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Abstract: Adequate data management and data provisioningraosg the most
important topics to cope with the information exgtm intrinsically associated
with simulation applications. Today, data exchamggh and between simulation
applications is mainly accomplished in a file-styleanner. These files show
proprietary formats and have to be transformed ralicg to the specific needs of
simulation applications. Lots of effort has to heeist to find appropriate data
sources and to specify and implement data transfiioms. In this paper, we
present SIMPL — an extensible framework that presid generic and consolidated
abstraction for data management and data provigjoim simulation workflows.
We introduce extensions to workflow languages amalashow they are used to
model the data provisioning for simulation workflwased on data management
patterns. Furthermore, we show how the framewogpstts a uniform access to
arbitrary external data in such workflows. This ous the burden from engineers
and scientists to specify low-level details of datanagement for their simulation
applications and thus boosts their productivity.

1 Introduction

Workflows have long been used to meet the need§ sfipport for business processes.
Workflows are compositions of tasks by means ofahor data dependencies that are
carried out on a computer using a workflow managensystem (WfMS) [LR99].
Recently, workflow technology has found applicatinrihe area of scientific computing
and simulations for implementing complex scientéjgplications and the tersgientific
workflow has been coined [TDGO07]. Simulations, as a sulfsstientific applications,
are typically compositions of complex calculaticarsd data management tasks, which
makes them good candidates for the realization eskflsws. For instance, partial
differential equations have to be solved to deteemtiemporal or spatial changes of
simulated objects, e.g., of the structure of aircarcrash test.

Accessing and provisioning huge amounts of hetereges and distributed input data as
well as generating huge intermediate and final data are some of the major challenges
of simulation workflows [TDGO07][Gi07][DCO08]. Typidadata management activities in
simulation workflows are extraction, transformatiand load operations (ET[Y110].
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In [VrO7], the authors discuss workflow technology the key technology to cope with
heterogeneous applications and data stores. InJile this argumentation and as
proposed by [MaO5], our work is based on an ETL kitow approach, i.e., ETL
operations of simulation workflows are modeled ardcuted via workflow technology.

Today, the data management and data provisionirsmaflation applications is mainly
accomplished in a file-style manner. These filessproprietary formats and inevitably
have to be transformed into the appropriate forthat simulations require. Most of
current scientific workflow management systems (8\8$) lack a generic, consolidated,
and integrated data management abstraction thatagaa with huge and heterogeneous
data sets. They use several specialized technslogjig., custom workflow activities or
services, to access data. Lots of effort must eatsip find appropriate data sources and
to specify and implement necessary data transfaomet which brings in additional
complexity for scientists. This is in particulaudr for simulations involving multiple
domains since each domain has its own requirenaentsolutions for data handling and
thus render the data source and application envieoih even more heterogeneous. A
consolidated abstraction support would remove tirddn from engineers and scientists
to specify low-level details of data managementlfieir simulation applications.

In this paper, we present SIMPL (SimTech — InfoioratManagement, Processes, and
Languages) — an extensible framework that addredseslack of abstraction and
generality for data provisioning in current simidat workflow technology. SIMPL
provides unified access methods to access arbitesternal data in simulation
workflows while metadata describe the mappings betwtheir interfaces and the
concrete access mechanisms. At the modeling lawel, framework extends the
workflow language by a small set of activities thigthtly embed data management
operations for any kind of data source. When sutladivity is executed, it uses the
unified access methods of SIMPL to seamlessly actes specified data source. To
further assist the workflow modeler in defining itsgd data management tasks in
simulation workflows, we introduce data managemgatterns, e.g., patterns for ETL
operations. In this paper, we show that these qpati®@ combination with the activities
for data management and the unified access metlatidss to define the data
provisioning for simulations in multiple domains aeell as for other scientific
applications, such as biology, astronomy, or eaidkg science. We discuss the
extensibility of the SIMPL framework with respect additional kinds of data sources
and data management patterns. Furthermore, werdtasthe huge potential for a
consolidated optimization that SIMPL makes possddeit combines the definition of
activities for data management and simulation atstime level of abstraction.

The rest of this paper is organized as follows:tiBec2 illustrates the motivation to
enhance an existing architecture of sSWfMSs by thdP& framework and shows its
integration into this architecture. Afterwards, @@t 3 provides details on major aspects
of modeling data management tasks in simulatiorkfdaws, while Section 4 deals with
the underlying approach to unify heterogeneous sscoeechanisms for different data
sources. We then discuss the benefits and drawhzotsr framework and evaluate it
via an example simulation workflow in Section 5.&ed work is afterwards discussed
in Section 6. Finally, Section 7 concludes and lfsture work.
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2 The SIMPL Framework

The SIMPL framework is designed as an extensiosctentific workflow management
systems. Hence, we first sketch the main compor@rdsich a system according to the
architecture of SWfMSs introduced in [G611]. Aftemds, we discuss the motivation to
enhance this architecture, illustrate the main etspey means of a sample workflow,
and show the architectural integration of the SIMRImework.

2.1 Scientific Workflow Management Systems

Scientific Workflow Management System
GUI
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Fig. 1. Architecture of a scientific workflow managemewpstem, cf[GO11]

The architecture of scientific workflow managemegstems presented in Figure 1 is
based on the workflow technology for business amdiyction workflows as defined in
[LR99]. The scientific workflow modelers(VF Modeler) of the GUI supports the
modeling of workflow specifications and correspargdideployment information. The
function catalog provides a list of available services as well asustomizable set of
easy-to-model functions that can be used in wovkflnodels. With the help of the
monitor component, users may constantly observe workflaecetions and identify
unexpected events or faults. Titesult display component presents the final outcome of
simulations as well as intermediate results in g agpropriate for the user.

The deployment component transforms workflow models into engine-internal
representations and installs them onekezution engine that executes instances of these
workflows. Theauditing component records runtime events related to wonkdland
activities, e.g., the start time of a workflow rurhe monitoring component uses these
events and indicates the states of workflow rurtge ffrovenance component records
data that goes beyond simple auditing informatiah #at enables the reproducibility of
workflow executions. Theservice bus primarily discovers and selects services that
implement workflow activities, routes messages, #madsforms data. Besides that, it
connects workflows to other external, usually dtdteesources, e.g., to data sources.
Theresource management component maintains metadata for such externalress as
well as for services. Theervice/resource discovery component queries this metadata or
external registries to find a list of candidatevems or resources by means of descriptive

536



information, e.g., semantic annotations. Thisrigty be used by the function catalog of
the GUI, for late binding of services and resourcasor rebinding of failed activities.
This naturally implies the ability to use the madegl tool during the execution of
workflow instances to enable ad-hoc changes of fimsis [SK10].

In this architecture, scientific workflows may asseand handle huge, heterogeneous,
and distributed data objects, e.g., via servicasvéver, the challenge still remains to
provide a consolidated and integrated data manageaiestraction that is able to deal
with such data objects. This abstraction supporbris of the key requirements for
scientific workflow management [TDGO07][Gi07][DCO08h the following, we illustrate
this challenge using a bone remodeling simulatiorkilow.

2.2 Simulation Workflow for Bone Remodeling

Figure 2 shows the activities and relevant input autput data of a workflow for a bone
remodeling simulation (BRS) that is used to redeai®letal disorders, e.g., of human
femur. The PANDAS framework calculates the struetof a bone under a specific load
using the finite element method (FEM) [KME10]. Therkflow is divided into three
phases: preprocessing, solving, and post-processing

Preprocessing Phase Solving Phase Postprocessing Phase

Solve Matrix I
O_>-—>-—>-—>-_> Saetons }—> e }—>O
Bone Body data FEM Initial/Boundary Simulation FEM  Matrix % %

information parameters conditions commands Grid Ax=b

(intermediate) Pictures
Results

Fig. 2. Workflow for bone remodeling simulation

In the preprocessing phase, it starts by loading basic information aliba bone to be
simulated from different databases or file systeExamples of this information are a
bone structure and material parameters. The seaotinity extracts FEM parameters
from a file, e.g., interpolation functions. Aftermds, the workflow adjusts initial
conditions that configure the bone structure foe ttart time of the simulation.
Furthermore, it defines boundary conditions, etlye time-dependent pressures from
outside on the upper joint of the bone that comadpo the human way of moving. The
last preprocessing activity writes a set of simalatommands to a file. For example, it
chooses a matrix solver and defines the discraizadf the continuous simulation time
into n time steps; tto t,. In practice, a simulation involves thousandsumfhstime steps.

In the solving phase, the workflow uses the input to create ahesnatrix equations for
generating the intermediate and final results ef $hmulation. For each time stgpit
creates an FEM grid that is the basis to set upixnatjuationsAx = b that are then
solved. The FEM grid contains thousands or milliohsnesh points and their relations.
This mesh information is typically stored in mairemmory, but may also be persisted
into files or databases for further usage in thetipoocessing phase. The latter also
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holds for the matriXA and the vectors andb. The solving phase ends after time step t
The workflow then stores intermediate and finalhessbased on the vectaxdn comma
separated value (CSV) files. Thest-processing phase transforms these CSV files into
another file format suitable for visualization teol

Altogether, the workflow carries out a multiplicitygf data management and data
provisioning activities. These activities involveveral huge data sets as well as
heterogeneous data sources and data formats,datghases, CSV files, unstructured
text documents, and image files. Most of the dad@magement operations are performed
as manual tasks, implying a high error rate. A genand consolidated data
management abstraction would decrease this erter Farthermore, it would remove
the burden from scientists to specify low-levelailstof data management.

2.3 Architecture and main Components of SIMPL

Figure 3 shows how the SIMPL framework extends d\®/to provide an abstraction
for data management and data provisioning. Forebeattadability, we leave out
components of the sWfMS architecture that are elevant for SIMPL. Th&MPL core
component, embedded in the service bus, providéiediogical interfaces to any kind
of data source. We enhance the resource managememonent with metadata that
describe the mappings between these unified itesfand the concrete and possibly
heterogeneous access mechanisms.ditemanagement (DM) activity modeling plug-

in of the sSWF modeler and tHaM activity execution plug-in of the execution engine
provide data management activities for simulatioorkflows. These activities may
either be directly used in simulation workflows they may be part of separate ETL
workflows that encapsulate data provisioning preessfor simulation workflows. The
DM pattern plug-in of the function catalog assists the workflow medéh defining the
necessary data management operations. It conthBisaat data management patterns
that allow to model typical data provisioning tasks simulation workflows. The
following sections discuss the SIMPL components gind-ins in detail.

Scientific Workflow Management System
—
DM Pattern DM Activity
Plug-in Modelmg Plug-in
Function DM SWF
Catalog Paﬁem Adwﬁy Modeler
— 0 ]
Service Bus
Deployment SIMPL Core Resource Management
Data Metadata
Access Provisioning
Operation | .
- le—»! Vetadata | | [ Metadata Service/
DM Activity —|\" || T | Management | | | Integration Resource
Execution Plug-in I Implementation | T ! j Discovery
Execution Data | |
Engine DM Activity SEEs Data I_| Metadata for | |
Connector Converter Unified Access
Mechanism
==

Fig. 3. The SIMPL framework integrated into a sSWfMS arebitire
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3. Modeling Data Management for Simulation Workflows

In this section, we deal with major aspects of niodedata management tasks in
simulation workflows. We introduce various extemsioto workflow languages that
allow for the definition of these tasks. The DMigity modeling plug-in makes these
extensions available to the workflow modeler, whasrthe DM activity execution plug-
in covers their runtime behavior. Furthermore, Wweve how data management patterns
facilitate the definition of data management taskssimulation workflows.

3.1 Workflow Language Extensions for Data Managemen

The Business Process Execution Language (BPEL)7Oa0the de-facto standard to
define and execute business processes based aoritrel-flow oriented orchestration
of service interactionsn [AMAO6], BPEL is recommended for modeling andeenting
scientific workflows and simulation workflows. Timain benefits stated are its modular
design, its flexibility regarding generic XML datgpes and late binding of services as
well as the fault, compensation, and event handlaqgbilities. In addition, many BPEL
engines offer further capabilities, such as uséeratction, workflow monitoring, or
recovery of workflowsDue to these benefits of BPEL and in line with jjweg work,
we define the Business Process Execution Languaigmson for Data Management
(BPEL-DM) that extends BPEL by further activity sg We call activities of these new
types data management (DM) activities. They reflect workflow tasks with embedded
data management operations that are seamlessbdisgainst data sources. The major
activity types of BPEL-DM areissueCommand, RetrieveData, and WriteDataBack.
Each of these activities calls the SIMPL core amads the data management operation
to it in order to deal with heterogeneous data@access mechanisms.

In the following, we use the terdata source for a system that stores and manages data,
e.g., a database or a file system. A data soulsves and executd3M commands.
Examples are SQL statements, shell commands ofatipgrsystems, or paths to files.
The latter are used to load the content of a fite the process context of the workflow.
Each of the DM activities has a BPEL variable gsutnparameter referring to the data
source that executes the embedded DM command. We sach BPEL variablegata
source reference variables. A reference is dogical data source descriptor that is either a
logical name or a document describing some funation non-functional requirements
for a data source. A logical name describes examtly data source that is associated
with the name in the resource management compoAergquirements description can
be used for choosing and binding a data souraengitme.

A data source manages sevedata containers. Each container is an identifiable
collection of data, e.g., a table in a databas¢esy®r a file in a file systenData
container reference variables refer to a data container via a logical name. fidsaurce
management component maps this name to a conocet®st that uniquely identifies the
container within the data source.data set variable acts as target container for loading
data into the process context of a workflow. Appiaie XML schema definitions
specify the contents of these variables and mupe agith the differences between
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several kinds of data sources. For example, weanséML RowSet structure for any
table-oriented data, such as data from an SQL databr from a CSV-based file. XML
database systems, as another example, may alreadide certain XML schema
definitions or they may need to store arbitrary Xbtta within BPEL variables.

We now detail on the three DM activity types. TissueCommand activity can be used
for data manipulation or data definition, for exdeaBesides the data source reference,
it has a DM command as additional input parametdrissues this command against the
specified data source. The engine that executesathigity expects a notification
whether the DM command has been executed sucdgsbiuthe data source or not.
After a notification of success, the engine corgmworkflow execution according to the
specified control flow. In case of a failure, itadates fault handling mechanisms.

The RetrieveData activity also has a DM command as input parantbigris passed to
the data source. The DM command must produce drita.instance, it may be a
SELECT statement or a path to a file. When the datace has executed the command
successfully, the result data is transmitted backhé execution engine. An additional
input parameter of the activity defines a dataveetable that stores this result data. In
case of a failure, the execution engine is notifiad enables fault handling mechanisms.

TheWriteDataBack activity is the counterpart of theetrieveData activity. It writes data
from the process context of a workflow back to gadsource. The activity accepts one
identifier for a data set variable and one for tad@ntainer reference variable as input
parameters. It stores the data set of the firsalbbe in the data container referred by the
second one. As a result, the execution engineagptgification of success or failure and
proceeds like in the case of ttesueCommand activity.

Data container reference variables may furthermmeused as parameters in DM
commands of théssueCommand or RetrieveData activities, e.g., in the FROM clause of
an SQL SELECT statement. The same holds for ottiELBvariables, e.g., string or

integer variables used for comparisons in predicaténe workflow execution engine

resolves all these variables, i.e., it reads thé@abke value and inserts this value at the
position within the command where the variable basn referenced beforehand. In
order to identify a variable in a DM command anstidguish it from other command

items, the variable is marked by surrounding hasinke (e.g., ‘#’). Regarding a data
container reference variable, only the logical narihe data container is inserted in the
command. The SIMPL core is later responsible fopmpinag this name to the data

source-specific container identifier by querying tesource management component.

3.2 Abstraction Support through Data Management Pagerns

The SIMPL framework provides a set of data managematterns that cover major data
provisioning tasks for simulation workflows. The skflow designer picks appropriate
patterns from a list provided by the DM patterngpin of the function catalog. He/she is
then assisted in defining the concrete data manexeoperation for each chosen pattern
in a semi-automatic approach instead of defininglefails of the operation on his/her
own. In the following, we illustrate the patternsled approach via an example.
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inputVariable1 = “input1*
DM-P . inputVariable2 = “input2* DM-A . LOAD FILE #input1#
ﬁ Join joinCondition = “natural join* ﬁ> RetrieveDatal > #rowSet1#
outputVariable = “output*
(a) Original, parameterized data join pattern l
DM-A . SELECT * FROM #input2#
[ RetrieveData2 = . o.setz#
A INSERT INTO #output#
ﬂ IssueCommand (SELECT * FROM #input1#
NATURAL JOIN #input2#)
COPY (#rowSet1#
(b) Transformation if all variables refer to datsba = Assign NATURAL JOIN #rowSet2#)
tables in the same SQL database l TO #rowSet3#
SELECT * FROM #input1# .
DM-A DM-A — u
. NATURAL JOIN #input2# " inputDataSet = “rowSet3
ﬁ> RetrieveData > #output P E’ WriteDataBack targetContainer = “output*

(c) Transformation for same case as in (b) excegj Transformation if all variables refer to data
that output variable dlrectly stores join result containers in different data sources

Fig. 4. Data join pattern and its transformation into exable workflow specifications

Figure 4(a) shows a pattern that represents agbiwo data sets. Instead of defining
concrete data management operations that exe@jeith the modeler only needs to set
some parameter values, i.e., two input variables output variable, and a join
condition. Each of the input or output variablesyrhald data within the process context
of the workflow, e.g., via a data set variable ¢fEB_.-DM. Another option is that they
refer to external data, e.g., via a data contaiefarence variable. The respective data
sets of the two input variables are joined accardmthe specified join condition. The
result of this join is stored in the output variabk in the data container it refers to.

A set of rewrite rules specifies the transformadiofiabstract and parameterized patterns
into workflow parts that carry out the necessariadaanagement operations, e.g., via
DM activities of BPEL-DM. The given parameters betpatterns and metadata that
describe the characteristics of the data sourcedetoaccessed, e.g., their query
capabilities, determine which rewrite rule is todpplied for a certain pattern. Figure 4
shows three rewrite rules for our join exampleh# two input variables and the output
variable of the join pattern refer to databaseemlih one and the same SQL database, an
IssueCommand activity of BPEL-DM with an embedded set-orient®?lSERT statement
may execute the join (Figure 4(b)). In case theguuvariable directly stores the join
result, we use &etrieveData activity with a SELECT statement (Figure 4(c)).alf
three variables refer to data containers in differdata sources, the transformation
becomes more complex. Assume that we need to pedqoin between the content of a
CSV-based file and a relational database table thad another database table is the
target container for the join result. Then, we nsg twoRetrievaData activities that
load the contents of the two input data contairiate the process context of the
workflow. A subsequent BPEL assign activity joihem, and aAriteDataBack activity
stores the join result into the target databasle {@igure 4(d)).

As described above, metadata about the data sowrdes accessed are one basis for
deciding on the rewrite rule to be applied for gaie pattern. Hence, we must not apply
rewrite rules until it is clear which data sourdhe data management tasks need to
access. In case of a static data source bindinggideployment time, we apply rewrite
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rules shortly before this deployment phase. If datarces are bound at runtime, we will
convert each pattern into a single process fragmetituse process fragment technology
to dynamically integrate this fragment into an athg executing workflow [EULQ9].

Besides our join example, the DM pattern plug-imtains further patterns and
according rewrite rules for typical data provisiogitasks of simulation workflows. This
covers patterns for the transmission of data frova esource to another or for ETL
operations [MU10][TDGO07]. ETL operations may bedwa or retrieving a bulk of data,
filtering a data set as well as joining, mergingnormalizing two data sets.

4 Unified Access Mechanism

Now, we illustrate the approach to unify differekinds of data source access
mechanisms. This includes the SIMPL core and itfiaghlogical interfaces to data
sources, the metadata to map these interfaceg tonttherlying access mechanisms, and
the interaction between the components of the sewils during data source access.

Data Management ' SIMPL Core
Activities Logical Data Source Descriptor (LDSD); Operations
DM Command
DM-A L)
@ IssueCommand _ ﬁ IssueCommand

Notification of Success/Failure

LDSD; DM Command producing Data
DM-A i > 0| i
RetrieveData ﬂ'> RetrieveData

Result Data / Failure Message

LDSD; Data Set; Identifier for Data Container

DM-A > o .
Ba WriteDataBack é: WriteDataBack
Notification of Success/Failure

A

Fig. 5. Data sent between DM activities and SIMPL corerat@ns

4.1 SIMPL Core

The SIMPL core defines a set of generic operatioreccess arbitrary data sources, i.e.,
the specifications of the operations are independérthe underlying kinds of data
sources. They are geared to the DM activities oEBPM and named accordingly:
IssueCommand, RetrieveData, andWriteDataBack. Each DM activity calls the SIMPL
core operation that shares the name of the activiggure 5 shows which contents of the
input parameters of each activity are sent fromwloekflow execution engine to the
corresponding SIMPL core operation and which messaglata the activity expects as a
reply. Regarding the interaction between workfloavel data sources, the SIMPL core
operations only forward DM commands, result data,notifications. They do not
implement any complex data transformations or a®syas this would contradict our
assumption of workflow activities seamlessly act@sdata sources.
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Each SIMPL core operation expects a logical datecgodescriptor as input in order to
identify the data source where the data managew@eration is to be executed. The
IssueCommand operation gets a DM command as further input, déuedRetrieveData
operation a DM command that produces data. WhigeDataBack operation expects a
data set and an identifier of the data containeinsert the data set, e.g., a logical
container name. ThéssueCommand and WriteDataBack operation both deliver a
message to the workflow execution engine that atéie whether the data management
operation has been successfully executed or netRéiieveData operation delivers the
result data produced by the input DM command inecab success. The workflow
execution engine may then store this result dathérdata set variable specified for the
calling RetrieveData activity. In case of failure, the operation deiiva failure message.

Different kinds of data sources rely on differeat@ss routines and further properties for
data access, e.g., different authentication mesh@nior query capabilities. Hence, the
generic access operations of the SIMPL core had®tomplemented for concrete data
sources or sets of data sourd@ata source connectors provide this implementation and
account for the specific properties of data sourées example, we use a data source
connector for data sources that are based on JD&@ss mechanisms. Another
connector supports the application programmingiate of a certain file system. Some
data sources do not support all SIMPL core operati&or instance, sensor nets do not
allow for writing data back as they are only aldedeliver data. In such a case, the
corresponding data source connectors do not prakietee operations as well.

The SIMPL core additionally providedata converters that transform data from the
output format of a data source connector to an Xdked format for the process
context of the workflow and vice versa. For insgna data converter transforms data
between the JDBC result set format and XL RowSet format of BPEL-DM. Such
data converters may be used for data retrievalsronriting data back to a data source,
i.e., for theRetrieveData andWriteDataBack operations and activities.

4.2 Metadata for Mappings to Heterogeneous Accessddhanisms

We enhance the resource management component sérfiee bus with metadata about
data sources. These metadata describe the maygitwsen the unified interfaces of the
SIMPL core and the underlying and possibly hetemeges data source access
mechanisms. Four kinds of objects may be registémethe resource management
component: data sources, data containers, dataeseonnectors, and data converters.
Figure 6 shows the classification of the correspmpdmetadata as well as the
cardinalities of associations between individuatadata classes.

A logical source name is unique for each data source and acts as itgifige within the
SIMPL framework. It can be used as logical datare®ulescriptor within workflows,
e.g., in a data source reference variable of BPEL-Dhis constitutes an abstraction
offered to the modeler since he/she does not reedédl with real interfaces or security
entities. Theinterface description contains information about the interface of théada
source, in particular an endpoint to access it. 3doarity entities, such as usernames
and passwords, enable authorized data source acthssdescription of further
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functional or nun-functional properties typically includes properties of the data source
like the maximally expected response time. Suclpgnties may refer to requirements
specified in a logical data source descriptor ideorto perform a late binding of data
sources. Thedata container objects describe the containers that are managed by the
associated data source. They havépgical container name assigned that acts as a
container reference in workflows, e.g., in a datatainer reference variable of BPEL-
DM. This name is mapped to the concrébeal container identifier that uniquely
identifies the container within the data source.

Data Source
Object

Fig. 6. Classification of metadata to unify heterogeneata dource access mechanisms

As described in Section 4.4data source connectors implement the SIMPL core
operations for the data sources they are assoaiatedConnectors may also be used for
multiple data sources, e.g., one connector fod@BC-based database systems. There
might be multiple implementations for a single dsdarce connector registration or data
converter registration. In that case, one of theggementations has to be chosen during
data source access via additional selection mestmasnie.g., via the approach of [Ka07].
However, we do not further deal with this aspectii@ sake of simplicity.

When a data source is registered or when its ragjsh is updated, the user may directly
associate a connector to it. If the user is no¢ sunich connector may handle the data
source, he/she may use émnector properties description. It describes the properties a
connector must have in order to connect to the siatace. A similar description, i.e., the
source properties description, is associated with each data source connectdesttribes
the properties a connector expects from associd#td sources. For instance, both
properties descriptions name the SIMPL core opmmatihe associated data source and
data source connector support. They are matcheddb other to decide on the correct
connector for the data source. The same matchimgbea used when a connector
registration is added or updated to find all datarses the connector may handle.

A data source connector is furthermore associatddardescription of aata format for
a converter. It denotes the data format in which the connedlivers output data to a
requestor or expects input data from it. A dataveoer has a similar data format

544



description associated. These data format desmmptare used to map connectors and
converters to each other during the registratioreittier objects or the update of a
registration. So, only those connectors and coaxgdre associated with each other that
rely on the same data format. The second data fodescription associated to a data
converter denotes the format in which the convesigrects input sent from a workflow
and in which it sends its output back to the warkfl e.g., XML RowSet of BPEL-DM.
The pair of data formats associated with a convelééines between which formats it is
able to transform data. As a constraint, this fdriair uniquely identifies a data
converter object, i.e., there is at most one cdevebject for each possible pair.

We enhance the resource management component hdgtHunhctionalities metadata
management, metadata provisioning, and metadatgration (see Figure 3)Metadata
management ensures a persistent and transactional storatfe ohetadata as well as the
management of the metadata schema. fMb@data provisioning provides metadata
information to other components of the sWfMS. Itecd a query interface for one or
more query languages, e.g., SQL. Besides, it may affer further repository services
that go beyond simple query answering. For exangkervice may execute a series of
gueries that each resolves a selection rule thasésl for late binding of data sources.
The metadata integration is responsible for integrating metadata from imé¢rand
external metadata sources and for dealing with rdaog heterogeneities, in particular
regarding the metadata schemas and their conenth metadata sources can be, e.g.,
users that access the resource management compéadhe GUI, external registries
that also describe data sources, and the exteatalsdurces themselves. Each of these
sources may register metadata objects with assdciaétadata. They may also be asked
to complement the metadata after another partydgistered an object. For example, a
user may register a data source, which then preatlelata containers it manages.

4.3 Data Source Access using the SIMPL Framework

Service Bus
1. Logical Data
Source Descriptor> 2. Requirements Specification Service/
SIMPL Core Resource
< || < y
8. Data Source 5. Chosen Source Name Discovery
Access
6. Query with 3. Query for Qualif.
Source Name Data Sources
» Resource
Management
7. Information Necessary 4. Logical Source Names
for Data Source Access

Fig. 7. Interaction of service bus components to prepata source access

When a workflow accesses a data source via a llog@ta source descriptor, the SIMPL
framework needs to map this descriptor to all infation that is necessary for data
source access. This information consists of therfiate description, a security entity, the
suitable data source connector, and the suitaliée @tmverter. Furthermore, it needs to
map logical names of referenced data containedsdal container identifiers. In the

following, we describe how the components of th&ise bus interact with each other to
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achieve this mapping. Figure 7 shows this inteoacin case the logical data source
descriptor sent to the SIMPL core (step 1) contaimequirements specification for a
data source. In case it contains a logical nameskigesteps 2 to 5.

The SIMPL core sends the requirements specificatiothe discovery component (2).
The latter queries the resource management comptmemap the requirements to a set
of data source names that identify data sourcesimgethe claimed requirements (3 and
4). The discovery component then chooses one eéthames based on selection criteria
in the requirements specification and sends theahoaame back to the SIMPL core (5).
The latter queries the resource management compuiittnthe source name to retrieve
the above-mentioned information that is necessargéta source access (6 and 7). This
information is used to access the data source @medecute the SIMPL core operation
that is identified by the calling workflow activit{8), e.g., anssueCommand activity
calls thelssueCommand operation. Strictly speaking, we execute the immaetation of
this operation as provided by the data source adonélentified before.

If the workflow performs a data retrieval or wriback, we will need to identify exactly

one of the converters that are associated withidietified connector. For that purpose,
the workflow engine sends the data type of the BR&iliable that holds the data to be
retrieved or written back to the SIMPL core. Thigtad type determines the correct
workflow-specific format of the converter. This ddbrmat and the connector-specific
format assigned to the resolved connector unigigelgtify the correct converter.

5 Discussion and Evaluation

In this section, we discuss the benefits and dralbaf the SIMPL framework. In
particular, our discussion covers generality issoésSIMPL, its extensibility, and
optimization opportunities for data managementimugation workflows. Afterwards,
we evaluate SIMPL via the example workflow for baaeodeling of Section 2.2.

5.1 Generic Data Management for Simulation Workflovs

The generic access operations of the SIMPL coeeptbtadata to describe data sources,
and the logical data source descriptors provide nifoum access to arbitrary
heterogeneous data sources. This eases the imegwt further data management
techniques in addition to BPEL-DM. Besides that,cae port the SIMPL core and the
metadata management to other sWfMS implementatiaiich may use different
workflow engines, different workflow languages, ewen different solutions for
modeling data management and data provisioning.hidie degree of portability of the
framework is basically achieved by its architecturased on clearly separated
components and plug-ins extending a SWfMS.

The DM activities of BPEL-DM offer common functiditg for data access, data
manipulation, data definition, and for writing ddiack to a data source. Furthermore,
SIMPL includes a multitude of data management padtas further abstraction support.
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Together with the uniform data source access aadytntability provided by SIMPL,
these data management and data access patternisub®res generic data management
solution for simulation workflows. This generaligyables SIMPL to be used in multiple
domains of simulations or other scientific applicas, such as biology and astronomy,
and even in the business domain, e.g., for busiB&ksvorkflows.

In contrast to our approach, one could provide daiwvices to accomplish the data
management for simulation workflows. These servicasally offer efficient means for
data management functionality specific to a smetlaf domains or problems. Hence,
they do not provide a consolidated, generic, agxilile way to define data management
for multi-domain simulation workflows. Neverthelesénce we use BPEL as workflow
language, we allow services to be the implememaiiodata management tasks as well.
Furthermore, BPEL processes also offer their fanstivia service interfaces. So, our
approach may even be used to define data serie¢support special needs of certain
domains or problems.

To the best of our knowledge, no other approackudes an abstraction support to
define data management operations that is basepbioeric data management patterns.
Typically, workflow modelers have to define low-thdetails of data management, such
as concrete DM commands. By distinguishing the daaagement operations that are
necessary for simulations between different abspatterns, we can reduce the degrees
of freedom in defining the respective operationhisTeases the definition and
implementation of abstraction mechanisms for irdlial patterns. Furthermore, the
patterns can be seen as building blocks for comgasata provisioning workflows, e.g.,
ETL workflows, via process fragment technology [ED9l. This increases flexibility at
runtime and reduces modeling costs at build time.

5.2 Extensibility of SIMPL

The specifications of the SIMPL core operations ahthe DM activities of BPEL-DM
are independent of the underlying data sources. siéme holds for the logical data
source descriptors and the logical data containenes. Hence, they do not need to be
extended or adapted when SIMPL should support iaddit kinds of data sources. We
only need to add according data sources conneasoveell as data converters and XML
schema definitions for data set variables. Furtloeemn the implementations of
connectors and converters as well as the XML schdafaitions can typically be
derived from already existing implementations diirdgons.

In the same sense, we may extend or customize BMEIby additional activities. Like
data services, these activities could account paciéic needs of a certain scientific
domain or problem. To do that, we need to add ndMP& core operations and their
implementations by data source connectors, but ibrilye already existing operations
are not suitable. In order to add a new data managepattern to the DM pattern plug-
in of the function catalog, suitable rewrite rules/e to be defined. These rules describe
how the pattern is to be converted into executalmekflow parts. Altogether and in
contrast to previous approaches, e.g., see theagqipes compared in [Vr08], we can
typically reuse much of the already existing coalegiktending SIMPL.
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5.3 Optimization of Data Management for SimulationWorkflows

Our BPEL-DM approach combines the definition ofidties for data management and
simulation at the same level of abstraction. Thffere a huge potential for a
consolidated optimization at both the workflow ahd data processing level. In [Vr07],
the authors present a flexible approach to optimizekflows with embedded data
management operations, in particular SQL statemémtependent of the underlying
data sources, this approach shows a huge optimizpbtential that induces significant
performance improvements for workflows. Furthermdrean be easily applied to other
approaches for embedded data management operatigngp our BPEL-DM approach.
Due to these optimization options, the SIMPL frarogwis well suited for a data
management and data provisioning abstraction effiti dealing with huge,
heterogeneous, and distributed data objects.

5.4 The Bone Remodeling Workflow in the SIMPL Fram&vork

As a proof of concept, we developed a prototyp¢ ith@lements SIMPL and relevant
parts of the associated sWfMS architecture. Thistgtype uses the Eclipse BPEL
Designet as scientific workflow modeler and the Apache @sthation Director
Enginé (ODE) as workflow execution engine and deploynmrhponent. Based on the
prototype, we implemented the workflow for a bor@mmodeling simulation (BRS)
presented in Section 2.2. Its activities involveesal heterogeneous data sources, e.g.,
databases, CSV files, unstructured documents, agéniiles. The SIMPL core and the
metadata of the resource management provide aromdocess to these data sources.

Preprocessing Phase Solving Phase Postprocessing Phase

O_>-—>-—>-—>-—> Sgg’faxoar:gx }—> e }—>O
Bone Body data FEM Initial/Boundary Simulation FEM  Matrix % %

information parameters conditions commands Grid  Ax=b
(intermediate) Pictures

" ETLWorkow | | ETLWorkfow | [ ETLWorkflow | [ ETLWorkflow | W””"""”E%ismts 77777777777777777
| owa | | ! | - 1 Directiywithin | | ETL Workflow
! B> RetrieveData 3 i B DataService ! i‘ﬁ; RetrieveData ! 3 ﬁ; RetrieveData ! isimu\at\on Workﬂowi i
! | ! ! [ ! - !
I = assign § %nﬁfwmeDalaEack | inﬂ":WriteDataBack | i"ﬂ“&‘wmenamsa«:k | 3\ Bissuecommand j Lmiﬁssue%mmand |

I et R S e 0 A e

i
| owa !
| Ba WriteDataBack |

Fig. 8. Workflow for bone remodeling simulation enhancethvéIMPL

Figure 8 shows the BRS workflow using the SIMPLnfeawvork. In particular, we show
the BPEL-DM activities implementing the main stepfsthe workflow and its data
provisioning at the bottom of the figure. In theeprocessing phase, the workflow
creates more than ten input data files each witsiza up to one gigabyte. Without the
framework, scientists have to select all neededtigiata, transform the data, and store

! http://www.eclipse.org/bpel/
2 http://ode.apache.org/

548



results into files in the PANDAS environment. SIMPEIps to automate these tasks,
thereby reducing the error rate. Input data forBRS activityDefine Smulation Body,
e.g., bone information or material parameterstypeeally stored in public databases or
in private file systems. The simulation workflowokes a separate ETL workflow that
converts the data and transfers it into the PAND&S/ironment. It consists of
RetrieveData activities that load the input data into BPEL whfes. Afterwards, the
workflow transforms the data via an assign actjvitgdWriteDataBack activities write
the results into the target files. The activitiggdjust Initial/Boundary Conditions and
Create Smulation Commands operate according to the same procedure excepthitn
read their input data from structured CSV filesnkle they also usietreiveData and
WriteDataBack activities for data selection and transmission.

To perform the FEM, the BRS activiigreate FEM Parameters has to select certain

interpolation functions from an unstructured teatdment that summarizes all available
functions. SIMPL is based on forwarding DM commaridsdata sources, but the
underlying file system does not support executirgagetions of unstructured data via
DM commands. Hence, SIMPL is not able to directest these functions. We need
data services that select all necessary informatiwhstore it into workflow variables. A

WriteDataBack activity subsequently copies this data into th&NBAS environment.

During the solving phase, the activitolve Matrix Equations calculates matrix
equations for several time steps. For each steptoites all relevant data, i.e., the
intermediate results, the FEM grid, and the madrig vectors into a database inside the
PANDAS environment. For selected time steps, aatguly executedssueCommand
activity in the simulation workflow persists snapth of these data for further
processing, e.g., for analyzing or for recoverypmses. A typical BRS produces 100 or
even more of such data snapshots each with a @oat two megabytes. After the last
time step, théssueCommand activity stores the final result.

The last BRS activity/isualize Results transforms these results and other data, such as
the FEM grid, into a format suitable for visualipat tools. For example, it joins the
FEM grid data and the simulation results for selddime steps of the solving phase in
order to create images that combine this infornmatito automate thidssueCommand
activities of an ETL workflow select the necessdaya and transform and match it.

The BRS workflow benefits from SIMPL in various veaySIMPL provides a uniform
access to all involved heterogeneous data sources, databases, CSV files,
unstructured text documents, and image files. Eantore, it allows to automate the data
management activities that have previously beefopaed manually. This reduces the
error rate and the time the scientists have to dpenthese activities. We chose ETL
workflows for the preprocessing and the post-prsicgsphase since they may transfer
data directly between the involved data sourceswsacan reduce costs for transmitting
high amounts of data and decrease workload for piateessing within the simulation
workflow. During the solving phase, assueCommand activity could even transform all
FEM data into formats suitable for different sokjee.g., parallel solvers, i.e., SIMPL
helps to switch between these different solvergogsdther, SIMPL offers a data
management abstraction that is well suited for &tman workflows such as the BRS.
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6 Related Work

Federated information systems integrate differentik of data sources and provide a
homogeneous schema for heterogeneous source sy$BuB9]. However, they
typically involve multiple and sophisticated intagon processes that have to be
executed for each data source access. In simulappfications the sources are highly
heterogeneous and we need to cope with huge amaintiata. Thus, complex
integration processes may show poor performancehdh case, a peer-to-peer-based
approach seems more suitable as it employs lesplerrimtegration processes between
pairs of data sources. The generality of our apggreacommends it to be used for both a
federated and a peer-to-peer-based solution. Téushelds for conventional ETL tools.
But in contrast to our approach, they rather woithwarious access mechanisms and
data management operators that are specific fertaio kind of data source.

Scientific applications recently adopted the féieiti of grid infrastructures as well as the
Service Oriented Architecture (SOA) [TDGO07]. The sh@rominent solution for grid-
and service-based data management is the OpenSerdces Architecture — Data
Access and Integratidrframework (OGSA-DAI). It encapsulates heterogeseand
distributed data sources via services that proaimeess abstractions for the data sources.
A user may define data integration workflows thathestrate interactions with these
services. However, the workflows and workflow tagkOGSA-DAI are implemented
directly in programming languages. If simulationriftows that rely on conventional
workflow technology use OGSA-DAI as data managensehition, they will not exploit
the optimization potential of a consolidated deifim of the processing activities for
data management and simulation [Vr07]. Furthermthie abstraction support offered by
OGSA-DAI only relies on the customized abstractioffered by the individual services,
while we provide a generic and unified abstractitechanism.

The Scientific Data Management Center (SDM Centdfgrs an end-to-end data
management approach that mainly deals with effigieanalyzing data produced by
scientific simulations or experiments [Sh07]. Itffes$ efficient and parallel access
routines to storage systems and technologies tpostithe better understanding of data.
The latter comprises, for example, routines forcsgized feature discovery, algorithms
for parallel statistical data analysis, and effitindexes over large and distributed data
sets. On top of this, the Kepler sWfMS provides ithigust automation of processes for
generating, collecting, and storing the resultsiofulations or experiments as well as for
data post-processing and analyzing the resultsgl.u@ contrast to the SDM Center,
our approach does not deal with data analysiswititdata provisioning for simulation
workflows and an appropriate abstraction suppoeplir also offers workflow activities
to seamlessly access data sources, in particuldodal file systems, relational database
systems, and data streams coming from sensor retweétowever, each of these
activities directly deals with the heterogeneitiegarding access mechanisms of the
considered data sources instead of using genaticmified interfaces.

% http://lwww.ogsadai.org.uk/index.php
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The scientific workflow management system VisTraitecuses on the exploration and
visualization of results of simulations or experiitgeas well as on modeling, executing,
and optimizing visualization workflows [FrO6]. ltugports tracking revisions of
workflows, i.e., scientists or engineers may intéxely adjust their workflows. In order
to maintain the history of workflow execution, dg@cessing, and workflow revisions,
VisTrails captures data and workflow provenance larié them to each other and to the
produced data [Kol0Q]. This enables reproducibitify processes and simplifies the
exploration of different versions of a workflow a&ll as its results. In contrast to the
framework presented in this paper, VisTrails do&sfocus on data provisioning aspects
and abstractions that are necessary for executipgases of simulations.

Microsoft Trident is a general-purpose scientifiorisflow workbench [Ba08]. It is built
on top of the Microsoft Windows Workflow FoundatfofWindows WF), a workflow
environment based on the control-flow oriented Bsilele Orchestration Markup
Language (XOML). Trident enhances Windows WF witindtionality needed for
scientific workflow management, e.g., automaticyarmance capture and the possibility
to model data dependencies between workflow taeks. activity library of Windows
WF enables customized activity types that couldvioi® a seamless access to data
sources or further abstractions for defining datmagement operations. However, they
have to be implemented by the modeler himself aresh between several activity
developers. SIMPL offers abstractions via data manment patterns that are
automatically converted into executable workflowrtpa As an alternative to such
custom activity types, Trident uses services faadacess. Similar to OGSA-DAI, this
complicates optimizations over the whole spectruomf the workflow to the data
processing level. Furthermore, Trident workflowsymise Dryad for data provisioning
[1s07]. Following the approach of MapReduce [DG@tyad supports programmers in
efficiently using multiple resources for executimtata-intensive and data-parallel
applications without knowing anything about coneuntrprogramming. However, Dryad
does not deal with data management abstractioosrisense of a generic solution.

Besides the activity library of Windows WF, IBM a@racle also provide workflow
activities that directly embed data management aijmers as part of their workflow
products [Vr08]. In contrast to SIMPL, these pradudo not offer abstractions via data
management patterns and are restricted to SQLhstats, while we support any kind of
data source. The external variables of Apache Of2Eamother approach to seamlessly
access data sources from within workflows. Theseabkes can be mapped to one row
of a table in a database that offers an interfatleviing Java Database Connectivity
(JDBC). This way, workflows may perform tuple-oried retrievals and manipulations
on the mapped row. However, set-oriented operatiave to be defined via additional
workflow constructs, e.g., loop activities. In [V the authors proof that such a loop-
based execution of several tuple-oriented operatstrows weak performance related to
a set-oriented SQL statement that is wholly exetuig the database system. Our
approach supports set-oriented operations by #iredegrating SQL statements into the
workflow definition.

* http://www.windowsworkflowfoundation.eu/
5 http://java.sun.com/products/jdbc/overview.html
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7 Conclusion and Future Work

In this paper, we introduced SIMPL — an extensfidenework that provides a generic
and consolidated abstraction for data managemeahtdata provisioning in simulation
workflows. It unifies heterogeneous interfaces iffecent data sources via logical data
source descriptors, generic access operationsnatddata for mappings to concrete
data source access mechanisms. We demonstrated thisatprovides the core
functionality to uniformly access arbitrary dataisses and enables an easy development
and integration of concrete data management teahsigBased on this, the BPEL-DM
activities allow for the definition and executioh@mmon data management and data
provisioning tasks for simulation workflows. Furthebstraction support is provided by
means of generic data management patterns, e.gerrsafor ETL operations. In
addition to a data source access via services, HPMloffers the combined definition
of the processing activities for data management simulation at the same level of
abstraction. This enables optimizations over theleepectrum from the workflow level
to the data level, inducing significant performaniceprovements of workflows.
Altogether, the SIMPL framework removes the burflem engineers and scientists to
specify low-level details of data management fairtkimulations. It helps them to cope
with the information explosion intrinsically assai@d with simulation applications and
boosts their productivity.

In future, we will extend the optimization approdoh workflows with embedded data

management operations of [Vr07] to be applicablthéodata management in simulation
workflows. For that purpose, we will work on a sébptimization rules that are suitable

for simulation workflows and for DM activities of EL-DM. Scientists may use several
parameterized data management patterns within wwkflows. Our approach converts

each pattern into an executable workflow part ofagon from all other patterns. This

may result in a variety of process fragments fdadaanagement and data provisioning
that show further optimization potential when cdesed together. To exploit this

optimization potential, we will combine the convers of data management patterns
with the optimization approach for data management.
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