
Error models for the representative

injection of software defects

Anna Lanzaro1, Roberto Natella1, Stefan Winter2, Domenico Cotroneo1, Neeraj Suri2

1 DIETI, Federico II University of Naples, Italy

{anna.lanzaro, roberto.natella, cotroneo}@unina.it
2 DEEDS Group, Dept. of CS, TU Darmstadt, Germany

{sw, suri}@cs.tu-darmstadt.de

Abstract: This paper considers the representativeness of injected error models for
ascertaining software defects.

Business- and safety-critical systems are more and more relying on software. Therefore,

while in the past these systems were mainly threatened by hardware faults, they are today

increasingly exposed to software faults, as demonstrated by recent severe software-related

accidents [WDS+10]. It is a matter of fact that, despite careful engineering and rigorous

quality assurance, critical systems are deployed with residual (unknown) software defects.

This problem is exacerbated by the massive reuse of legacy and off-the-shelf software

components [Wey98, Voa98]: When a component is reused in a new context, the system

may use parts of the component that were previously seldom used and only lightly tested,

or may interact with the component in unforeseen ways, thus exposing residual software

faults in the component that had not been discovered before.

It thus becomes important to adopt software fault tolerance strategies, in order to prevent

such residual defects in less critical parts from affecting more critical parts of a system.

Software fault injection (SFI) is an experimental approach to assess the dependability of

software-intensive systems in the presence of faulty software components, and to guide

the development of software fault tolerance mechanisms and algorithms. SFI deliberately

introduces faults in software components [Voa98, KS08] for:

• Validating fault-tolerance mechanisms: SFI can evaluate error detection and han-

dling mechanisms (such as assertions and exception handlers) against component

faults, and to add and to improve such mechanisms if necessary.

• Aiding FMECAs (Failure Mode, Effects, and Criticality Analysis): Developers

can quantify the impact of a faulty component on the overall system (e.g., in terms

of catastrophic system failures), and mitigate risks by focusing testing efforts on the

most critical components or by revising the system design.

• Dependability benchmarking: SFI helps developers to choose among alternative

systems or components the one that provides the best dependability and/or perfor-

mance in the presence of other, faulty, components.

118



Existing methods for the injection of representative software faults (i.e., the errors gener-

ated by injected faults match the effects of real residual software faults in a component)

consist in the corruption of the code of software components [NCDM13]. Unfortunately,

such code mutation suffers from practical disadvantages, including the need for source

code (which may be impossible to obtain for proprietary third-party components) and the

ability to mutate binary code (which has been proven to be very difficult due to the seman-

tic gap between source-level faults and their corresponding binary translation).

Therefore, practitioners often restrict themselves to a projection (error model) of the em-

ulated defects’ effects at the interfaces between software components. Interface error

injection overcomes the limitations of code mutations, by mimicking the effects (i.e., er-

rors) produced by faulty components through the injection of exceptional or invalid values

at the component’s interface [WSSM11].

The research question we address is whether existing error models for interface injec-

tions are representative projections of residual defects commonly found in software sys-

tems. For this purpose, we propose a method for analyzing how faults in software com-

ponents manifest as errors at the interfaces of software components (error propagation)

[LNW+14]. The method injects faults in the software component under analysis through

code mutations, and it instruments and executes the software component to identify the

effects of injected faults on the program that uses the component, including the corruption

of data structures shared between the program and the component, and erroneous return

values from function calls. A case study with widely used software libraries reveals that

existing interface error models are not suitable for emulating software faults, and provides

useful insights for improving the representativeness of interface error injections.

Acknowledgments: Work supported by the projects SVEVIA (PON 02 00485 3487758),

TENACE (PRIN n.20103P34XC), BMBF EC-SPRIDE, and LOEWE-CASED.

References

[KS08] K. Kanoun and L. Spainhower. Dependability Benchmarking for Computer Systems.
Wiley-IEEE Computer Society, 2008.

[LNW+14] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri. An Empirical Study of
Injected versus Actual Interface Errors. In Proc. ISSTA, pages 397–408, 2014.

[NCDM13] R. Natella, D. Cotroneo, J.A. Durães, and H.S. Madeira. On Fault Representativeness
of Software Fault Injection. IEEE Trans. Softw. Eng., 39(1):80–96, 2013.

[Voa98] J.M. Voas. Certifying off-the-shelf software components. IEEE Computer, 31(6):53–
59, 1998.

[WDS+10] W.E. Wong, V. Debroy, A. Surampudi, H. Kim, and M.F. Siok. Recent catastrophic
accidents: Investigating how software was responsible. In Proc. SSIRI, pages 14–22,
2010.

[Wey98] Elaine J Weyuker. Testing component-based software: A cautionary tale. IEEE Softw.,
15(5):54–59, 1998.

[WSSM11] S. Winter, C. Sârbu, N. Suri, and B. Murphy. The impact of fault models on software
robustness evaluations. In Proc. ICSE, pages 51–60, 2011.

119


