
Making MPI Intelligent

Dirk Tetzlaff, Sabine Glesner

Chair Software Engineering for Embedded Systems

Technische Universität Berlin, Germany

dirk.tetzlaff@tu-berlin.de

sabine.glesner@tu-berlin.de

Abstract: Mapping parallel applications to multi-processor architectures requires in-
formation about the execution times of the concurrent processes to find an optimal
allocation and must take into account the interprocessor communication at runtime,
whose overheads have emerged as the major performance limitation. However, both
information cannot be statically known in advance. In this paper we present a sophis-
ticated approach for mapping parallel MPI applications to concurrent architectures
using machine learning techniques. This automatically generates heuristics that pro-
vide the compiler with knowledge of the considered runtime behavior, hence yielding
more precise heuristics than those generated by pure static analyses. The heuristics
can be used to direct the runtime environment of MPI, which enables the reallocation
of processes to other processors at runtime and, furthermore, results in a better initial
allocation of MPI processes.

1 Introduction

The allocation of processes to processing elements (PEs) is a vital part of mapping parallel

applications to concurrent architectures. Finding an optimal solution requires information

about execution times of processes during runtime of applications, which is not known in

advance at compile time. Furthermore, it must take into account interprocessor commu-

nication at runtime, whose overheads have emerged as the major performance limitation

in parallel applications. Hence, one has to predict loop iteration counts if interprocessor

communication arises within loop bodies that do not have statically determinable loop

bounds. However, static analyses cannot predict iteration counts precisely. Consequently,

it is necessary to automatically incorporate knowledge of related dynamic behavior into

the compiler but without the need for manual annotations or profiling to preserve an au-

tomatic, continuous and efficient compilation flow. Moreover, the technique should be

highly scalable to facilitate the integration in industrial-strength compiler environments

used for compilation of real-world applications.

We tackle the problem of incorporating statically unknown or imprecise information about

the execution time and communication overhead during runtime of applications into the

compilation flow with the use of machine learning (ML) techniques, especially supervised

classification learning. Our approach thus automatically generates heuristics that effi-

ciently provide the compiler with knowledge of runtime behavior, namely to predict loop

75



iteration counts and execution times of processes. Our experimental results for learning

the loop iteration count can be found in [TG10].

In this paper, we focus on mapping MPI programs to concurrent architectures. We define

how the runtime behavior predictions are used to allocate MPI processes to PEs and we

present in detail the static code features used for learning the loop iteration count. Using

our machine learned information for the mapping of MPI processes to concurrent architec-

tures improves the initial allocation because processes that communicate most frequently

with each other can be automatically allocated to PEs with the minimal communication

latency in between. Furthermore, it enables the reallocation of processes at runtime when-

ever their communication behavior changes. Both features are great improvements to cur-

rent MPI implementations because even the best MPI implementation cannot ensure that

for instance frequently communicating processes are placed close to each other [Trä02].

While the learning phase entails a significant overhead, it is only executed once per ar-

chitecture decoupled from the compilation, so the compile time for applications is not

increased. To obtain the training data, we perform several profiling runs with different

input for the programs. This data is condensed and abstracted with classification learn-

ing that relate static properties of an application to its dynamic behavior at runtime. This

bridges the gap between static program analyses on the one hand and dynamic program

behavior on the other. Because we use a concise representation (decision trees), the ob-

tained predictors can be efficiently implemented (the resulting code consists of nested

if-else statements). Due to the high scalability of the resulting heuristics, the addi-

tional compile-time overhead is negligible and lower than those of conservative program

analyses. Thus, our approach preserves an efficient compilation flow. Since the heuristics

are automatically generated and incorporated into the compiler without the need for user

intervention, our approach also preserves an automatic, continuous compilation flow. Note

that the generated heuristics can also be combined with static program analyses. When the

analysis knows the results to be exact, that result can be used, otherwise, the heuristics is

consulted. Thereby, our approach combines the benefits of static analyses and profiling

without taking their disadvantages.

The paper is organized as follows: First, we outline the background of our approach in

Section 2. Our approach to ML-based mapping is given in Section 3 and its implemen-

tation in Section 4. Then, we discuss related work in Section 5. Finally, conclusions are

drawn in Section 6.

2 Background

In this paper, we contribute to a novel research domain, namely the prediction of runtime

behavior to facilitate optimizations during compilation by applying machine learning tech-

niques. In the following, we provide the necessary background knowledge of both areas,

machine learning in Section 2.1 and compiler optimizations in Section 2.2. Because we

aim at mapping MPI processes to concurrent architectures, we give an overview of MPI in

Section 2.3.

76



2.1 Machine Learning

Machine learning can be used to automatically infer information from a series of observa-

tions. It has been central to artificial intelligence research from the beginning [Tur50].

Here, we consider classification learning for which several algorithms have been pro-

posed. One of the most popular methods is classification tree learning [Ste09]. It has

become popular because of its clear interpretation and its ability to provide a good fit

in many cases [GLM04]. The advantage compared to other methods like neural net-

works (see [Wan03]) or nearest neighbors (see recent survey paper [Ind04]) is that the

constructed predictors have concise representations (decision trees). Thus, once trained,

making predictions takes a negligible amount of time. Moreover, knowledge extraction

from decision trees for explanation about the classification process is provided. That is,

the decision tree can be inspected to determine which features are important for classifica-

tion.

For classification learning, each observation is described by its properties, or features, and

is categorized concerning a set of given classes. The aim is to build a model that best ex-

plains the relationship from features to classes for the training data. The details of building

the model via recursive partitioning can be found in [Alp10]. Once trained, the model can

also be used to classify new observations, based on their features. Especially, it can be

used to generate an executable heuristics. This provides the compiler with intelligence

about the dynamic program behavior and can be used for a precise cost estimation. The

idea of the heuristics is to focus on typical program behavior instead of considering all

possibilities, as it is done by most static analyses.

To evaluate the precision of a predictor, it is applied to data for which the correct classes

are known. Then, correct and predicted classes can be compared. For realistic results,

predictors should be applied to unseen data for evaluation. As precision measure, the

average deviation between predictions and correct classes can be used (mean absolute

error). Additionally, considering the correlation between predictions and correct classes

helps to decide whether a relationship was actually learned.

2.2 Code Generation

Compilers for high-level programming languages convert the source code to an inter-

mediate representation (IR), which typically is transformed by subsequent optimizations

whereby the semantics of the program has to be preserved. Finally, the IR is translated

into machine code. For compilers, program analyses are vital to identify optimization

opportunities and to ensure that the program behavior is not changed. Since these anal-

yses are static, they can only make assumptions about how the program may behave at

runtime. The obligation to consider every possible eventuality enforces the analyses to

over-approximate, which can lead to highly imprecise results. As a consequence, the opti-

mizations are limited and optimization potential is sacrificed.

However, in many cases, programs do not behave as bad as the compiler expects. Hence,

77



gathering information about the runtime behavior, called profiling, can be used to fo-

cus optimization efforts on realistic behavior. That is, the program has to be compiled

first without runtime information. Then, the binary must be executed with typical input

data, and afterwards gathered information is available to direct optimizations. As a re-

sult, profile-guided compilation is able to achieve noticeable performance improvements,

though having the penalty to re-compile the program after its execution. In general, it

works well only when the actual runtime tendencies of the program match those collected

during profiling [Smi00]. That is, profiling is strongly dependent on the input data set of

that profiling run.

Integrating a beforehand machine learned model into the compiler that holds observations

from several profiling runs and relates them to static code features, as we do, eliminates

the need for profiling at compile time and has the advantage to focus optimizations on

more realistic behavior, not on one single behavior. Thus, we can make a more educated

guess whether some transformation may be beneficial to motivate compiler optimizations.

2.3 Message-Passing Interface (MPI)

The Message-Passing Interface (MPI) standard is an interface specification of a message-

passing library. An MPI program consists of autonomous processes which are identified

with a unique ID, called rank. Each process is an instance of the same MPI program, ex-

ecuting its own code in an MIMD style. That is, the code executed by each process does

not need to be identical. Which portion of this program will be executed by a process

can be selected via the rank. MPI addresses primarily the message-passing parallel pro-

gramming model, in which data is moved from the address space of one process to that of

another process through cooperative operations on each process. Typically, each process

executes in its own address space, although shared-memory implementations of MPI are

possible [Mes09].

The processes communicate via calls to MPI communication primitives like MPI_Send

and MPI_Recv, which are blocking operations. In other words, the operations do not

return until the message data is stored either into the matching receive buffer or into a

temporary system buffer. Message buffering decouples the send and receive operations.

A blocking send can complete as soon as the message was buffered, even if no matching

receive has been executed by the receiver. There are also synchronous communication

operations, for instance MPI_Ssend and MPI_Srecv. The synchronous send will com-

plete only if the corresponding receive operation has started to receive the message. If both

sends and receives are blocking operations then the use of the synchronous mode provides

synchronous communication semantics: a communication does not complete at either end

before both processes rendezvous at the communication. Other synchronization calls ex-

ist, where a number of processes perform a rendezvous, for instance MPI_Barrier or

MPI_Win_fence.

To start an MPI program, the user has to specify how many processes shall execute the

program. The MPI runtime daemon then starts this number of processes and is responsible

78



for the communication data transport and the coordination between the processes. The

user can specify to which processing element (PE) a process will be allocated, but this

allocation is fixed even if the runtime behavior indicates that reallocation to another PE

would be beneficial. If no advice for the allocation is given, the MPI runtime daemon

starts the processes in a Round Robin fashion on available PEs.

3 ML-based Mapping of MPI-Processes

Our approach for learning loop iteration counts and execution times of processes automat-

ically generates classifiers, which relate the static code features to the dynamic behavior,

thus providing the compiler with intelligence. At compile time, these classifiers can be

used as precise and fast heuristics for communication-aware mapping of MPI processes to

a concurrent architecture.

In the following, we outline the two phases of our approach for mapping MPI processes to

concurrent architectures using ML-based runtime-behavior predictions, namely the train-

ing phase in Section 3.1 and the compilation phase in Section 3.2.

3.1 Training

In the one-off training phase per architecture, we collect code features by means of static

analysis as well as dynamic runtime behavior through several profiling runs from a com-

prehensive suite of programs. Since each program is profiled with different input data,

we collect realistic behavior which is less strongly input data dependent. Both informa-

tion is fed into a learning algorithm, which is intended to find a statistical model (or more

precisely, a collection of classifiers) that represents the relationship of static features to

dynamic behavior with minimum error (see Figure 1). Since we are looking at supervised

classification learning, the considered dynamic behavior has to be discretized to a set of

classes.

Execute

Function:
Features Behavior

Code Features

Behavior

ML

Extraction

Profiling

Programs

Figure 1: Training phase

79



The learning algorithm strives for two goals that are discussed in detail below. First, in

Subsection 3.1.1, we consider learning loop iteration counts to determine the amount of

interprocessor communication. Second, in Subsection 3.1.2, we employ ML techniques to

predict precisely the execution time of a process on a particular processing element (PE)

in order to map processes efficiently to concurrent architectures.

3.1.1 Learning Loop Iteration Counts

To learn statically undeterminable loop iteration counts, we consider static code features,

which hold characteristics of the loop body, the loop bounds, and the function that contains

the loop. In total, we use 114 code features (see Table 1 for a complete list of features).

For example, we consider code features such as the kind of the loop and the loop exit

branches. We distinguish as kind of loops between do-while loops and while-do

or for loops because the former ones iterate at least once. We consider the kind of exit

branches to differentiate between exits that stem from the loop bound, exits that stem

from break statements, and exits that arise from goto statements. We also consider the

number of exit branches out of the loop because the more exit branches a loop contains

(e.g., due to continue or break statements), the greater the likelihood that the loop

iteration is actually terminated. If arrays are referenced within a loop body, the loop can

be expected to iterate over all elements. We therefore consider the maximum size of the

referenced arrays as a static feature.

We also examine characteristics of the structure of loop bounds like, for instance, the num-

ber of con- and disjunctions and (un-)equality comparisons between pointers or values.

The more conjunctions a loop bound contains at the top level, the greater the likelihood

that the loop will iterate less often. Parallel to this, the more disjunctions a loop bound

contains at the top level, the greater the probability that the loop will iterate more often.

Assuming a typical distribution of data values, the probability of two data values being

equal is low. Hence, a comparison of values or pointers as to whether they are equal (or

unequal) within a loop bound will probably result in more (or less) iterations. As charac-

teristics of the function that contains the loop, we use the cyclomatic complexity [McC76]

and the nesting depth [GS85]. Since the static prediction of execution frequency proposed

by Wu and Larus [WL94] is a good estimation of how often a loop will execute, it is used

to weight several features. Our experimental results for learning the loop iteration count

can be found in [TG10].

3.1.2 Learning Execution Times

We propose learning the execution time of a process based on static code features such as

the latency of the most probable path, the weighted sum of latencies of all instructions,

the fraction of control instructions, loop-related features and the amount of interprocessor

communication. The rationale is the following. The most probable path, which can be

determined by static profile analysis [WL94], defines the likeliest runtime behavior. We

use the predicted execution probabilities to also weight the sum of the latencies of instruc-

tions. Note that this latency is architecture-dependent, but every compiler has to know it

80



No. Name Description

1 – 2 kind-{struc,exit} kind of loop structure and exit branches

3 cnt-exit number of exit branches

4 – 9 {min,max}-sz-{arr,rec,un} min. / max. size of referenced arrays, records,

unions

10 – 15 {min,max}-bsz-{arr,rec,un} ditto when referenced in loop bound

16 – 18 cnt-{arr,rec,un} number of accesses to elements of arrays,

records, unions

19 – 20 nest, max-nest nesting of current loop, max. nesting of con-

tained inner loops

21 – 23 cnt-{or,and,log} number of disjunctions, conjunctions, and logi-

cal terms in loop bound

24 – 35 cnt-{i,f}-{l,le,g,ge,eq,ne} number of comparisons of integer / floating

points to be less / less or equal / greater / greater

or equal / equal / not equal

36 – 47 cnt-{iz,fz}-{l,le,g,ge,eq,ne} ditto when compared to zero

48 – 59 cnt-{im,fm}-{l,le,g,ge,eq,ne} ditto when compared to minus one

60 – 71 cnt-{ic,fc}-{l,le,g,ge,eq,ne} ditto when compared to another constant

72 – 77 cnt-ptr-{l,le,g,ge,eq,ne} ditto when pointer are compared

78 cnt-ptr-nil number of comparisons of pointer against NULL

79 – 86 cnt-{f}{scanf,printf,getc,putc} number of calls to these functions

87 – 94 w-{f}{scanf,printf,getc,putc} ditto weighted by static execution frequency

95 – 97 cnt-{fopen,fclose,fflush} number of calls to these functions

98 – 100 w-{fopen,fclose,fflush} ditto weighted by static execution frequency

101 – 103 cnt-{bb,ass,expr} number of basic blocks, assignments, expres-

sions within assignments

104 – 106 w-cnt-{bb,ass,expr} ditto weighted by static execution frequency

107 – 109 frac-{call,ctrl,if} fraction of function calls, statements altering

the control flow, if-expressions

110 – 112 w-frac-{call,ctrl,if} ditto weighted by static execution frequency

113 cc cyclomatic complexity by McCabe

114 nd nesting depth by Gong and Schmidt

Table 1: Static code features for learning loop iteration counts

81



for scheduling instructions. We can thus apply our ML-based mapping without the need

to annotate latencies for new architectures. That is, we do not have to modify the feature

extraction algorithm because it gets the latency information as an input parameter. The

fraction of control instructions defines how much of the code will be executed condition-

ally. Loop-related features, such as the number of loop iterations, the loop nesting and the

amount of interprocessor communication are relevant because they contribute most to the

execution time. For example, the deeper the loop nesting, the longer the execution time

can be expected to be.

Learning loop iteration counts enables us to predict precisely the amount of interproces-

sor communication, and the learned execution time enables us to map processes power-

efficiently to PEs. Both learned information can be used to improve the mapping of MPI

processes, as we show in the following section. Since different kinds of programs can-

not be expected to behave similarly, we propose using program classification [AG09] to

improve the preciseness of the resulting classifiers.

3.2 Compilation

At compile time, we aim at mapping MPI programs to concurrent architectures. Hence, we

have to analyze the synchronization between the processes. That is, we analyze the MPI

synchronization calls. On encountering such calls, we split each participating process into

two tasks, the part of the process until the synchronization and the part of the process after

the synchronization. The rationale is that the communication behavior of a process might

change during execution. This modelling facilitates to identify points in the program where

a reallocation of a process to another PE can be beneficial. To find an optimal mapping,

we must take into account the interprocessor communication at runtime and the execution

times of processes. To that end, we simply have to extract the code features of each task

via highly scalable static analysis. From this, we obtain behavior predictions for execution

times of tasks and the communication amount between tasks with our learned statistical

model (see Figure 2). Because we also obtain the communication latency between PEs

from profiling during the training phase, we have the communication cost.

From this, we build a task graph with vertices representing tasks and edges representing

dependencies as shown in Figure 3 on the left. To reflect synchronization, we insert syn-

chronization points into the graph. The tasks are labeled with the first number being the

rank of the corresponding MPI process (i.e., the unique ID which is known by the MPI

Code Features

Extraction
Program

Behavior
Predictions

Figure 2: ML-based behavior prediction

82



runtime daemon) and the second number representing the part of the process. In Figure 3,

tasks T0.1 and T1.1 as well as tasks T1.3 and T2.3 communicate with each other (indicated

by a red arrow), and tasks that have dependencies (illustrated by gray arrows) execute in

sequence while the other can execute in parallel. Next, we annotate the task graph with

our predictions for the execution times and the communication amount. This information

can then be used for communication-aware and power-efficient allocation of tasks to PEs.

The architecture we consider can be described by an undirected, weighted host graph

H = (V,E). The vertices in V correspond to PEs, edges in E represent the commu-

nication medium, and the weight of an edge models the communication cost between

PEs. The goal of mapping parallel applications to concurrent architectures therefore can

be seen as the problem to find an embedding of the corresponding annotated task graph

TG = (TV, TE) into H with respect to minimize the overall execution time and commu-

nication cost. To minimize overall the execution time we assign a priority ρ to each task

Ti with predicted execution time ti. We define this priority as

ρ(Ti) = ti + max
Tj∈TV,(Ti,Tj)∈TE

ρ(Tj)

It can be interpreted as the length of the execution time of the critical path in TG from Ti
until the end of the executions of all its descendants. Additionally, we partition the task

graph into regions such that all tasks within a region can be executed in parallel. That is,

there are no dependencies among the tasks. In Figure 3, we have three regions consisting of

the tasks that are shown on the same horizontal level. Then we order the parallel executable

tasks of each region with an priority-weighted list scheduling algorithm.

The final step is the allocation of tasks to PEs, which we perform per region. We do not

constraint the characteristic of the PE. For instance, it can be a vector processor, a scalar

processor with multiple cores, or an FPGA. Hence, we have a hierarchical communication

structure. For example, cores of a processor can communicate via a fast cache, proces-

sors can communicate via shared memory or more expensive communication medium like

a network connection. Träff [Trä02] shows that the embedding of the communication

graph into the host graph H with a hierarchical communication structure can be solved by

weighted graph partitioning, optimizing for totalcut. Since the problem is NP-complete,

using a Kernighan-Lin like linear time heuristics is proposed [Trä06]. The heuristics can

give better results than standard algorithms using recursive bipartitioning. We extend this

Figure 3: Mapping of MPI processes to concurrent architectures

83



heuristics by allowing tasks to be mapped to the same PE if the sum of its execution times

do not exceed the execution time of other tasks in the same region. The resulting mapping

of processes to PEs is automatically given to the MPI runtime daemon.

Consider the mapping of the annotated task graph to the architecture shown in Figure 3

on the right. The concurrent architecture is composed of PEs connected by a bus which

results in different communication latencies. The latency between PE0 and PE2 is as

low as the latency between PE1 and PE3, whereas all other latencies are much higher.

At release time of the processes, the MPI runtime daemon without having predictions for

the communication amount and the execution time typically performs workload balancing.

This could result for example in allocating the process with rank 0 (i.e., tasks T0.1 and T0.2)

to PE0, the process with rank 1 (i.e., tasks T1.1 to T1.3) to PE1, and the process with

rank 2 (i.e., tasks T2.1 to T2.3) to PE2.

Our ML-based predictions make possible to direct the MPI runtime daemon allocating T1.1
to PE2 (instead of to PE1), which results in lower communication overhead. At each

synchronization point, we analyze whether another allocation is beneficial and if so, we

inject calls to signal the MPI runtime daemon that reallocation is necessary. Therefore, if

the execution times of tasks T1.2 and T2.2 together are predicted to be no longer than the

execution time of task T0.2, the MPI runtime daemon will be directed to allocate both to

the same PE. At this time, we can put PE2 and PE3 in a low power state. Assume that

the last part of the processes with rank 1 and 2 have similar predicted execution times. At

the second synchronization point the MPI runtime daemon has the information that both

processes shall be allocated close to each other but not on the same PE because of their

similar execution times and therefore reallocates task T2.3 to PE0. Thus, our approach is

communication-aware and power-efficient.

4 Implementation

We have implemented the machine learning algorithm within the R Project [Dev08], to-

gether with the rpart package for the classification tree algorithm. R Project is a collection

of statistical functions, which we have already successfully used in previous work [TG10].

For program classification [AG09], we use the hclust function for hierarchical cluster-

ing. We implement the compilation steps within the modular, industrial strength Compiler

Development System (CoSy) of ACE [ACE11]. The steps during compilation like e.g.,

analyses, optimizations, and code generation are implemented in modules called engines.

We have implemented the extraction of code features for the learning of the loop iteration

counts and the static branch prediction algorithm proposed by Wu and Larus [WL94] for

determining the execution probabilities and frequencies. To determine the actual loop iter-

ation count for profiling during the training phase, we have used the path profiling engine

of CoSy.

84



5 Related Work

The application of ML techniques in compiler frameworks has become a challenging re-

search area. The key advantage of learning techniques is their ability to find relevant

information in a high-dimensional space, thus helping us to understand and control a com-

plex system. Heuristics automatically generated via learning algorithms often outperform

hand-crafted models (cf. [MBQ02]). As an example application, this approach learns to

decide if Loop Unrolling is beneficial or not. The approach of Fursin et al. [FMT+08] tar-

gets the selection of good optimization passes via machine learning. During the training

phase, information about the program structure is gathered using 55 static program fea-

tures and the behavior of programs when compiled under different optimization settings is

recorded. After training, on encountering a new program the optimizations to be applied

are selected.

Close to our approach for predicting execution times using ML techniques is the approach

of Powell and Franke [PF09] for predicting cycle counts to speed up instruction set sim-

ulation. However, their method allows the training data to be updated, online feature

selection, and switching between cycle- and instruction-accurate simulation to ensure the

accuracy of the predictions being made. To the best of our knowledge, no approach targets

task allocation in compilers using ML techniques.

The mapping and scheduling problems on multiprocessor systems are often modeled as

integer linear programming (ILP) problems ([RGB+06, YH08]). The major drawback

of ILP is its limitation to small problems due to its computational complexity. Heuristic

approaches such as genetic or evolutionary algorithms are therefore being increasingly de-

veloped (e.g., [GTT09, PLL07, Yoo09, YH09]). Their main disadvantage is the extended

compile time due to the iterative approach of finding good solutions. Common to all these

approaches is the requirement of having information about communication overhead or ex-

ecution time of the tasks. Thus, our technique supports these approaches by automatically

generating predictions for the claimed information.

Several new approaches target communication- and power-aware task scheduling in com-

pilers for concurrent architectures (though without using ML techniques). For example,

the approach of Varatkar and Marculescu [VM03] takes an abstract application task graph

and the architecture graph as inputs, assigns the tasks to processors and then schedules

them. Nodes in the abstract task graph are annotated with deadlines and the number of

cycles taken by that task for computation. Arrows, which indicate a control dependence

between two tasks, are annotated with a number representing the quantity of communi-

cation traffic between the tasks. Since the amount of communication between the tasks

and the processor cycles needed for each task has to be annotated, our technique can be

adapted to this approach, thus eliminating the need for these annotations. However, voltage

selection is modeled as an ILP problem, which suffers from computational complexity.

A task and data migration scheme that decides whether to migrate tasks or data to satisfy a

given communication requirement is proposed by Ozturk et al. [OKSK06]. The choice is

made at runtime based on statistics collected off-line through profiling. The major draw-

back of one profiling run is the strong dependence on the input data set of that run. That

85



is, selecting input sets that generate representative profiles is a difficult task. However, the

authors’ experience with several applications indicates that in some cases migrating the

task itself – instead of data – can be more beneficial from both performance and power

perspectives. Based on this observation, it is clear that task allocation and minimizing

energy consumption should be jointly addressed during compilation.

To overcome the limitations of ILP due to computational complexity and the drastic over-

approximation of static analyses due to unknown runtime behavior, we use supervised clas-

sification learning. This automatically generates classifiers, which relate static code fea-

tures to the dynamic behavior, thus providing the compiler with intelligence. At compile

time, these classifiers can be used as precise and fast heuristics for communication-aware

task mapping and power minimization, which eliminates the need for manual annotations

of forecast values.

6 Conclusions

Using ML techniques in compilers is a challenging research area. In this paper, we have

presented a novel, highly scalable ML-based approach for predicting runtime communi-

cation overhead and execution time targeting the mapping of MPI processes to concurrent

architectures. Our proposed learning algorithm automatically relates static code features

to dynamic runtime behavior. This allows us to generate much more precise heuristics than

those generated by static analyses, as our experimental results in [TG10] demonstrate.

Since the learning algorithm must be deployed only once per architecture decoupled from

the compilation, the compile time itself is not increased, in contrast to other heuristic ap-

proaches such as genetic and evolutionary algorithms or profile-guided compilation. The

latter approach is as well strongly dependent on the input data set, hence being too pre-

cise. Instead, we perform several profiling runs with different input data during the training

phase. Thus, we focus on realistic behavior and not on one single behavior. Furthermore,

our technique is applicable to all other approaches where user annotations or profiling

are necessary, thus eliminating their requirements. Additionally, our solution is fully re-

targetable and is not limited to static mapping at compile time. Instead, the established

heuristics can be used to make the MPI runtime scheduler more intelligent concerning the

runtime behavior of the processes. With our predictions for the execution times and the

communication amount, we can direct the MPI runtime scheduler to reallocate processes

communication-aware and power-efficient instead of simply performing workload balanc-

ing. This is a great improvement to current MPI implementations because even the best

MPI implementation cannot ensure that for instance frequently communicating processes

are placed close to each other.

In the future, we will apply our approach for learning execution times. Because com-

munication between processes can also arise within recursive functions, we plan to learn

the recursion depth of these functions, thus giving us an estimate for the communication

overhead in these cases. Finally, we will use all results to guide the mapping of parallel

applications to concurrent architectures.

86



References

[ACE11] ACE. Associated Compiler Experts bv., Amsterdam, The Netherlands, 2011.

[AG09] Lars Alvincz and Sabine Glesner. Breaking the Curse of Static Analyses: Making Com-
piler Intelligent via Machine Learning. In 3rd Workshop on Statistical and Machine learn-
ing approaches to ARchitectures and compilaTion (SMART’09), January 2009.

[Alp10] Ethem Alpaydin. Introduction to Machine Learning, Second Edition. Adaptive Compu-
tation and Machine Learning. The MIT Press, 2nd edition, 2010.

[Dev08] R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2008.

[FMT+08] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov,
Ayal Zaks, Bilha Mendelson, Phil Barnard, Elton Ashton, Eric Courtois, François Bodin,
Edwin Bonilla, John Thomson, Hugh Leather, Chris Williams, and Michael O’Boyle.
MILEPOST GCC: Machine Learning Based Research Compiler. In Proceedings of the
GCC Developers’ Summit, pages 7–19, June 2008.

[GLM04] Robert B. Gramacy, Herbert K. H. Lee, and William G. Macready. Parameter Space Ex-
ploration with Gaussian Process Trees. In Proceedings of the Twenty-First International
Conference on Machine Learning, ICML ’04, pages 45–53, New York, NY, USA, 2004.
ACM.

[GS85] Huisheng Gong and Monika Schmidt. A complexity measure based on selection and
nesting. SIGMETRICS Perform. Eval. Rev., 13:14–19, June 1985.

[GTT09] C. Goh, E. Teoh, and K. Tan. A hybrid evolutionary approach for heterogeneous mul-
tiprocessor scheduling. Soft Computing - A Fusion of Foundations, Methodologies and
Applications, 13:833–846, 2009.

[Ind04] Piotr Indyk. Nearest Neighbors In High-Dimensional Spaces. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 39,
pages 877–892. CRC Press LLC, Boca Raton, FL, 2nd edition, April 2004.

[MBQ02] Antoine Monsifrot, François Bodin, and René Quiniou. A Machine Learning Approach
to Automatic Production of Compiler Heuristics. In Proceedings of AIMSA’02, pages
41–50, London, UK, 2002. Springer-Verlag.

[McC76] T.J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,
2(4):308–320, 1976.

[Mes09] Message Passing Interface Forum. MPI: a Message-passing Interface Standard: Version
2.2. University of Tennessee, 2009.

[OKSK06] O. Ozturk, M. Kandemir, S. W. Son, and M. Karakoy. Selective code/data migration
for reducing communication energy in embedded MpSoC architectures. In Proceedings
of GLSVLSI’06, pages 386–391, New York, NY, USA, 2006. ACM.

[PF09] Daniel Christopher Powell and Björn Franke. Using Continuous Statistical Machine
Learning to Enable High-Speed Performance Prediction in Hybrid Instruction-/Cycle-
Accurate Instruction Set Simulators. In CODES+ISSS ’09: Proceedings of the 7th
IEEE/ACM International Conference on Hardware/Software Codesign and System Syn-
thesis, pages 315–324, New York, NY, USA, 2009. ACM.

87



[PLL07] Saeed Parsa, Shahriar Lotfi, and Naser Lotfi. An Evolutionary Approach to Task Graph
Scheduling. In International Conference on Adaptive and Natural Computing Algorithms
(ICANNGA 1), pages 110–119, 2007.

[RGB+06] Martino Ruggiero, Alessio Guerri, Davide Bertozzi, Francesco Poletti, and Michela Mi-
lano. Communication-Aware Allocation and Scheduling Framework for Stream-Oriented
Multi-Processor Systems-on-Chip. In Proceedings of DATE’06, pages 3–8, 3001 Leuven,
Belgium, 2006. European Design and Automation Association.

[Smi00] Michael D. Smith. Overcoming the challenges to feedback-directed optimization
(Keynote Talk). In Proceedings of the ACM SIGPLAN workshop on Dynamic and adap-
tive compilation and optimization, DYNAMO ’00, pages 1–11, New York, NY, USA,
2000. ACM.

[Ste09] Dan Steinberg. CART – Classification and Regression Trees. In Xindong Wu and Vipin
Kumar, editors, The Top Ten Algorithms in Data Mining, Chapman & Hall/CRC data
mining and knowledge discovery series, chapter 10, pages 179–201. CRC Press, 2009.

[TG10] Dirk Tetzlaff and Sabine Glesner. Intelligent Task Mapping using Machine Learning. In
CiSE ’10: Proceedings of the 2010 International Conference on Computational Intelli-
gence and Software Engineering, pages 1–4. IEEE Computer Society, dec. 2010.

[Trä02] Jesper Larsson Träff. Implementing the MPI Process Topology Mechanism. In Proceed-
ings of the 2002 ACM/IEEE Conference on Supercomputing, Supercomputing ’02, pages
1–14, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[Trä06] Jesper Larsson Träff. Direct graph k-partitioning with a Kernighan-Lin like heuristic.
Operations Research Letters, 34(6):621–629, 2006.

[Tur50] Alan M. Turing. COMPUTING MACHINERY AND INTELLIGENCE. Mind,
LIX(236):433–460, 1950.

[VM03] Girish Varatkar and Radu Marculescu. Communication-Aware Task Scheduling and Volt-
age Selection for Total Systems Energy Minimization. In Proceedings of ICCAD’03,
pages 510–517, Washington, DC, USA, 2003. IEEE Computer Society.

[Wan03] John Wang, editor. Data Mining: Opportunities and Challenges. IGI Publishing, Her-
shey, PA, USA, 2003.

[WL94] Youfeng Wu and James R. Larus. Static Branch Frequency and Program Profile Analysis.
In Proceedings of MICRO 27, pages 1–11, New York, NY, USA, 1994. ACM Press.

[YH08] Hoeseok Yang and Soonhoi Ha. ILP Based Data Parallel Multi-Task Mapping/Scheduling
Technique for MPSoC. In Proceedings of ISOCC’08, volume 01, pages I–134–I–137,
Nov. 2008.

[YH09] H. Yang and S. Ha. Pipelined Data Parallel Task Mapping/Scheduling Technique for
MPSoC. In Proceedings of DATE’09, pages 69–74, 2009.

[Yoo09] Myungryun Yoo. Real-time task scheduling by multiobjective genetic algorithm. Journ.
of System a. Software, 82(4):619–628, 2009.

88


