Using XML to Support Media Types

Markus Kirchberg, Klaus-Dieter Schewe, Alexei Tretiakov

Massey University, Information Science Research Centre
Private Bag 11 222, Palmerston North, New Zealand
[m.kirchberglk.d.schewe|a.tretiakov]@massey.ac.nz

Abstract: The eXtensible Markup Language (XML) has drawn significant attention
in research and practice of databases and web-based information systems. At the same
time, lots of work has been investigated in conceptual modelling for web-based in-
formation systems which is at most loosely coupled with XML. One such research
direction has led to the theory of media types, which has proven itself to be useful for
the design and development of large and maintainable web-based information systems.

The research reported in this article investigates how XML and the theory of media
types could be brought together, i.e. how XML could be used to support media types. It
turns out that some of the striking features of media types are not yet well supported by
XML. Therefore, severals extensions to XML such as subelements, update operations,
schema updates, views, media elements and adaptivity will be suggested in this article
in order to close this gap.

1 Introduction

The eXtensible Markup Language (XML) intends to combine and integrate the areas of
databases and the world-wide web [2, 10]. Therefore, XML has drawn significant atten-
tion in research and practice of databases and web-based information systems. It should
be expected that XML will play a significant role in the development of web-based infor-
mation systems. If so, several problems have to be solved.

XML has to provide adequate query languages. In this area the database community has
been quite active and defined several languages such as LOREL [3], UNQL [4], YAP [6],
XML-QL [7] and XQuery [17]. However, recursive fixed-point queries that are quite well
understood in the field of deductive databases [1] are not yet supported by these languages,
though there are good reasons why languages of higher expressiveness are needed for the
web [2, 9].

XML has to provide update languages. Some little work in this direction has also started
and some update languages have been proposed [11, 12, 15], but not yet reached the dis-
cussion in the W3C consortium. One reason for this might be that updates may violate
the structure that has been defined by the schema. If arbitrary updates are permitted, the
usefulness of the schema may be questioned. If however updates are rejected because they
violate the schema, we are confronted with the argument (given among others in [2]) that
structures of data on the web are not very stable, so rejecting updates may be too restricted.

101

In order to solve this problem simultaneous implicit or explicit schema updates should be
supported as well, hence, a schema definition language with structure suitable for schema
evolution is also required.

The remainder of the article is organised as follows: In Section 2 we introduce some ex-
tensions to DTDs which capture the most relevant features of types and schemata. These
extensions can be easily adapted to some of the XML schema languages such as XML-
SCHEMA [18]. The most important extension is the introduction of subelements in order
to support subtyping and to enable schema updates and adaptivity. In Section 3 we discuss
update operations and schema updates, which lead to a semantics of evolving schemata.
Section 4 is devoted to show that the extensions allow XML to be used for the implemen-
tation of media types: a construct proving to be highly useful in the design of large-scale
web-based information systems [8, 9, 14, 16]. In this context we discuss views and the
cohesion pre-orders as a way to support adaptivity.

2 Types and Schemata

We base our type definition language with support for evolving schemata on XML DTDs,
because they are syntactically more compact, than it is the case for schema languages in
XML format, such as XML SCHEMA [18].

2.1 Type Definitions

Types to be considered are (using abstract syntax) t = ID | b | € [t9 | t* [tT | t1,..., ¢, |
t1 - - -Bt,. Here, b represents as usual a collection of base types. ID is a type representing
a not further specified set of identifiers, and € is a type representing just an empty sequence
or tuple. t* and ¢ represent arbitrary or non-empty sequences, respectively, with values of
type t. t° represents values of type t or the empty sequence. Finally, ¢1, ... ,t, represents
tuples and t1 & - - - @ t,, represents a union.

More formally, we can associate with each type ¢ a domain dom(t), defined as follows:
dom(ID) = OID
dom(b;) = V; for all base types b;

dom(e) = {()}
t*) ={(a1,...,ar) | k € Nya; € dom(t) foralli=1,..., k}

(b
(
(
dom(t™) = {(a1,...,ax) | k € Nk # 0,a; € dom(t) foralli =1,... k}
(
(
(

3

dom

to) {(a) | a € dom(t)} U{()}
t1,..) {(a1,...,an) | a; € dom(t;) foralli=1,...,n}

dom(t; @ - tn) = dom(t1) U---Udom(ty,)

For our purposes we will need an extension of subtyping to the particular type system used

102

here. Subtyping is defined by a partial order < on types:

e any type is a subtype of ¢;
e wehave tt <t < t%andtt < t* < t° for all types t;
e wehave t* < ()", t7 < (¢/) and t° < (/)" for all types with ¢ < ¢';

e wehave tq,...,t,, < t;(l), . ,t;(n) for a monotonic, injective o : {1,...,n} —

{1,...,m} and t,; §t;(i) foralli =1,...,n;

e we have t;(l) G- D t;(n) <t & - Dty < foramonotonic, injective o :
{1,...,n} —={1,...,m} andt;(i) <ty foralli=1,...,n.

2.2 Elements and Schemata

Now we can define a schema basically as a sequence of element declarations, but we will
extend this in the sequel. An element declaration has the form

(!ELEMENT name expression KIND = kind),

where name is an arbitrarily chosen name for the element, kind can take one of the
values ‘db’, ‘media’ or ‘aux’ indicating, whether the element represents a building block
of the database, a media type, or an auxiliary element.

Note that the inclusion of KIND is merely syntactical sugar and can be omitted. Elements
of type ‘db’ are meant to indicate a database type. Following the idea of object oriented
databases [13] it is useful to restrict references in such a way that they only occur between
database elements. Also update operations—at least transactions—could be attached to
such database elements. We shall see in Section 4 that the situation is similar for media
types. In particular, we will need a defining view for them. The type ‘aux’ refers to all
the remaining elements. Thus, the type information can be inferred, but in the sense of
providing checkable context conditions on the syntax they are still useful. expression
is either a base type or a regular expression e made out of element names n: € = n | € |

@)t](e)°]| (e1,---,en)
We can extend domains in the obvious way to elements. For an element with the name n
and the defining expression e we obtain the domain dom(n) as a set of values (n)e(/n)
with
e € V; , if e is the base type b;
ee€{vy...vx | v; €dom(n;) fori=1,...,k},ife = (ny,...,ng)
e€{vi...vx |k €Nyv; €dom(n')fori=1,... .k} ife= (n')"
e€{v...vp |k €Nk #0,v; €dom(n') fori=1,... k},ife=(n)*"

For e = (n/)? & must be either in dom(n’) or be simply omitted. For e = ¢ we always
omit €. As usual in XML we abbreviate empty elements by (n/).

103

We may add attributes to elements. An attribute declaration has the form (! ATTRIBUTE
element name type key), where element is the name of an element, name is
an arbitrarily chosen attribute name, type is either a base type, ID or one of the three
possibilities REF name’, REFS name’ or SUP name’ indicating single or multiple ref-
erences, and key is one of #REQUIRED or #IMPLIED indicating, whether the attribute
is mandatory or not.

Some comments are due for this form of attribute declarations. A minor change with
respect to XML is that we prefer a separate declaration for each attribute instead of an
attribute-list declaration. We also omitted further options for keys, but only for brevity.
Similar to XML SCHEMA we added the possibility to specify base types other than
CDATA or PCDATA, which is also only a minor extension. The major deviation from
XML is with identifiers and references:

e For elements of kind ‘db’ or ‘media’ we require a unique attribute of type ID; for
elements of kind ‘aux’ there should not be such an attribute. This is in line with the
distinction between types and classes (or database types, respectively) in OODBs
[13] (or web-based information systems, respectively [9, 14]).

e For references we specify the target element, which must have an attribute of type
ID, thus will be of kind ‘db’ or ‘media’. If the element is used within an element of
kind ‘db’ or ‘media’, then the target element must have the same kind. This ensures
that references are either between database elements or media elements.

e References introduced with the keyword SUP should be used for subclassing. This
leads to the additional condition that the referenced target element should uniquely
determine the referencing element.

Example 1 We now look at an example for a schema. As we still need more extensions
to talk about media types, the schema will only contain elements of type ‘db’ and ‘aux’.

(!'SCHEMA db [

(! ELEMENT db (person|student|lecturer)*)

('ELEMENT person (name, birthday, address) TYPE = db)
(!ATTRIBUTE person id ID #REQUIRED)

(' ELEMENT name (first_name®, last_name) TYPE = aux)
(! ELEMENT first_name STRING TYPE = aux)
(!ELEMENT last_name STRING TYPE = aux)
(!ELEMENT birthday DATE TYPE = aux)

(' ELEMENT address (street, city, zip”) TYPE = aux)

(! ELEMENT street STRING TYPE = aux)

(!ELEMENT city STRING TYPE = aux)

(!ELEMENT zip STRING TYPE = aux)

(! ELEMENT student (student_id, start) TYPE = db)
(!ATTRIBUTE student id /D #REQUIRED)
(!ATTRIBUTE student isa SUP person #REQUIRED)
(!ATTRIBUTE student supervisor REF lecturer # IMPLIED)

104

(! ELEMENT student_id NAT TYPE = aux)

(!ELEMENT start DATE TYPE = aux)

(! ELEMENT lecturer (staff_id, field) TYPE = db)
(!ATTRIBUTE lecturer id ID #REQUIRED)
(!ATTRIBUTE lecturer isa SUP person #REQUIRED)
(!ATTRIBUTE lecturer teaches REFS student # IMPLIED)
(!ELEMENT staff_id NAT TYPE = aux)
(!ELEMENT field STRING TYPE = aux)])

Of course, an instance of a schema db is a value in dom(db), such that for all elements with
an attribute of type ID, the identifiers in the instance are globally unique, and identifiers
used in references must appear as values of such attributes in the referenced element of
type ‘db’ (or ‘media’). For brevity we dispense with an example for such an instance.

2.3 Subelements

Instability of a schema means that updating an instance may violate the schema prescrip-
tion. As the regular expressions already provide optionality, the major problem occurs
with adding elements. For instance, in Example 1 we might add a country to an address, a
title to a name, or we might obtain several first names. One way to deal with such additions
is to use subelements.

A subelement of an element named n is specified by an element declaration with the same
name n and an extended defining regular expression, i.e., if ¢ and ¢’ are the regular ex-
pressions in the declarations of the element and the subelement, respectively, then the type
defined by e’ must by a subtype of the type defined by e.

So, in order to obtain a subelement, we just have to add elements to a sequence at any
level of nesting, or whenever we requested a single occurrence of some element (optional
or not) we would allow multiple occurrences in the subelement. Schema changing updates
should at most introduce subelements. Note that XML-Schema [18] also supports some
form of subtyping. However, the form of subtyping introduced above also covers iteration,
optionality and nesting.

Formally, a schema should not allow more than one declaration of an element. So we
indicate the relation of the subelement to the element by an index, i.e., we use subelement
declarations of the form (! SUBELEMENT name expression INDEX = index),
where name is the name of an existing element, expression is the new defining reg-
ular expression for the subelement leading to a subtype, and index is determined by an
element of an index tree.

We do not have to repeat the type of the element. However, the index should appear in in-
stances as an attribute value, as if we had an implicit attribute declaration (! ATTRIBUTE
name index INDEX #REQUIRED).

An index tree is a non-empty set of sequences of positive integers I C (N — {0})* such
that a(k+1) € I implies ak € [and @ € I. In particular, € € I, which gives us the index

105

for the originally defined element. For subelements we chose indices (i1, . . ., ix) such that
all prefixes could be associated with a super-type in such a way that no more intermediate
types are possible.

Example 2 Take the element name from Example 1. Suppose an update requests that we
allow multiple first names and a title. Thus, we obtain a subelement
(! SUBELEMENT name (firstname®*, lastname, title)
INDEX = (1,1)).
Of course, we would also obtain a new element title, say
(!ELEMENT title STRING TYPE = aux).
In this case, possible subelements with index (1) could be either
(! SUBELEMENT name (first name’, last name, title) INDEX = (1))
or (| SUBELEMENT name (firstname®, lastname) INDEX = (1)).

3 Evolving Schemata

In the last section we envisioned the possibility of schema changing updates and intro-
duced subelements to cope with this. Now let us take a closer look into operations. In
principle, we should allow updates on all elements. Precisely, an operation defined on
an element named n should be allowed to change everything in the tree defined by the
element declaration for n. This includes additions that would require the schema to be
extended by new subelements and elements.

The language additions we propose for update operations are quite similar to the work
by Tatarinov [15]. However, we make a clear distinction between updating a uniquely
determined element or all elements matching a certain expression!.

Following an argument in [2] we should assume that updates on XML documents may
easily violate the schema. Of course, we could identify minimal schema changes and adapt
the schema accordingly, but this violates the intention behind schemata to put explicit
restrictions on updates. On the other hand, forbidding such updates is too restrictive.
Therefore, we suggest some kind of a compromise approach. Allow only such updates,
which only lead to additional subelements. In all other cases an explicit schema update is
due.

3.1 Update Operations

An operation on elements element can be introduced by an operation declaration of the
form (! OPERATION element name MODE = mode), where name is an arbitrarily
chosen name for the operation and mode can be one of ‘aux’ or ‘transaction’. However,
operations of type ‘transaction’ are only allowed on elements of type ‘db’ or ‘media’.

The operators I and @ we use for this have already been used by David Hilbert in the late 19th century.

106

Besides a name operations should have input- and output-parameters and an operation
body, which we declare in the form

(1IN operation expression), (!0UT operation expression)

and (!BODY operation ...)respectively. Here, expression refers to the usual
form of expressions used in element declarations. We have chosen a different form for the
body declarations, as these might need a bit more space.

For operation bodies we use the following language:

e assignments in the form ‘identification’ := ‘expression’, where identification iden-
tifies one or more elements to be updated and expression provides a new value for
this element;

o non-deterministic selections NewID, which selects a globally new identifier, or NEW
(element, element’) with element’ being a leaf in the tree for element
and the defining expression for element’ being a base type, which selects a new
value of that base type that does not yet occur in instances of element with respect
to the position indicated by element’;

e control structures for sequences, if-then-else, WHILE loops and calling operations
defined on other elements—as these are standard, we omit further details;

e Jocal declarations in the form
LET variable : expression IN BEGIN ...END.

The most important parts in here are the identification and the expressions used in assign-
ments. For the former ones we use the following two operators:

e Iz : n e ¢ denotes the unique element with the name n satisfying formula ¢;

e Qx : n e denotes any element with the name n satisfying formula .

Whenever @z ... is used on the left hand side of an assignment, all the z satisfying the
condition ¢ will be updated. In addition to the identification operators we use regular path
expressions as introduced in [2, Chap. 4] and the usual dot-notation for elements as well
as for attributes.

Example 3 The assignment (Qx : (staff) e x.birthday < 1-1-1970).salary := x.salary x*
1.04 would increase the salary of all staff born before 1970 by 4%. This of course requires
that salary is defined as an component element (or attribute) of the element staff and that
it has been associated the base type DECIMAL.

The dot-notation for attributes allows us to use z.a for attributes a that have a type ID, REF
name’, REFS name’ or SUP name’, which gives us either an identifier or a sequence of
identifiers, which would be treated in the same way as the @-operator.

The unique identifier of an element may be useful in navigating back to elements refer-
encing it. For referenced elements, however, we would prefer to get the element(s) rather
than their identifiers. Thus, we use the following shortcuts:

107

o zla =Ty : (n) e (y.id = z.a), if a is one of REF n or SUP n and id the attribute
in the element n, which has the type ID;

e zla = @Qy: (n)e(y.id € z.a),if a is REFS n and id the attribute in the element n,
which has the type ID.

Example 4 Let us take a look at Example 1. Here the assignment

(Q@s : (student) e (s!supervisorlisa.name.last_-name = “Einstein”)).interest := “physics”

would update all students supervised by lecturers with last name “Einstein” adding a new
element ‘interest’ and giving it the value “physics”. In particular, we would have to change
the schema adding the new element
(!ELEMENT interest STRING TYPE = aux)
and the new subelement
(!SUBELEMENT student (student_id, start, interest)

INDEX = (1))
of the element student. In addition, the students supervised by lecturers with last name
“Einstein” would receive an attribute value index = (1).

3.2 Schema Updates

So far we discussed schemata, subelements and update operations. In fact, schemata are
pairs of a database and a media schema. Having defined an operation op of type transaction
on some element of type ‘db’ or ‘media’, we may apply this operation to an instance I of
the schema S, which in fact is also a pair of instances for the database and the media
schema. So, application of op will result in a new instance I’. This new instance I’ will
be the instance of a new schema S’, which may extend S by several subelements and new
elements. In this case, however, the change of schema is implied by the application of an
operation on the instance.

Thus, we have a transformation (I, S) ety (I’,8’") with the underscore indicating that

the change of schema is implied. So, in order to achieve greater flexibility and to avoid an
inflation of new subelements we may think of making operations on the schema explicit.
Suppose that we provide an operation Op on the schema, then we could apply (op, Op)

to the pair (I, S), i.e., we get a transformation (I, S) (op.Op) (I’,S’) with an instance I’
of the new schema &’ that results from applying Op. Of course, the possibility of using
implied schema changes would still remain.

We will call a schema S that is extended by a set of schema operations Op an evoly-
ing schema. Schema operations can be declared as (! OPERATION schema name
[change; ...change,]), where schema is the name of the original schema to be
updated, name is the name of the schema update operation, and change; .. .change,
is a sequence of elementary changes to the schema.

108

Precicely, as we have two schemata, a database and a media schema, the operations Op
mentioned before are indeed pairs of such schema update operations. The elementary
schema changes have the form

+declarationor —identification,

where declaration is any valid declaration in XML except declarations for schemata,
and identification identifies a schema component. The +-form means to add the
declaration to the schema, and the —-form means to remove the identified declaration from
the schema.

Example S Taking the schema from Example 1, we could specify a schema update oper-
ation
(!OPERATION db add_graduates [
+(! ELEMENT graduate (interest™) TYPE = db)
+(!ATTRIBUTE graduate id /D #REQUIRED)
+(!ATTRIBUTE graduate isa SUP student #REQUIRED)
+(! ELEMENT interest STRING TYPE = aux)
)

This operation would also change the element declaration for db to
(! ELEMENT db (person|student|lecturer|graduate)*)

—

Note that if XML-SCHEMA is used, the schema itself is written in form of an XML-
document. Thus, we could apply the update language from Section 3 to achieve schema
updates.

4 Media Types in XML

In the introduction we described our goal to extend XML in such a way that the theory of
media types would be supported. We shall now see that the extensions introduced so far
will give us largely what we wanted to achieve.

4.1 The Structure of Media Types

The core of a media type is defined by a view (See [9, 14] instead for the details). A view
V' on a database schema S consists of a view schema Sy and a defining query ¢y, which
transforms databases over S into databases over Sy .

The underlying datamodel itself is not relevant. The defining query may be expressed in
any suitable query language, e.g. query algebra, logic or an SQL-variant, provided that the
queries are able to create links [9].

In order to introduce links, we must create identifiers in the result of a query. We may also
want to provide escort information, which can be realized by a supertyping mechanism.

109

This leads to the definition of raw media type.

A raw media type has a name M and consists of a content data type cont(M) with the
extension that the place of a base type may be occupied by a pair £ : M’ with a label £ and
the name M’ of a raw media type, a finite set sup(M) of raw media type names M;, each
of which will be called a supertype of M, and a defining query g, with create-facility such
that ({¢ps}, qar) defines a view. Here ¢ is the type arising from cont(M) by substitution
of URL for all pairs £ : M’.

In order to model functionality we add operations to raw media types. An operation on
a raw media type M consists of an operation signature, i.e., name, input-parameters and
output-parameters, a selection type which is a supertype of cont(M), and a body which is
defined via operations accessing the underlying database.

In order to allow the information content to be tailored to specific user needs and presen-
tation restrictions, we must extend raw media types.

For many of the values we have to provide not only the type, but also the measure unit,
e.g. Joule or kcal, PS or kW, cm, mm or m, etc. There exist fixed means for the calculation
between the different units. Formally, each base type b should come along with a set
unit(b) of possible measure units. Each occurrence of b in the database or the raw media
types has to accompanied by one element from unit(b). This lead to an implicit extension
of the defining queries ¢p;. We shall talk of a unit-extended raw media type.

Since the raw media types are used to model the content of the information service, order is
important. Therefore, we claim that the set constructor should no longer appear in content
expressions. Then we need an ordering-operator ord< which depends on a total order <
defined on a type ¢ and is applicable to values v of type {t}. The result ord<(v) has the
type [t]. We shall tacitly assume that ordering operators are used in the defining queries
qnr- In this case we talk of an order-extended raw media type.

Cohesion introduces a controlled form of information loss. Formally, we define a partial
order < on content data types, which extends subtyping in a straightforward way such that
references and superclasses are taken into consideration.

If cont(M) is the content data type of a raw media type M and sup(cont(M)) is the
set of all content expressions exp with cont(M) < exp, then a total pre-order <, on
sup(cont(M)) extending the order < on content expressions is called an cohesion pre-
order. Clearly, cont(M) is minimal with respect to <.

Small elements in sup(cont(M)) with respect to <), define information to be kept to-
gether, if possible. An alternative to cohesion pre-orders is to use proximity values, but we
will not consider them here.

Another possibility to tailor the information content of raw media types is to consider di-
mension hierarchies as in OLAP systems. Flattening of dimensions results in information
growth, its converse in information loss. Such a hierarchy is already implicitly defined by
the component or link structures, repectively. Formal details on such hierarchies can be
found in [9].

For a raw media type M let H (M) be the set of all raw media types occurring in the
hierarchy of M. A set of hierarchical versions of M is a finite subset H (M) of H(M)

110

with M € H(M). Each cohesion pre-order <, on M induces a cohesion pre-order </
on each element M’ € H(M).

A media type is a unit-extended, order-extended raw media type M together with a cohe-
sion pre-order < and a set of hierarchical versions H (M).

Details on the theory of media types have been published in [9, 14].

4.2 Defining Queries of Media Types

The view of a media type can be declared in the form (! VIEW element query),
where query is the defining query. Such queries can be defined be using one of the
XML query languages discussed before [3, 4, 7, 17]. However, in order to support the
create-facility the following extensions can be used:

e Allow unspecified variables to appear in the specification of the query result. For
each possible binding of other variables these variables will be bound to a new iden-
tifier.

e Use an iteration construct such as ITER (qi;...;q,) With queries ¢; to define an
inflationary fixed-point.

e Use a sequence operator ; for queries.

4.3 Cohesion

When we introduced subelements, we exploited a subtype order. So whenever we are
given a regular expression e in an element declaration, we know all super-types for this.
With respect to the theory of media types we would use such an element to represent
the content type cont(M), so we know sup(cont(M)). On this the subtype order < is
naturally defined. Cohesion depends on defining a total pre-order < on sup(cont(M))
that extends the subtype order <.

In the context of XML we may think of a solution based on attributes. As we extend <, we
do not have to repeat the subtype order in the definition of <. As we are only looking for
a pre-order, a missing specification e; < ey can automatically be interpreted as es < e;.

Suppose we have an element named n defined by the expression e. For all the components
appearing in e we may simply declare an cohesion index in the form

(!COHESION element name number),

where element is an element of kind ‘media’, name occurs directly or indirectly in
element, and number is a positive integer subject to the condition that whenever v(n)
denotes the cohesion index of n and the components of n are nq,...,ny, then we must

have Zle v(n;) < wv(n).

111

For all e occurring in sup(cont(M)) we associate a number v(e), if possible. If all

e1,...,e, with e < e; have been assigned a value v(e;), but e has not, then we set
v(e) = Zle v(e;). Then we require e; =< es, if we have v(e;) > wv(ez). The default

rules above completely define the cohesion pre-order <.

Example 6 Suppose we have an element declaration with the name n and the regular
expression (a*, b, ¢). We could declare cohesion indices for a, b and c:
(!COHESION n a 3) (!COHESION n b 2) (!COHESION n a 1)

4.4 XML Support for Media Types

We can now bring together the extensions discussed in the previous sections and describe
how to support media types in XML. The fundamental part is to declare an element of
type ‘media’. In such a declaration, say (! ELEMENT name expression KIND =3D
media), the regular expression expression is used to describe the content type of the
media type named name. The view of a media type can be declared in the form (! VIEW
element query), where query is the defining query as discussed above. The order
extension required in media types has to be dealt with in this query.

The unit extension can be easily dealt with adding declarations of the form (!UNIT
element; elements unit), where element; refers to the element defining the
media type, elementy refers to a leave element in the tree for element;, which is
associated with a base type b;, and unit is the name of a measure unit that is suitable for
values in V;.

Finally, a media schema would be declared analogously to a database schema, say

(!MEDIA schema [(!ELEMENT schema ...) ...]).

5 Conclusion

In this article we compared the theory of media types with XML. Media types have proven
themselves to be a useful tool for conceptual modelling of large-scale web-based infor-
mation systems. XML on the other hand is currently attracting enormous attraction in
research and practice as a standard for data on the web.

We could show that with some extensions made XML could well be used to support media
types. In its current form important features such as hierarchies and adaptivivity are not
yet supported. The suggested extensions comprise subelements, operations and cohesion
indices.

In addition, subelements and operations bring some more clarity to the problem of up-
dating XML-documents. We argued that each document is associated naturally with a
schema or DTD, and that updates should refer to the pair consisting of the document and
the schema. Subelements allow the schema after an update to be easily detected. This

112

leads to a semantics of evolving schemata.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]
[16]

(7]
(18]

S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases. Addison-Wesley 1995.

S. Abiteboul, P. Buneman, D. Suciu. Data on the Web: From Relations to Semistructured Data
and XML. Morgan Kaufmann Publishers 2000.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener. The LOREL Query Language for
Semi-Structured Data. Int. Journal on Digital Libraries, vol. 1(1): 68-88. 1997.

P. Buneman, S. Davidson, G. Hillebrand, D. Suciu. A Query Language and Optimization
Techniques for Unstructured Data. Proc. SIGMOD ’96: 505-516.

P. Buneman, S. Davidson, M. Fernandez, D. Suciu. Adding Structure to Unstructured Data.
Proc. ICDT ’97.

S. Cluet, C. Delobel, J. Siméon, K. Smaga. Your Mediators need Data Conversion! Proc.
SIGMOD ’98: 177-188.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu. A Query Language for XML.
International World Wide Web Conference 1999.

T. Feyer, K.-D. Schewe, B. Thalheim. Conceptual Modelling and Development of Information
Services. in T.W. Ling, S. Ram (Eds.). Conceptual Modeling — ER *98: 7-20. Springer LNCS
1507, Berlin 1998.

T. Feyer, O. Kao, K.-D. Schewe, B. Thalheim. Design of Data-Intensive Web-Based Informa-
tion Services. In Proc. Ist International Conference on Web Information Systems Engineering.
Hong Kong (China) 2000.

C.F. Goldfarb, P. Prescod. The XML Handbook. Prentice Hall. New Jersey 1998.

T. Grabs, K. Bohm, H.-J. Schek. Scalable Distributed Query and Update Service Implementa-
tions for XML Document Elements. RIDE-DM 2001: 35-42.

A. Marotta, R. Motz, R. Ruggia. Managing Source Schema Evolution in Web Warehouses.
Workshop on Information Integration on the Web 2001: 148-155. Rio de Janeiro, April 2001.

K.-D. Schewe, B. Thalheim. Fundamental Concepts of Object Oriented Databases. Acta Cy-
bernetica, vol. 11 (4), 1993, 49-84.

K.-D. Schewe, B. Thalheim. Modeling Interaction and Media Objects. In E. Métais (Ed.). Proc.
5Sth Int. Conf. on Applications of Natural Language to Information Systems (NLDB 2000).
Versailles (France) 2000. Springer LNCS.

1. Tatarinov, Z. Ives, A. Halevy, D. Weld. Updating XML. SIGMOD’01: 413-424.

A. Tretiakov and S. Hartmann. Mobile Content Adaptation as an Optimisation Problem. Lec-
ture Notes in Computer Science, Web Information Systems =96 WISE 2004 Workshops: WISE
2004 International Workshops, Brisbane, Australia, November 22-24, 2004.

The World Wide Web Consortium (W3C). XQuery. http://www.w3c.org/TR/xquery

The World Wide Web Consortium (W3C). XML Schema. Working Draft, 2001.
http://www.w3c.org/TR/xmlschema-2 (1 = 0,1,2)

113

