
Evolution of a Program Analysis Toolchain

Timm Felden Felix Krause

University of Stuttgart, Institute of Software Technology
Universitaetsstr. 38, 70569 Stuttgart, Germany

{feldentm,krausefx}@informatik.uni-stuttgart.de

Abstract

In this paper we report experiences made in the
mostly finished process of modernization of the
Bauhaus toolchain. We discuss the replacement of
a hard-to-change intermediate representation that is
only accessible in Ada by a modern one that is both
language-independent and easy-to-change. Further-
more, we describe how to set up a process such that
even academic research projects can perform an af-
fordable and safe migration.

1 Introduction

Bauhaus is a toolchain with a focus on static program
analysis[8]. New analyses are contributed in the form
of tools resulting from master and doctoral theses.
Most tools are written in Ada and analyse C, C++
and Java source code. Tools communicate over a file-
based intermediate representation called IML.

After about 20 years of development, two main is-
sues emerged that are addressed by this work. The
first is that it gets increasingly harder to recruit
new students for master theses. This trend started
when the primarily taught programming language was
switched from Ada to Java. In consequence, the aver-
age student is unable to write Ada code of sufficient
quality without prior introduction. Using two months
of a six months thesis for a sufficient introduction to
a programming language is not only unproductive.
It is also a disadvantage when competing with other
projects for the best students. Therefore, we had to
find a way of making the existing toolchain accessi-
ble in a language that students know well, and more
importantly, like. Migrating the whole code base to
Java, for instance, is not an option because it consists
of roughly two million lines of Ada code. We know of
no tool that can convert this code base automatically.
Manual conversion is also not an option, as we do not
have enough resources to convert all tools. Removing
tools from the toolchain would likely deprive us of a
significant part of existing functionality.

The second issue is that the existing IML infras-
tructure has no practicable way of changing its central
specification. Though it is possible to add new type
definitions to the specification, once added definitions
can no longer be changed without breaking compati-
bility of the intermediate representation. The reason

for this behaviour is the design of IML. An API and a
binary file format is generated out of a specification.
A change of an existing type definition is directly re-
flected in both. Hence, the resulting version of IML
is incompatible to the prior version. In consequence,
tools using that API have to be changed. Also, all
existing data sets can no longer be read. Therefore,
the central specification has experienced almost no
changes over the last years. This leads to a serious
evolutionary pressure that makes addressing this is-
sue increasingly necessary.

Unsurprisingly, this issue is completely indepen-
dent of Bauhaus which is only kept as a concrete ex-
ample. A similar situation, for example, is reported
by Strittmatter and Heinrich in the context of the
Palladio Component Model[10].

In Bauhaus, almost all access to the intermediate
representation is encapsulated in a library called lib-
IML. Its source code is mostly generated out of a
machine-readable specification. Its serialization for-
mat is based on said specification but can also contain
hand-written parts. The basic architecture of a tool
is shown in figure 1. Migration extends mostly to the
replacement of nodes connected by dotted edges.

Now, one could simply try to replace the exist-
ing Ada source code generator by a Java counterpart.
This would immediately solve the issue of accessibil-
ity of the primarily used programming language. In
fact, this has been done some time ago. The problem
of this approach is that the IML serialization format
is mostly specified but not entirely. Actually, there
are data structures whose semantics are only given
by handwritten Ada code. As such, it is not possi-
ble1 to generate equivalent serialization code for any
programming language other than Ada. Hence, the
generated API was realized basically by delegating
API calls to the existing Ada implementation. This is
achieved by enriching the Ada version of libIML with
compiler directives that make all functions accessible
from C. Then, code generators could easily be imple-
mented that, based on the C API, implement APIs for
C++ and Java. Consequently, a Java API for IML ex-
ists already. But it remains unused because some IML
data structures cannot be expressed directly in C and,
hence, are not exported to C++ and Java either. This

1At least not in any somehow maintainable way.

66 Softwaretechnik-Trends 37:2, Mai 2017



Data Code / Tool

dependency

generated dependency

Legend

Input

Output

Specification

Code Generator
Other Code

Tool Code

libIML

Figure 1: Abstract architecture of a tool.

is the case even though a direct translation of those
data structures from Ada to Java would be possible.
Having some parts of the intermediate representation
inaccessible makes the development of new tools ulti-
mately impossible.

A different approach is to replace the serialization
format as a whole. Enough sufficiently powerful for-
mats exist already that can be accessed in multiple
relevant programming languages. Also, one could try
to get an understanding of libIML that is so far ab-
stracted that it makes generation for both Ada and
Java possible without the requirement of hand-written
code except for the realization of the original API.

In both cases, a specification for all hand-written
code has to be created. Further, both solutions require
an Ada binding to be implemented such that existing
data sets can be converted to the new format. But
there are further requirements that have to be fulfilled
in order to create a practicable solution.

2 Goals

The necessity of presenting students with a program-
ming language they have learned in the course of their
education was mentioned already. Using native inter-
faces to export an API has not only the drawback
of not allowing any evolutionary improvements of our
intermediate representation. Also, it yields a remark-
ably poor performance. Hence, we have to consider
additional side-goals when designing our migration
process as a whole.

Feasibility

A set of conditions has to be considered in order to
create a feasible solution. Today, tools can effortlessly
analyse programs of sizes ranging from several hun-
dred to even a million lines of C code. This property
has to be maintained at all cost. Between tool exe-

Code

Data

Analyzed Data

Report

Compiler

Analysis

User Interface

Figure 2: Abstract process of tool execution.

cutions, data is repeatedly read and written. In con-
sequence, read and write operations have to be fast
so that the whole execution time is not affected no-
tably. The abstract process of performing an analysis
is depicted in figure 2.

Furthermore, the IML specification contains
around 300 type definitions. It is an object-oriented
specification language. Having grown over a long
time, the average level of inheritance is unusually
high. Slightly simplified, one could imagine the spec-
ification to be some sort of huge UML class diagram.
But, as the specification describes pure data-objects,
all fields are publicly accessible and no methods exist
at all. For those tools that locally define methods in
the IML class-hierarchy, a generated abstract visitor
(see [5]) can be extended. Also, there are some pe-
culiarities that have to be addressed correctly in each
target language. For instance, there is multiple inheri-
tance using interfaces, which, in contrast to Java, can
inherit from a regular class. Further, fields can not
only be pointers to other objects or ordinary values
like strings or integers. It is also required to specify
arrays, lists, sets and maps. Choosing the correct type
is required for a correct representation of the Ada API.
The base type of any such container specification can
be anything from a polymorphic pointer to a regular
integer type.

In order to use libIML or an equivalent in a lan-
guage like Ada without a native interface, it has to
be possible to generate an implementation conform-
ing to the specification. The generated implementa-
tion should be almost identical to the existing one to
minimize the effort of adapting to the existing API.
Given the sheer amount of generated code, it is also
not an option to perform any manual manipulation
after its generation. Such manipulations are likely
to be repeated after every generation, thus hinder-
ing adaptation of specification changes. Furthermore,
the generated code should be as compact as possible
to keep compile time at a manageable level. Finally,
the generated implementation shall export documen-
tation contained in the specification in their public
API. This will reduce the amount of training required
by students, as they no longer have to deal with the
original IML specification. Allowing students to mod-

Softwaretechnik-Trends 37:2, Mai 2017 67



ify the central specification is undesired anyway.
The graphs resulting from analyses can be used for

testing. For instance, if they are given to students,
they should on the one hand consist of one file only
and on the other hand be rather compact. It would
be particularly nice if they could be sent by an email,
at least in compressed form. This would simplify the
communication between team members and students.

Change Tolerance

Over the last 20 years, several design decisions were
made that turned out to be wrong. Because wrong
decisions cannot be prevented in general, it would
be nice if it were possible to correct them at little
cost. However, maintaining compatibility with data
sets generated with old tools is an absolute require-
ment. At least if the specification change does not
interfere with the part of the specification used by
an old tool. This is important for two reasons. The
first is that the specification of the front-end is al-
most never changed. Secondly, there are very valuable
data stets that cannot be reproduced easily. Those
are in part results of very expensive analyses, such as
a precise pointer analysis which can run for several
days. Another source of expensive data sets are ones
whose source code became inaccessible for whatever
reason. Furthermore, the amount of time required for
the compilation of a million lines of C code must not
be underestimated. Recompiling regularly is wasting
a lot of time and will likely cause larger programs to
be removed from the test data set. This can, in con-
sequence, lead to slight degradation of scalability over
time to a point where analysing the largest examples
is no longer affordable.

Additionally, a change in specification must not re-
sult in a change of the public API of libIML. Changing
this API may require a manual adaptation of a hun-
dred tools which is simply too expensive. Therefore,
changes have to be either API compatible or the seri-
alization format itself has to be compatible to that one
resulting from a changed specification. The latter case
causes more than one specification of the intermediate
representation in the long run. This will itself cause
some maintenance effort that has to be anticipated.

Bearing in mind the never ending change of any
technology, we should not only consider a migration
strategy from Ada to Java, but one that would work
for any target language. It would be naive to expect
Java to live forever.

3 Realization

At first glance, one would expect that an XML-based
solution exists. In fact, EMF[9] comes close to our
expectations on a conceptual level. But, the lack of
a code generator for Ada is already enough to pre-
vent a thorough evaluation. The SKilL serialization
system[1], on the other hand, seems to be a sufficient
foundation for our intermediate representation. SKilL

offers a sufficiently rich and easy-to-learn specification
language. Also, there are code generators for the pro-
gramming languages Ada, C++, Java and Scala read-
ily available. In order to use this system, the existing
specification has to be transformed into an equivalent
SKilL specification. After this, an Ada API can be
generated that can be combined with the existing lib-
IML to create a format converter. Luckily, this task
is rather easy because both APIs offer reflection that
can be used to map objects between both representa-
tions almost automatically. Some data structures in
IML bypass the specification and, therefore, require
some hundred lines of glue code.

Now, we can start to examine important proper-
ties that this approach will have when the process of
migration will have finished. Amongst them are file
size, accessibility of logical data over the generated
API and coding speeds. But most important is that
existing test data can be converted to the new format.
This does not only keep those data sets accessible. It
is also the source of a valuable set of test cases for the
migration process itself. For these tests, a sufficient
amount of tools is required, whose output is deter-
ministic. These tools can be run against all data sets
and their output can be compared to their old vari-
ants automatically. In Bauhaus, a sufficient amount
of such tools exists. Furthermore, we plan to keep the
Ada implementation of libIML completely API com-
patible during migration. Hence, tools don’t have to
be changed in most2 cases.

One can be pretty confident in the success of the
overall migration process if the test set is sufficiently
large which is the case for Bauhaus. Furthermore,
it is completely irrelevant whether tools produce cor-
rect output. The only thing we are interested in is
that they produce the same output as an indication of
equivalent behaviour. This observation is very impor-
tant in the context of a 20 year old toolchain because
looking at individual tools’ outputs reveals immedi-
ately that some tools had already required mainte-
nance some time ago.

At this point, one could simply revert the direction
of the format conversion tool. This would create a way
back into the old IML world. But this leads to serious
problems. Not only are further conversion steps be-
tween the two representations time-consuming. Also,
a maintenance nightmare would be created because
two completely different technologies were to be used
in a central place of the toolchain that had to be main-
tained in parallel. Furthermore, converting from the
old IML to a change-tolerant format will not make the
old IML any more change-tolerant. In consequence,
multiple versions of the old IML would need to be
created that reflect the various possible contents of a
data set which had to be changed with every extension
to the intermediate representation. Therefore, the old
IML is to be replaced completely.

2Unfortunately, some tools bypass libIML.

68 Softwaretechnik-Trends 37:2, Mai 2017



In parallel to the creation of a converter, a new
generator for libIML has to be developed. This new
generator should map its input specification to SKilL
automatically. In consequence, the original specifica-
tion can be kept although it can now be modified.
This is, because the new underlying file format will
automatically map the content to a new specification
if the inheritance hierarchy is kept compatible and
fields do not change type. Furthermore, the new gen-
erator has to ensure that the generated libIML API
stays compatible to the existing API as intended even
in the face of changed specifications. As soon as this
generator can create a libIML that tools can be com-
piled against, fully automated testing can start. Our
original goal is accomplished when all tests succeed.

4 Evaluation

A short demonstration of the effectiveness of this ap-
proach can be found in [2]. In order to test the ap-
plicability of the development process with the new
API, a master thesis with the goal of implementing
three pointer analyses has been performed (see [6] for
details). Two out of these three analyses have already
been implemented in similar theses (see [3] [4]). The
third analysis has also been implemented in Bauhaus.
Of course, the student had no access to the source
code of those existing implementations. Furthermore,
open source implementations of these analyses can be
found on the internet which are not based on IML.
But, in the course of the thesis it turned out that un-
derstanding the analyses in great detail and finding a
way through the vast IML specification and its intri-
cacies were the most time consuming tasks. The most
important point is that he was in fact successful in im-
plementing these analyses against the generated API.
Furthermore, an interesting observation is that it is in
fact possible to change the specification to fit a tool’s
needs without breaking compatibility to other tools.
Therefore, we conclude that students can develop new
prototypes with sufficient efficiency. Hence, the first
of our initial problems can indeed be solved using this
migration strategy.

Now, the question remains whether the costs of
migrating the original IML to SKilL are acceptable.
Przytarski [7] demonstrates in his master’s thesis that
this is in fact the case. His strategy splits into three
key aspects. The first is to reengineer syntax and se-
mantics of the specification language. Although some
specification exists, the details required to create an
automated mapping to a different specification lan-
guage were no longer available. For instance, there
is a mechanism to instruct the IML code generator
to create a set type for a type declaration that can
be used later on. This mechanism may appear rather
strange to a Java programmer or even to somebody
experienced in code generation. But this sort of in-
formation has to be addressed somehow. Also, the se-
mantics of IML and SKilL types are sometimes quite

different even though constructs share a name. This
is for instance the case with enums which had to be
mapped to SKilL integers instead. Similar obstacles
are to be expected when considering the migration
of other toolchains to SKilL as it is rather unlikely
that semantics of specification languages turn out to
fit perfectly in every detail. Furthermore, Przytarski
describes and implements a code generator that uses
the SKilL API for the implementation of the preexist-
ing Ada libIML. Afterwards, he demonstrates that at
least three different tools behave as before when com-
piled against his newly created libIML. Also, he shows
that the overall performance of tool implementations
stays at about the same level.

5 Conclusion

We have given an example demonstrating that a large
toolchain can be migrated with SKilL to become ex-
tensible and language-independent. We consider the
migration process to be rather inexpensive as it could
be performed by just two master theses. Therefore,
the approach can be applied easily by other academic
researchers as long as their toolchain is communicat-
ing over a central intermediate representation that is
generated out of a central specification.

References
[1] Timm Felden. The SKilL Language. Technischer Bericht,

University of Stuttgart, Faculty of Computer Science,
Electrical Engineering, and Information Technology, 2013.

[2] Timm Felden and Martin Wittiger. Migrating Bauhaus
from IML to SKilL. In: Softwaretechnik-Trends, volume
36:2, 2016.

[3] Simon Frohn. Implementierung einer unifizierenden Zeig-
eranalyse mit gerichteten Zuweisungen. Students the-
sis, University of Stuttgart, Faculty of Computer Science,
Electrical Engineering, and Information Technology, 2004.

[4] Simon Frohn. Konzeption und Implementierung einer
Zeigeranalyse für C und C++. Diploma thesis, Univer-
sity of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, 2006.

[5] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides. Design Patterns: Elements of Reusable Object-
oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995. ISBN 0-201-63361-2.

[6] Matthias Harrer. Prototypenentwicklung mit Bauhaus und
SKilL. Master thesis, University of Stuttgart, Faculty of
Computer Science, Electrical Engineering, and Informa-
tion Technology, Germany, 2016.

[7] Dennis Przytarski. SKilLed Bauhaus. Master thesis, Uni-
versity of Stuttgart, Faculty of Computer Science, Electri-
cal Engineering, and Information Technology, 2016.

[8] Aoun Raza, Gunther Vogel and Erhard Plödereder.
Bauhaus – A Tool Suite for Program Analysis and Reverse
Engineering. In: Reliable Software Technologies – Ada-
Europe 2006, LNCS, volume 4006, (pages 71–82), 2006.

[9] David Steinberg, Frank Budinsky, Marcelo Paternostro
and Ed Merks. EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2009. ISBN 0321331885.

[10] Misha Strittmatter and Robert Heinrich. Challenges in the
Evolution of Metamodels. In: 3rd Collaborative Workshop
on Evolution and Maintenance of Long-Living Software
Systems, Softwaretechnik-Trends, volume 36(1), (pages
12–15), 2016.

Softwaretechnik-Trends 37:2, Mai 2017 69




