
Increasing Flexibility of Hybrid Clouds
by Application Portability

Manohar Jonnalagedda, Michael C. Jaeger, Uwe Hohenstein and Gerald Kaefer

Corporate Research and Technology
Siemens AG

80200 München
Germany

manohar.jonnalagedda.ext@siemens.com
michael.c.jaeger@siemens.com
uwe.hohenstein@siemens.com
gerald.kaefer@siemens.com

Abstract: Many demands in engineering software, including legal, privacy, cost
and technical issues influence the deployment of the software. With cloud
computing, applications can be deployed in a provider cloud as an alternative to
on-premises infrastructure. Thus, software should be ready for local or provider
cloud deployment or a hybrid (mixed) setup. For the user of the application, the
location of application parts should remain transparent. The goal is to provide
flexibility to this regard while maintaining the basic advantages of cloud
computing. This paper introduces and discusses some of the key issues when
designing an application for a hybrid setup, in terms of software architecture,
communication and security between modules. We give recent trends and
recommendations on how to solve these issues so as to achieve application
portability.

1 Introduction

The cloud is used as a metaphor for the Internet, most probably due to the depiction of
the Internet in cloud forms. The cloud represents a set of services that provide
computing, networking, and software capabilities without a clear location. Cloud
computing refers to the provision of these services in three categories: (1) Software-as-a-
Service (SaaS): Giving a user access to software which runs on the cloud. All
computation taking place on the cloud, the client’s hardware does not need to be high-
performance. (2) Platform-as-a-Service (PaaS): Giving developers access to platforms
and frameworks that allow them to leverage the computing power of the cloud and
develop software that runs efficiently on the cloud. And, (3) Infrastructure-as-a-Service
(IaaS): Giving access to highly scalable and elastic resources. This allows the developer
to build applications that can scale (seamlessly) to many thousands of users, without
having to buy the hardware for it.

749



While the first category is end-user oriented, it is really the latter two points that have
made cloud computing attractive to businesses [gar10]. Cloud computing gives the offers
highly available, elastic infrastructure for economical prices, along with reduced
administration efforts. Companies are therefore looking to gain the benefits by
developing software for the cloud. Such software must however adhere to several design
constraints for cloud compatibility.1

From a business point of view, an idealistic goal for new applications is to decide at
deployment time if the software shall run in the provider cloud, on-premises or in a
hybrid (mixed) setup, so as to have an optimal trade-off between privacy and economic
use of cloud resources. In this paper, Application Portability refers to the degree of ease
with which a software can be deployed and run on both environments. In particular, this
means the ease in which modules of an application can be split and deployed on on-
premises or cloud platforms, ending up in a mixed setup. Portability has many different
meanings, like being able to move an application from one cloud provider to another,
with minimum application change. However, these other definitions are not in the scope
of the paper. We introduce the engineering issues for application portability (flexibility
at deployment regarding the location and the partitioning of the application) and describe
various trends in the field. Section 2 explains the business drivers and motivation for this
kind of portability. Section 3 shows the issues with this portability while Section 4
outlines possible solutions. Section 5 concludes the paper.

2 Motivation

The global pressure on cost reduction drives the industry to the adoption of
rationalisation and automation. Cloud computing has gained a lot of popularity because
of its promise to lower operational costs, and to provide large-scale, highly available
systems. However, some applications cannot be moved to the cloud. Reasons for this
may be business, privacy, legal, or operational-related. Moving business-critical
information onto the public cloud is a matter of reticence to many big organisations as, if
on the cloud, this information can physically lie in any continent, which may go against
local laws and policies, or even make the information liable to laws in another country
(for example the Patriot Act [pat01]). Consider an image management application which
allows for uploading images taken with different devices to be uploaded onto a portal.
The images can be accessed by a closed community, or shared publicly. Imagine a
vendor providing such software to different organizations:

1. The local police department: with high-definition cameras to take pictures of
various crime scenes and other surveillance pictures, it is interested in keeping
high-quality pictures in a private setup. It goes without saying that the police
would like the portal to run on-premises.
2. A medical diagnostics application: a medical institute has some high-tech
equipment which takes pictures related to different illnesses inside the human

1 1Applications requiring hardware access, for example, cannot be easily deployed onto the cloud, as the cloud
gives access to virtualized systems.

750



body. These images are large in size, and plenty in number. The institute might
therefore like to store the images themselves on the cloud, although metadata
concerning each image, being confidential, would be kept on-premises.
3. A group of college friends: these people would like their images of a trip to the
Bahamas to be uploaded directly onto a public platform, so that their other friends
can also view the pictures. They do not mind where the photos themselves are
hosted.

An ideal engineering effort of this new software would let the business decide whether
the application will run locally, on the cloud or in a hybrid setup. The business driven
goal is the engineering of applications whose components offer relocation transparency
in the sense of the RM-ODP [ISO96]. Dividing the application in such a manner brings
forward some key engineering issues, which are discussed in the next section.

3 Issues

Engineering issues mainly arise when one wants to develop and application that should
be able to run in hybrid setup: ideally, we would like to develop the image sharing
software from the example only once, and deploy different modules of the application to
different platforms, as dictated by the business requirements.

This raises the following issues:

 How do we design the application so that it is easy to break it into smaller,
independent modules?

 How do we develop the different modules so they run on both platforms?
 How do we store the data relevant to the application?
 How do different modules of the application communicate with each other? If

they communicate over the Internet, moreover, how do we ensure security?

4 Trends and Recommendation

The previous section has presented many issues that arise for engineering applications in
a mixed cloud setup. The general rationale is that the finished application should be
portable enough so that the entire application, or parts of it, can be deployed on a
provider cloud. Thus, the proposed business goal of Section 2 is to decide at deployment
time for a given setup during run time.2

2 The freedom to migrate services into or off the provider during run time might be also required but has
different motivations. For example, an organisation could migrate services to the provider cloud in the case that
on-premises infrastructure does not have any further capacity to host applications (known as cloud-bursting).
However, this degree of dynamic migration is not the scope of this work. Therefore, the following trends and
recommendations do not cover dynamic migration but do provide flexibility at the deployment.

751



4.1 Software Architecture

For Platform as a Service (PaaS) offerings we can see several paradigms characteristic
for cloud use. One of the standard paradigms is divide and conquer, which has also been
adopted in Google’s Mapreduce framework for efficiently processing large problem sets
[DG08]. Cloud computing offers horizontal scalability in general: adding more working
units to increase capacity, the ideal goal being to achieve almost infinite scalability. The
common consensus seems to be that good cloud applications should be designed with
knowledge of horizontal scalability. If the problem can be partitioned, then solving the
problem can be infinitely spread among a set of working units.

Secondly, with the proliferation of development platforms for the cloud, each of them
privileges certain building blocks for writing software optimally for the cloud. The
Windows Azure platform, for example, provides the concept of roles: self-contained
entities implementing an elementary unit of processing capability. In general, it is a good
practice to implement elementary units as opposed to classic large blocks of
functionality: the latter would lead to large units in the software system, thereby not
allowing for partitioning of the problem and take advantage of the horizontal scaling of
the cloud. The partition of the application in many elementary units is a basic condition
for the split deployment of the application. In conjunction with elementary application
units, the second larger design issue for cloud computing applications is decoupling. For
horizontal scalability, statelessness is preferred, as state at a certain key point of the
application can block it, hence losing all the advantages of elasticity and availability.
Furthermore, strong coupling would prevent the application from the ability to scale
dynamically. In order to elastically add working entities during run time, the application
architecture must show decoupled units of stages where problem parts can be processed
in an independent manner. For splitting the application into two deployment locations,
the decoupling allows for the use of service buses or other communication mechanisms
in order to overcome the distance between the two parts (described in section 4.3).

To summarize, horizontal scaling of elementary working units in the staging of an
application is an elementary architectural consideration in order to leverage the cloud
resources in an optimal way. This paradigm also enables the slip deployment of the
application in a hybrid cloud setup. Horizontal scaling in conjunction with a staged
application flow is also known as pipeline, which has been adopted in both hardware and
software architectures.

4.2 Data Models

Cloud computing has brought to the eyes of everybody a shift in thinking about data that
has been taking place in the IT world for a long time. Traditionally, industrial
applications have considered relational database management systems (RDBMS) the de
facto standard for persisting data. SQL database systems (DBS) are therefore highly
prevalent in the industry: they have the advantage of offering transactional services, a
general schema for storing structured data, and indexing mechanisms which optimize
queries. They concentrate mainly on consistency. In recent years, many companies have
been challenged by the sheer quantity of information stored and accessed over the

752



Internet: the necessity to make their services highly available has been the main driving
force. This has seen the development of many No-SQL type of DBS, lightweight
systems whose main selling point is distributed services and high availability.

Cloud computing, with its promise of elasticity and availability, is a natural fit for such
No-SQL DBS. This explains why the first storage solutions have been BLOB (binary
large objects) storages emulating a file system to some extent, and table storages. The
latter keep a table view without requesting a fixed pre-defined table schema to be
defined in advance. Hence, heterogeneous structures can be stored in one table. The
main focus of table storages is to offer those 80% of database functionality that typical
Web applications really require. They sacrifice consistency for the sake of availability
and partition tolerance in the sense of the Brewer’s CAP theorem [GL02]. Economic
drivers (the need for providers to cater to the inertia of the industry) has however also
seen the appearance of SQL-based persistence solutions appearing on the cloud.

In order to make cloud applications independent of the underlying persistence,
introducing an access layer is useful in the way object/relational persistence frameworks
such as HIBERNATE or ECLIPSELINK do for relational DBSs. However, the access
layer should now be abstract from data models and access interfaces of storage types.
Cloud applications can then easily switch from a DBS to No-SQL storage and vice
versa. First proposals such as SIMPLEJPA or SIMPLEORM are available.

On-premises applications can use any form of cloud storage as well since there are either
REST APIs [Fie00] to access cloud storages or usual protocols offered by DBSs. This
makes them available from anywhere. There are also some reasonable scenarios where
data is partially stored redundantly on-premises and in the cloud. In that case, some kind
of synchronization is required. Here, synchronization frameworks such as Microsoft
Azure Sync Framework are useful and provide much flexibility by means of definable
synchronization rules.

Another important scenario is the following: an application runs completely on-
premises, but wants to keep data in cloud storage in order to save storage costs, and must
also keep data on-premises because of legal or privacy issues. Even more, the data
should flexibly be distributed from one to the other. Then, the problem of distributed
transactions arrives at the scene if modifications in both parts have to be done in one
global transaction. Distributed transactions are still a major problem in Service-Oriented
Architectures. No soon solution is thus expected for cloud storages.

As a consequence, the overall conclusions for persistence issues are that modules and the
persistent data they use should stay together. Moreover, when designing such
applications, a good practice is to consider Brewer’s CAP theorem when trading full data
consistency with scalability.

4.3 Communication and Security

The other important aspect of portability is ensuring security during communication
between different sites where the application is hosted. In this paper, the topic of security

753



of the data residing on the cloud itself is not discussed. We identify two different layers
of communication: at the application layer, and then at the network layer. At both layers,
there are challenges when it comes to linking the cloud and on-premises platforms.

4.3.1 API communication / Application layer

API communication is one of the simplest and most elegant forms of communication,
and very handy when developing highly available services, as it makes the software
easier to use for clients/customers. Popular Web applications worldwide provide REST
APIs for clients/customers/users to access data, process and use it in new, imaginative
ways. The Programmable Web [pro] provides a list of applications offering such APIs.

This is relevant to application portability as we can imagine different modules of an
application each presenting an API for access. Moreover:

 It is important to be aware that every cloud service requires Internet security
hardening, because all interfaces are exposed to the Internet without firewall
protection. Therefore, Web services security standards and identity federation are
required building blocks on any design.

 It is good practice, when developing Web-based applications (whether it is hosted
on the cloud or not) to provide an API that gives access to data: such an API
generally requires little overhead on creating the application itself, and provides
an easy-to-use, generalized interface to many potential clients without having to
set up specific protocols with each of them.

 Two sites communicating uniquely via REST calls abstract the network layer
beneath them, and alleviate the need for developing communication protocols.
This effectively makes any module of the application portable, in the sense that as
long as it provides an API interface, it can be accessed, wherever it resides.

Secure API design is an active subject of research and discussion: many services accept
third-party login, for example they give access if the user provides Google login
credentials. The issue here is that the user is giving his/her login and password to a third-
party API, which is very compromising in terms of security and confidentiality. A better
idea is to hand out tokens to the third-party website in question. This token, received
from a trusted source, is accepted by the website, and access to data is thereby granted.
This technique is named OAuth (which is an RFC specification) [oau]. Microsoft
AppFabric’s ACS [app] is an implementation of this standard and allows developers to
write secure APIs that accept ACS tokens.

4.3.2 Bi-directional communication / Network layer

API communication is very pleasing in terms of simplicity and elegance, and we notice
that two modules can call each other’s API services in order to absorb data or insert data.
For many applications however (chat applications and collaboration tools), such
interfaces have too much overhead in communication. Such tools require that all sides
are able to send and receive messages, and maintain a good performance level. For

754



achieving bi-directional communication, platforms need to be connected in a more
stronger sense.

Large corporations having centers worldwide study ways of connecting these centers in
secure ways. Enterprise Service Bus is a prevalent concept among them. Microsoft
AppFabric’s Service Bus aims to take the concept onto the cloud, enabling applications
residing on the cloud to work with those on other platforms. The service bus concept is
one way of looking at the communication issue between different platforms. Another
way is to attempt to bring both the cloud and on-premises platforms into a single virtual
network. Amazon’s VPC [ama] is a product which goes in this direction: the on-
premises network is connected to the Amazon Cloud resources via a secure VPN
connection over the internet. This gives the illusion of a giant (seemingly infinite)
enterprise network, with all the advantages of cloud computing (scalability, availability,
computation). VPN connections as links between cloud and on-premises software have
also been studied elsewhere. Wolinsky et al [WLJ+09] study network architectures in
which network clients can be seamlessly added and removed from a virtual network.
They conclude in their study that virtual networks provide excellent isolation, and good
performance over Wide Area Networks.

4 Conclusions

In this paper, we have presented some of the problems and discussed some of the trends
and recommendations when it comes to hybrid portable applications for the cloud. It is
important to note that we focused on portability (flexibility in platform choice) at
deployment time, as opposed to dynamic portability. We identified software architecture,
data models, communication and security as key issues when it comes to developing
such applications.

The points previously discussed show different characteristics, and it is apparent that not
every solution fits every problem. We note particularly that portability may not be
completely flexible when it comes to data models (cloud applications accessing on-
premise data storage in particular). Some mechanisms that can be used for achieving
migration transparency are contradictory in some application cases. This work has
shown the general issues that arise when application need to provide the flexibility in
deployment. Cloud computing, after the initial hype, has reached a certain maturity with
many big industrial players actively looking for cloud solutions. Application Portability
(or hybrid cloud) is a very important issue for them, and we expect to see many new
solutions and ideas in this field in the coming months.

Literaturverzeichnis

[ama] Amazon Virtual Private Cloud (Amazon VPC). Available from
http://aws.amazon.com/vpc/.

[app] Windows Azure AppFabric. Available from http://www.microsoft.com/windowsazure/
developers/appfabric/.

755



[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM, 51(1):107–113, 2008.

[Fie00] Roy Thomas Fielding. REST: Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California, Irvine, 2000.

[gar10] Gartner Top 10 Strategic Technologies 2010, October 2010. Available from
http://www.gartner. com/it/page.jsp?id=1210613.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility of Consistent
Available Partition-Tolerant Web Services. In In ACM SIGACT News, 2002.

[ISO96] ISO/IEC. ITU.TS Recommendation X.902 — ISO/IEC 10746-1: Open Distributed
Processing Reference Model - Part 1: Overview, August 1996.

[oau] OAuth Core 1.0. Available from http://oauth.net/.
[pat01] Uniting and Strengthening America by Providing Appropriate Tools Required to

Intercept and Obstruct Terrorism (USA PATRIOT ACT), 2001. Available from
http://thomas.loc.gov/cgi-bin/ bdquery/z?d107:h.r.03162:.

[pro] Programmable Web : Keeping you up to date with APIs, mashups and the Web as
platform. Available from http://www.programmableweb.com/.

[WLJ+09] David Isaac Wolinsky, Yonggang Liu, Pierre St. Juste, Girish Venkatasubramanian, and
Renato J. O. Figueiredo. On the design of scalable, self-configuring virtual networks. In
SC. ACM, 2009.

756


