechselwirkungen umrissen. 
Dabei wird davon ausgegangen, dass in jedem der angegebenen Bereiche die theoretische Fundierung 
und Betrachtung der Wechselwirkungen in der Systemarchitektur eingeschlossen ist, so dass ein 
gesonderter Punkt „Theorie der Parallelverarbeitung“ entfällt. 
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1. Parallelrechner-Algorithmen und -Anwendungen 
 

- architekturabhängig, architekturunabhängig 
- numerische und nichtnumerische Algorithmen 
- Spezifikation 
- Verifikation 
- Komplexität 
- Implementierung 
 

2. Parallelrechner-Software 
 

- Programmiersprachen und ihre Compiler 
- Programmierwerkzeuge 
- Betriebssysteme 
 

3. Parallelrechner-Architekturen 
 

- Ausführungsmodelle 
- Verbindungsstrukturen 
- Verarbeitungselemente 
- Speicherstrukturen 
- Peripheriestrukturen 

 
4. Parallelrechner-Modellierung, -Leistungsanalyse und -Bewertung 

 
5. Parallelrechner-Klassifikation, Taxonomien 

 
Als Gründungsmitglieder werden bestellt: 

 

von der GI: Prof. Dr. A. Bode, Prof. Dr. W. Gentzsch, R. Kober, Prof. Dr. E. Mayr, Dr. K. D. 
Reinartz, Prof. Dr. P. P. Spies, Prof. Dr. W. Händler 

 
von der ITG: Prof. Dr. R. Hoffmann, Prof. Dr. P. Müller-Stoy, Dr. T. Schwederski, Prof. Dr. 
Swoboda, G. Valdorf 
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Ordnung der Fachgruppe 
Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware 

 
1. Die Fachgruppe wird gemeinsam von den Fachausschüssen 0.1, 3.1 sowie dem Fachbereich 4 der 
Gesellschaft für Informatik (GI) und von den Fachausschüssen 4.1 und 4.2/3 der 
Informationstechnischen Gesellschaft (ITG) geführt. 
 
2. Der Fachgruppe kann jedes interessierte Mitglied der beteiligten Gesellschaften beitreten. Die 
Fachgruppe kann in Ausnahmefällen auch fachlich Interessierte aufnehmen, die nicht Mitglied einer der 
beteiligten Gesellschaften sind. Mitglieder der FG 3.1.2 der GI und der ITG-Fachgruppe 6.1.2 werden 
automatisch Mitglieder der gemeinsamen Fachgruppe PARS. 
 
3. Die Fachgruppe wird von einem ca. zehnköpfigen Leitungsgremium geleitet, das sich paritätisch aus 
Mitgliedern der beteiligten Gesellschaften zusammensetzen soll. Für jede Gesellschaft bestimmt deren 
Fachbereich (FB 3 der GI und FB 4 der ITG) drei Mitglieder des Leitungsgremiums: die übrigen werden 
durch die Mitglieder der Fachgruppe gewählt. Die Wahl- und die Berufungsvorschläge macht das 
Leitungsgremium der Fachgruppe. Die Amtszeit der Mitglieder des Leitungsgremiums beträgt vier Jahre. 
Wiederwahl ist zulässig. 
 
4. Das Leitungsgremium wählt aus seiner Mitte einen Sprecher und dessen Stellvertreter für die Dauer 
von zwei Jahren; dabei sollen beide Gesellschaften vertreten sein. Wiederwahl ist zulässig. Der Sprecher 
führt die Geschäfte der Fachgruppe, wobei er an Beschlüsse des Leitungsgremiums gebunden ist. Der 
Sprecher besorgt die erforderlichen Wahlen und amtiert bis zur Wahl eines neuen Sprechers. 
 
5. Die Fachgruppe handelt im gegenseitigen Einvernehmen mit den genannten Fachausschüssen. Die 
Fachgruppe informiert die genannten Fachausschüsse rechtzeitig über ihre geplanten Aktivitäten. Ebenso 
informieren die Fachausschüsse die Fachgruppe und die anderen beteiligten Fachausschüsse über 
Planungen, die das genannte Fachgebiet betreffen. Die Fachausschüsse unterstützen die Fachgruppe 
beim Aufbau einer internationalen Zusammenarbeit und stellen ihr in angemessenem Umfang ihre 
Publikationsmöglichkeiten zur Verfügung. Die Fachgruppe kann keine die Trägergesellschaften 
verpflichtenden Erklärungen abgeben. 
 
6. Veranstaltungen (Tagungen/Workshops usw.) sollten abwechselnd von den Gesellschaften organisiert 
werden. Kostengesichtspunkte sind dabei zu berücksichtigen. 
 
7. Veröffentlichungen, die über die Fachgruppenmitteilungen hinausgehen, z. B. Tagungsberichte, 
sollten in Abstimmung mit den den Gesellschaften verbundenen Verlagen herausgegeben werden. Bei 
den Veröffentlichungen soll ein durchgehend einheitliches Erscheinungsbild angestrebt werden. 
 
8. Die gemeinsame Fachgruppe kann durch einseitige Erklärung einer der beteiligten Gesellschaften 
aufgelöst werden. Die Ordnung tritt mit dem Datum der Unterschrift unter die Vereinbarung über die 
gemeinsame Fachgruppe in Kraft. 
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ARCS 2017
30THGI/ITG INTERNATIONAL CONFERENCE ON ARCHITECTURE OF COMPUTING SYSTEMS

THIS YEAR’S FOCUS: HETEROGENEOUS NODE ARCHITECTURES WITH DEEP MEMORY
SYSTEMS

Vienna, Austria
April 03 - 06, 2017

http://arcs2017.itec.kit.edu/

CALL FOR PAPERS

Submission Deadline: October 28, 2016

The ARCS conferences series has over 30 years of tradition reporting leading edge research in 
computer architecture and operating systems. The focus of the 2017 conference will be on 
Heterogeneous Node Architectures with Deep Memory Systems. 

ARCS 2017 will be organized by the Complang Group at the Vienna University of Technology and the 
CAPP group at the Karlsruhe Institute of Technology (KIT).

The proceedings of ARCS 2017 will be published in the Springer Lecture Notes on Computer Science 
(LNCS) series. After the conference, it is planned that authors of selected papers will be invited to 
submit an extended version of their contribution for publication in a special issue of the Journal of 
Systems Architecture. Further, a best paper and best presentation award will be presented at the 
conference.

Paper submission: Authors are invited to submit original, unpublished research papers on one or 
more of the following topics:

 Multi-/many-core architectures, memory systems, and interconnect networks.

 Programming models, runtime systems, and middleware support for many-core and/or

heterogeneous computing platforms.
 Tool support for performance optimization, debugging, and verification.

 Generic and application-specific architectures such as reconfigurable systems in hardware

and software.
 Robust and fault-tolerant systems structures.

 Architectures and design methods/tools for real-time embedded systems.

 Cyber-physical systems and distributed computing architectures.
 Organic and autonomic computing including both theoretical and practical results on self-

organization, self-configuration, self-optimization, self-healing, and self-protection techniques.
 Operating Systems, including but not limited to scheduling, memory management, power

management, and real-time OS (RTOS) concepts.
 Energy and power-aware computing, including green computing topics.
 System aspects of ubiquitous and pervasive computing such as sensor nodes, novel

input/output devices, novel computing platforms, architecture modeling, and middleware.
 Architectures for robotics and automation systems.
 Applications of embedded and cyber-physical systems.
 High-performance and large scale parallel computing.
 Approximate computing.
 Post-Moore Architectures, including but not limited to quantum and neuromorphic computing.
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Submissions should be done through the link that is provided on the conference website 
https://easychair.org/conferences/?conf=arcs2017. Papers must be submitted in PDF format. 

They should be formatted according to Springer LNCS style (see: 
http://www.springer.de/comp/lncs/authors.html) and must not exceed 12 pages, including references 
and figures.

Workshop and Tutorial Proposals: Proposals for workshops and tutorials within the technical scope 
of the conference are solicited. Submissions should be done through email directly to the 
corresponding chair: Carsten Trinitis, (Carsten.Trinitis@tum.de) 

Important Dates: 
Paper submission deadline: October 28, 2016
Workshop and tutorial proposals: November 30, 2016
Notification of acceptance: December 21, 2016
Camera-ready papers: January 11, 2017

Organizing Committee: 

General Co-Chairs
Jens Knoop, Vienna University of Technology, Austria
Wolfgang Karl, Karlsruhe Institute of Technology, Germany

Program Co-Chairs 
Martin Schulz, Lawrence Livermore National Laboratory, USA
Koji Inoue, Kyushu University, Japan

Workshop and Tutorial Co-Chairs
Carsten Trinitis, Technische Universität München, Germany

Publicity Chair:
Miquel Pericàs, Chalmers University of Technology, Sweden

Publication Chair
Thilo Piontek, Magdeburg University, Germany

Local Organization 
TPD

Program Committee (to be completed): 
Michael Beigl, Karlsruhe Institute of Technology, Germany
Mladen Berekovic, TU Braunschweig, Germany
Jürgen Brehm, Leibniz University Hannover, Germany
Uwe Brinkschulte, University of Frankfurt/Main, Germany
João Cardoso, FEUP/University of Porto, Portugal
Laura  Carrington, San Diego Supercomputing Center, USA
Albert Cohen, INRIA, France
Martin Daněk, TU Darmstadt, Germany
Ahmed El-Mahdy, Alexandria University, Egypt
Dietmar Fey, University of Erlangen-Nuremberg, Germany
William Fornaciari, Politecnico di Milano, Italy
Roberto Giorgi, University of Siena, Italy
Daniel Gracia-Pérez, Thales Research & Technology, France
Jan Haase, UniversitätLübeck, Germany
Andreas Herkersdorf, TUMünchen, Germany
Christian Hochberger, TU Darmstadt, Germany
Gert Jervan, Tallinn University of Technology, Estland
Jörg Keller, Fernuniversität Hagen, Germany
Andreas Koch, TU Darmstadt, Germany
Hana Kubátová, FIT CTU, Prague, Czech Republic
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Olaf Landsiedel, Chalmers University of Technology, Sweden
Dong Li, UC Merced, USA
Erik Maehle, Universität zu Lübeck, Germany
Christian Müller-Schloer, Leibniz University Hannover, Germany
Luis Pinho, CISTER, ISEP, Portugal
Thilo Pionteck, Universität zu Lübeck, Germany
Pascal Sainrat, IRIT - Université de Toulouse, France
Luca Santinelli, Onera, France
Toshinori Sato, Fukuoka University, Japan
Wolfgang Schröder-Preikschat, FAU, Germany
Muhammad Shafique, Karlsruhe Institute of Technology, Germany
Cristina Silvano, Politecnico di Milano, Italy
Leonel Sousa, IST/INESC-ID, Portugal
Rainer G. Spallek, TU Dresden , Germany
Olaf Spinczyk, TU Dortmund, Germany
Benno Stabernack, Fraunhofer HHI, Germany
Walter Stechele, TU Munich, Germany
Jürgen Teich, University of Erlangen-Nuremberg, Germany
Sven Tomforde, University of Kassel, Germany
Carsten Trinitis, TU Munich, Germany
Hans Vandierendonck, Queen's University Belfast, Great Britain
Stephane Vialle , SUPELEC, France
Lucian Vintan, "Lucian Blaga" University of Sibiu, Romania
Klaus Waldschmidt ,University of Frankfurt, Germany
Stephan Wong, Delft University of Technology, The Netherlands
Sungjoo Yoo, Seoul National University, Korea
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CALL FOR PAPERS 
27th PARS Workshop on May 4+5, 2017 

Hagen 

http://fg-pars.gi.de/workshops/pars-workshop-2017/ 

PARS is the special interest group on parallel algorithms, parallel computer structures and parallel system software within the 
German Informatics Societies (GI/ITG). The goal of the bi-annual PARS Workshop is the presentation of important research within 
the scope of PARS and an exchange of ideas between the participants. Topics of interest are: 

• Parallel Algorithms (Presentation, Complexity, Applications)
• Parallel Models of Computation and Parallel Architectures
• Parallel Programming Languages and Libraries
• Tools for Parallelization (Compilers, Performance Analysis, Auto-Tuner)
• Parallel Embedded Systems / Cyber-Physical Systems
• Software Engineering for Parallel and Distributed Systems
• Multicore-, Manycore-, GPGPU-Computing and Heterogeneous Architectures
• Cluster Computing, Grid Computing, Cloud Computing
• Interconnect and Hardware Structures (e.g. reconfigurable systems)
• Future Technologies and new Computational Paradigms for Architectures (SoC, PIM, STM,

Memristor, DNA-Computing, Quantum Computing)
• Teaching Parallel Computation (Experiences, E-Learning)
• Parallel and Distributed Computing in Life Sciences (e.g. Bio-Informatics, Medical Informatics)

Workshop languages are German and Englisch. Papers are limited to 10 pages. The workshop proceedings will be published in the 
yearly newsletter of the PARS special interest group (PARS-Mitteilungen, ISSN 0177-0454). The Workshop fee will be about 100 €.  

Important Dates: Papers of at most 10 pages (Format: GI Lecture Notes in Informatics, previously unpublished) are to be 
submitted electronically until March 1, 2017 via: 
http://www.easychair.org/conferences/?conf=pars2017 

Author notification: April 1, 2017 
Submission of camera-ready papers: August 31, 2017 (after Workshop) 

Program Committee: A. Döring, Zürich • N. Eicker, Jülich • T. Fahringer, Innsbruck • D. Fey, Erlangen 
V. Heuveline, Heidelberg • R. Hoffmann, Darmstadt • B. Juurlink, Berlin • W. Karl, Karlsruhe 
J. Keller, Hagen • C. Lengauer, Passau • E. Maehle, Lübeck • E. W. Mayr, München 
W. E. Nagel, Dresden • M. Philippsen, Erlangen • K. D. Reinartz, Höchstadt • B. Schnor, Potsdam 
P. Sobe, Dresden  • C. Trinitis, München • T. Ungerer, Augsburg • R. Wanka, Erlangen 

Student Paper Award: The best paper based on a master or PhD thesis, and presented by the thesis author, will receive the student 
paper award of the PARS special interest group (endowed with 500 €). Co-authors are allowed, the PhD 
degree should not yet be awarded at the time of paper submission. Application for the award by e-mail to the 
organizers at the time of paper submission.  

Sponsor: GI/ITG special interest group PARS, http://fg-pars.gi.de 

Organizers: Prof. Dr. Wolfgang Karl, Chair for Computer Architecture and Parallel Processing 
Institute of Technology, 76131 Karlsruhe, Germany 
Tel.: +49-721-608-43771, Fax: +49-721-608-43962, E-Mail: karl@kit.edu 

Prof. Dr. Jörg Keller, Faculty of Mathematics and Computer Science, Parallelism and VLSI Group 
FernUniversität in Hagen, 58084 Hagen, Germany 
Tel.: +49-2331-987-376, Fax: +49-2331-987-308, E-Mail: joerg.keller@fernuni-hagen.de 

GESELLSCHAFT FÜR INFORMATIK E.V.
PARALLEL-ALGORITHMEN, -RECHNERSTRUKTUREN 

UND -SYSTEMSOFTWARE 

INFORMATIONSTECHNISCHE GESELLSCHAFT IM VDE 

PARS 
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PARS-Beiträge 
 

Studenten 5,00 € 
GI-Mitglieder 7,50 € 
studentische Nichtmitglieder 5,00 € 
Nichtmitglieder 15,00 € 
Nichtmitglieder mit Doppel- 
Mitgliedschaften 
(Beitrag wie GI-Mitglieder) --,-- € 
 
 
Leitungsgremium von GI/ITG-PARS 

 
Dr. Andreas Döring, IBM Zürich 
Prof. Dr. Norbert Eicker, FZ Jülich 
Prof. Dr. Thomas Fahringer, Univ. Innsbruck 
Prof. Dr. Dietmar Fey, Univ. Erlangen 
Prof. Dr. Vincent Heuveline, Univ. Heidelberg 
Prof. Dr. Ben Juurlink, TU Berlin 
Prof. Dr. Wolfgang Karl, stellv. Sprecher, KIT 
Prof. Dr. Jörg Keller, Sprecher, FernUniversität in Hagen 
Prof. Dr. Christian Lengauer, Univ. Passau 
Prof. Dr.-Ing. Erik Maehle, Universität zu Lübeck 
Prof. Dr. Ernst W. Mayr, TU München 
Prof. Dr. Wolfgang E. Nagel, TU Dresden 
Dr. Karl Dieter Reinartz, Ehrenvorsitzender, Univ. Erlangen-Nürnberg 
Prof. Dr. Bettina Schnor, Univ. Potsdam 
Prof. Dr. Peter Sobe, HTW Dresden 
Prof. Dr. Theo Ungerer, Univ. Augsburg 
Prof. Dr. Rolf Wanka, Univ. Erlangen-Nürnberg 

 
 
Sprecher 
 
Prof. Dr. Jörg Keller 
FernUniversität in Hagen 
Fakultät für Mathematik und Informatik 
Lehrgebiet Parallelität und VLSI 
Universitätsstraße 1 
58084 Hagen 
Tel.: (02331) 987-376 
Fax: (02331) 987-308 
E-Mail: joerg.keller@fernuni-hagen.de 
URL: http://fg-pars.gi.de/ 
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