Douglas Cunningham, Petra Hofstedt, Klaus Meer, Ingo Schmitt (Hrsg.): INFORMATIK 2015
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2015

From Sensibility to Responsibility:
The Impact of System Software on Ecological and
Economical Sustainability of Computing Systems

Timo Honig !

Abstract: From an ecological and economic perspective, saving energy is an important factor for the
design of today’s computing systems. However, building energy-efficient systems is a challenging
task for system designers. It requires exact knowledge about the system’s components (i.e., software
and hardware components) and it is not immediately obvious kow the energy demand of a system
can be improved. This paper presents energy-aware programming techniques that help developers
at optimizing the energy demand of software. Such techniques address sensibility aspects (i.e., en-
ergy awareness) and provide optimization suggestions to developers. The paper further discusses
responsibility aspects that emerge from the advent of energy-aware programming techniques.

Keywords: Energy-Aware Programming, Energy-Aware Systems, System-Software Design, Sustain-
ability of Computing Systems.

1 Introduction

Energy has become the most precious and critical resource of computing systems for all
types of computing systems: from smallest-sized embedded systems up to large-scale data-
center systems. For different kinds of computing systems, energy resources need to be
handled with caution for different reasons. Embedded systems (e.g., smart dust [KKP99])
suffer from limited energy resources. It is necessary to address restricted energy resources,
which arise from limited energy-storage capacities (e.g., supercapacitors, batteries), and
the volatile availability of energy [Ka07]. Thus, embedded systems need to conserve avail-
able energy resources in the most efficient manner in order to avoid operational disruptions
and to proactively prevent system failures caused by depletion of energy resources. Large-
scale data-center systems (i.e., high-performance computing systems, cloud-computing
systems) enjoy the practically unlimited availability of energy resources. However, large-
scale systems commonly suffer from excessive consumption of energy (e.g., caused by
operation at maximum performance) and entailing unwanted side effects (e.g., thermal
overheating [Mo05], operating costs). Therefore, future large-scale and many-core sys-
tems [Es11] must be designed according to their energy characteristics and need to cau-
tiously schedule activities to avoid system failures caused by excessive energy demand.

The effective energy-efficiency of any computing system depends on the characteristics
of its hardware and software components. Hardware components with low-energy char-
acteristics are optimized at CMOS level [Jal2] which reduce the energy demand of the

! Friedrich—Alexander—Universitit Erlangen—Niirnberg (FAU), Department of Computer Science,
Distributed Systems and Operating Systems, Martensstr. 1, D-91058 Erlangen

1771

Timo Honig

transistor circuit, for example, by implementing energy-saving modes and semiconductor
scaling. However, hardware components only provide the basis for the energy-efficient
operation of computing systems. It is necessary for the system software to operate in an
energy-aware manner on the hardware, for example, by avoiding unnecessary system ac-
tivities and exploiting hardware energy-saving features. Unfortunately, it is a difficult task
for system-software designers to establish energy awareness of software components. This
circumstance is caused by missing tool support, as programmers often lack energy-analysis
tools that would help to identify energy hotspots of program code.

To reduce the energy demand of a computing system it is necessary to optimize the sys-
tem and application software running on the system. First, the software itself needs to be
optimized statically before run time (i.e., at the time of program-code creation) at different
levels of abstraction (e.g., high-level language, assembly). Second, the software needs to
be optimized dynamically af run time (i.e., at the time of program-code execution).

Profound tool support is an essential measure to help programmers at designing energy-
aware computing systems, which exploit energy resources in the most efficient manner. For
one, tool support actively assists programmers at designing energy-aware system software
by integrating automated code analysis techniques. For another, tool support bridges the
gap between developers and the operating system: important knowledge about the intent of
the program code is transferred from the program design and programming phase (before
run time) to the program execution phase (at run time) of the software.

The paper is divided into two parts. The first part of the paper (Sections 2 and 3) presents
challenges in energy-aware system design and proposes concepts to address these chal-
lenges. This includes energy-aware programming techniques that establish the sensibility
of energy demand. The second part of the paper (Section 4) analyzes the resulting im-
pact on the responsibility of programmers with regards to the ecological and economical
sustainability of system and application software. In more detail, the paper is structured as
follows. Section 2 introduces energy-aware computing systems, presents related work, and
discusses distinct energy-optimization methods. Energy-aware programming concepts and
proactive system design techniques are presented in Section 3. The paper further discusses
the consequences of establishing concepts for proactive energy-aware system design in
Section 4. Section 5 outlines how the presented concepts are embedded into the author’s
doctoral thesis. Section 6 summarizes the proposed approaches and concludes the work.

2 Energy-Aware Systems

Energy-aware systems are computing systems which are conscious regarding the energy
impact of individual operations. This energy awareness allows systems to economize avail-
able energy resources. The motivation for economizing energy varies and depends on the
type of computing system: energy savings lead to extended battery life (i.e., embedded
systems), reduced operating costs (i.e., desktop and server systems), and lower energy
bills (i.e., large-scale systems).

1772

The Impact of System Software on the Sustainability of Computing Systems

yb1y
\
VL
|

|
ybry

wn1paw

Energy Energy

moq ‘ um:l.paw‘
\

moq

idle ‘ normal ‘ busy ‘ idle ‘norlnal ‘ busy

Utilization Utilization
Fig. 1: Schematic representation of energy demand as a function of utilization: energy demand of an
energy-unproportional system (left graph) vs. energy-proportional system (right graph).

2.1 Background

The implementation of an energy-aware system requires two main components. First,
the system hardware needs to be energy proportional. Energy proportionality is achieved
by implementing energy-saving features at hardware level which allow the system soft-
ware (i.e., operating system) to influence the behavior of hardware components (e.g., acti-
vation and deactivation of functional features, switching of operating modes). Second, the
system software needs to implement strategies to make efficient use of available energy-
saving features at hardware level.

The hardware components implement low-power modes and sleep states at CMOS level
and need to expose corresponding control interfaces that are used by the system soft-
ware (i.e., operating system). Early computer systems did not implement any of such
energy-saving features at hardware level, which ruled out software measures to adjust
the energy demand depending on the systems’ utilization. Today’s systems, however, al-
low fine-grained control of the energy-saving features implemented by the hardware. Fig-
ure 1 shows the energy demand as a function of utilization for energy-unproportional sys-
tems (left graph) and energy-proportional systems (right graph).

From a system-software point of view, energy demand of computing systems can be de-
creased in two different ways. First, the program code of the system software can be
optimized to exploit energy-saving features at hardware level in the most efficient man-
ner. This includes device-specific low-power states which largely effect the static energy
demand of the system. For example, this includes switching off underutilized hardware
components such as wireless controllers. Second, software itself can be optimized to im-
plement a required functionality in the most energy-efficient manner. This is achieved by
structural optimizations of program code and the utilization of functional units at hardware
level (e.g., floating-point units, graphics processing units).

2.2 Related Work

At system level, systems reduce their energy demand by exploiting device-specific energy-
saving functions, which are implemented at hardware level by the individual system com-
ponents (e.g., CPUs, wireless controllers [Hal0]). Today, energy-saving functions like

1773

Timo Honig

multi-level low-power modes and sleep states complement traditional approaches such
as dynamic voltage and frequency scaling [CSPO5]. On top of energy-saving primitives at
hardware level, system software components commonly implement different strategies to
increase the gain of energy savings. Traditionally, race-to-sleep strategies [DHKCO09] have
been proven to be effective measures to save energy. However, recent research [Ho14]
shows that crawl-to-sleep strategies can be more energy-efficient.

At application level, software needs to be optimized statically (before run time) and dy-
namically (at run time). Recent proposals for energy-aware programming languages [Sal1]
reduce the energy demand of computational resources required to execute the software by
applying approximation techniques. Compiler optimizations [PHB15] at architecture level
can not address energy-saving features at platform level (e.g., sleep states).

2.3 Static Energy Optimizations of Software

To implement static optimizations for reducing the energy demand of software before run
time, developers need to optimize the program code at the time of program-code creation.
Static optimization steps concern different levels of abstraction: First, program code needs
to be altered in order to efficiently exploit available hardware functions (e.g., floating-
point units, graphics processing units) and explicitly using available energy-saving func-
tions (e.g., low-power modes, sleep modes) of the target platform. To apply static opti-
mizations at level of the programming language, developers need to analyze the target
hardware platform and adapt their program code according to the hardware characteris-
tics. Second, different code transformations at lower language levels (e.g., intermediate
language, machine language) than the originating high-level programming language apply
code optimizations which influence the energy demand of the program code.

2.4 Dynamic Energy Optimizations of Software

To implement dynamic optimizations for reducing the energy demand of software at run
time, the operating system must coordinate potentially disaccording interests (i.e., con-
flicting policies at task and system level) and the operating system continuously needs to
execute the corresponding decision making process. However, the basis of this decision
making process often lacks important information about the intended behavioral aspects
of program code which currently executes on the computing system.

2.5 Problem Statement

The different energy-saving opportunities and the various static and dynamic approaches
to optimize software for energy demand make it difficult for programmers to find the
right set of measures to build energy-aware systems. Depending on hardware and software
characteristics, programmers need to find the correct settings in a case-by-case decision
process. This process is especially complicated as sufficient tool support often is missing.
During the task of programming, developers commonly are left without orientation, as
they have no feedback on the energy-demand of their programming decisions.

1774

The Impact of System Software on the Sustainability of Computing Systems

Program Code Architecture and Platform

& R Ce, @ SR | Energy Consumption by Platform
ey @b ARM Platform 1: 1382 nJE======x
—> libfoo(); i ARM Platform 2: 650 nJ E==m
void libfoo() { RM >[4 ABM Platform 3: 493 nJ =1
AN~ LT ARM Platform 4: 378 nJ E=
1ibbar(); A~ P
22 % % T PPC Platform 1: 738 nJ ===
} \ PPC > |\ PPC Platforn 2: 489 nJ =1
void libbar() { x86 Platform 1: 1430 nJE—————x
AN m x86 Platform 2: 982 nJ El
A A A x86 Platform 3: 705 nJ E==x
return —ES SN x86 Platform 4: 643 nJ =2
AN\NANANANA~
}

Fig.2: Energy consumption of program code at function level: the individual energy consumption
for executing a function depends on the hardware architecture and the hardware platform.

3 Energy-Aware Programming

Energy-aware programming techniques unify different concepts and increase the energy
awareness of the developer during program-code creation. To initially create a basis of
decision-making for the developer, energy-aware programming techniques provide feed-
back on the energy demand of program code. The techniques include code analyses that
provide direct feedback on the energy demand of program code. As the energy demand dif-
fers for heterogeneous hardware architectures and platforms, analysis techniques must ad-
dress this diversity, for example, by using virtualization technologies. The energy-function
mapping in Figure 2 shows that energy demand for executing the program code of function
libfoo differs on heterogeneous hardware architectures and platforms.

Energy demand of program code can be evaluated at different levels of abstraction. Pro-
grammers are most commonly interested in high-level energy analysis (i.e., energy analy-
ses at function-level), as this allows them to reason about the effectiveness of code restruc-
turing measures with regards to the energy efficiency. Depending on the analysis method, it
requires often several intermediate steps to obtain the end result: energy-analysis methods
evaluate the energy demand of the program code at other levels of abstraction (i.e., assem-
bly level, basic-block level) and consolidate the results in a bottom-up approach.

As a consequence of energy-aware programming, programmers reveal energy faults® at
design time and programmers can verify whether corresponding countermeasures (e.g., re-
structuring of program code) lead to the desired effect (i.e., reduction of energy demand).
To implement a reliable chain of tool support for establishing energy-aware programming
it is required to provide developers with energy consumption data of program code (Sec-
tion 3.1), to assist at analyzing different code paths (Section 3.2), and to implement au-
tomation aspects to address the complexity of analyses (Section 3.3). The resulting in-
frastructure allows the implementation of analysis techniques, which automatically extract
actual optimization suggestions for developers (Section 3.4).

2An energy fault is the root cause for unnecessarily high energy consumption that may result in a runtime
error (deviation from target or actual) or even entails failure (breakdown).

1775

Timo Honig

Vee Vee Ve USB

Cortex-M4

Fig. 3: The PEEK energy measurement device implements automated energy measurements and per-
forms a current-to-frequency conversion for non-discrete measurements of energy demand.

3.1 Sensing Energy Demand

Energy-aware programming concepts rely on methods to sense and to quantify the energy
demand of program code. This is either done by using energy-modeling [WBO02, Hid12]
or energy-measuring methods [TMW94, Fo0O8]. Model-based energy analyses are imple-
mented by software components only. Therefore, programmers do not need to instru-
ment their setup with additional hardware components (i.e., measurement equipment).
As hardware complexity is steadily increasing, the creation of reliable and accurate en-
ergy models is a difficult task. For example, non-deterministic effects (i.e., cache misses,
pipeline stalls) need to be considered by energy models. Results from model-based energy-
analyses need to be verified periodically by control measurements to retain accuracy cri-
teria. Measurement-based energy analyses use hardware instruments (e.g., multimeter, os-
cilloscope) to determine the energy demand of software during execution. In contrast to
model-based energy analyses, measurement-based energy analyses are integrated into the
setup of the system which is analyzed (device under test, DUT). As energy measurements
follow a black-box approach, non-deterministic effects are included implicitly.

PEEK [H614] implements a non-discrete energy measurement device (i.e., an energy mea-
surement device which does not sample) to avoid sampling limitations. The measurement
device features microcontroller operation via USB, automatic calibration functions, and is
capable of running automated energy measurements. The device implements a transistor
circuit consisting of a current mirror and a flip-flop to implement a current-to-frequency
conversion. Three PNP transistors mirror the input current Ipyr of the device under test
to the mirrored currents Iy;; and Iys>. The circuit operates as follows while the input cur-
rent Ipyr is being drawn: controlled by an RS flip-flop, two capacitors (Cys; and Cyyp) are
being charged and discharged alternately. When the RS flip-flop outputs a logical 1 on the
output Q, the path Ij; is pulled to ground via the transistor 7. The path I,, however,
is allowed to charge up the capacitor Cys>. Once Cy» reaches a voltage level, which the
flip-flop recognizes as a logical 1, the flip-flop toggles its output Q. Now, the path Iy;»
is shorted to ground while path Ijs; is charging up its capacitor Cys;. During each cycle,
one capacitor charges while the other one is being discharged. The switching frequency
of the output Q is directly proportional to the current Ipyr. The device uses the signal to
determine the energy consumption of the DUT. Figure 3 shows an excerpt of the board
schematics and the PEEK measurement device.

1776

The Impact of System Software on the Sustainability of Computing Systems

1: if i mod 2 then

2: if i mod m then /O\ /O\ /O\ /O\

3: .. /% Path 4 */ @ O @ O O @ O @

4: else /\ I\ 7\ I\ I\ I\ I\ I\ - 5

Locke s e|| @000 OO0 0G0 OO0 z3

6 endif Path A Path B Path C Path D %3

7: else 5 f

8: if i mod n then =

9: .. /% Path C */ /O\ /O\ /O\ /O\ = 10 8

B || & 3 Q3 88 @ 0 '
3 ... /* Pa *, 6 . g

12: end if 000 O0GOO0 OO0 OEOO "’13 A

13: end if Entity Bl Entity B2 Entity B3 Entity B4 Path 2y ! Entity

Fig.4: The energy demand of program code at run time differs for various code paths and depends
on the actual input data of the program (e.g., input parameters, processing data).

3.2 Combining Static and Dynamic Code Analysis

It is necessary to extract run-time characteristics to determine the energy demand of pro-
gram code. Different program paths of an application may have entirely different energy
demands. Furthermore, different program-path entities (i.e., identical program paths exe-
cuted with different input data) again show distinct energy requirements. As an example,
Figure 4 shows the excerpt of a program code that consists of four code paths. The value
of the input parameter i determines which path is being executed at run time as visualized
by the tree structure of the control flow graph. Moreover, the variable i influences the fur-
ther proceeding of the code path, which results in path entities exposing distinct energy
demands. The energy map in Figure 4 visualizes this.

To reason about the energy demand of individual program-code entities requires the use
of static or dynamic code-analysis techniques. Static code-analysis techniques analyze the
syntactical structure of code without actually executing it, whereas dynamic code analysis-
techniques extract run-time information during the execution of the program code. Sym-
bolic execution [Ki76, CDEOS, Call] is an analysis technique that combines static and
dynamic code-analysis techniques. Results from the code analysis are followed by a trans-
formation step where energy demands are calculated on top of the analysis results.

The energy-aware programming technique SEEP [H612] uses symbolic execution tech-
niques to automatically reveal possible program paths and to extract individual path con-
straints. Based on these path constraints, SEEP builds and executes binaries of the corre-
sponding path entities. During this execution step SEEP extracts relevant run-time infor-
mation (e.g., number and type of executed instructions) to calculate the energy demand
of the individual path entities. Developers use such tool support to analyze whether spe-
cific programming decisions (e.g., restructuring of program code, using different program
libraries) have a positive (or negative) impact on the energy demand.

3.3 Automated Analysis

Carrying out energy analysis for program code entails time-consuming operations. The
amount of analysis work increases with the complexity of program code (i.e., growing
number of code paths) and with the amount of potential target platforms that are consid-
ered by the developer. For this reason, energy-analysis tools need to be automated and run

1777

Timo Honig

unattended (i.e., without requiring manual interaction). Further, scalability aspects have to
be considered and addressed at level of the tooling infrastructure of energy-aware program-
ming techniques. For example, code-analysis methods use multiple threads or distributed
computing systems to reduce the required analysis time.

3.4 Automated Energy Optimization

Energy-aware programming techniques which provide the infrastructure to sense energy
demand and implement the execution of automated energy analyses are the basis for fur-
ther extensions, for example, the automatic generation of energy-optimized program code.

Developers require hints and suggestions on how to actually improve their program code.
A corresponding technique [H514] implements the generation of energy optimization hints.
Energy optimization hints are being created during the code-analysis phase of energy-
aware programming. If potential improvements for the program code of the developer are
found, the infrastructure proposes a structural change to the original source code (e.g., as
source-code patch). This step significantly improves the analysis process as the developer
only needs to verify whether the suggested improvement introduces functional regressions.

FIGAROS [H615] improves energy-aware programming techniques by transferring knowl-
edge from the developer to the run-time environment (i.e., operating system). The oper-
ating system kernel of FIGAROS is energy-aware and senses different system activities
for energy analysis at run time. Future research work will integrate FIGAROS with the
energy-aware programming kit PEEK [H614].

4 From Sensibility to Responsibility

The advent of energy-aware programming techniques improves the development of energy-
efficient system software significantly. However, for developers the introduced sensibility
of energy demand of program code implies a new responsibility as a direct consequence.
Hence, this section discusses societal aspects tied to—and resulting from—the previously
presented technical advances (i.e., energy awareness at programming level).

4.1 Ecological and Economic Impact

On the one hand, energy-aware programming techniques enable programmers to evaluate’
quality aspects of their program code from an ecological point of view. For example, if a
specific functionality can be implemented in different ways (i.e., different program struc-
ture) and with varying energy demand this leads to a new value system to evaluate program
code. On the other hand, energy-aware programming techniques create an opportunity to
address economical interests at the design time of computing systems. By saving prospec-
tive energy resources at design time, this builds new ways of optimizing systems from the
bottom (i.e., system software) up to high-level program code (i.e., application software).
The increased resource efficiency has an economic impact (i.e., monetary savings).

3The word evaluate is a compound word which originates from ex- (Latin for out or from) and value (Old French,
Gallo-Romance dialect, for value — French: évaluer — English: evaluate).

1778

The Impact of System Software on the Sustainability of Computing Systems

4.2 Values and Sustainability

As software programmers reveal that the energy demand of program code is different
among heterogeneous hardware platforms, this leads to decision situations that concern
hardware aspects. For example, depending on the software of a computing system it can be
ecologically reasonable to substitute the current hardware platform with a different hard-
ware platform on which the program code has a smaller energy demand. However, such
decisions need to consider further consequences. For example, sustainability aspects need
to be respected. If a target hardware platform has already been obtained it is not always rea-
sonable to move to a new hardware platform if the entailed demand of resources (e.g., pro-
duction, energy, money) is higher than the savings of the platform substitution.

4.3 Verification and Certification

For large-scale projects among different partners (i.e., research groups, industry partners) it
is necessary to consolidate energy demands of all subsystems. Energy-aware programming
concepts are a complementary extension to existing project development processes (i.e., at
design time) where individual components are verified by corresponding unit tests. For in-
dustrial use it is important to consider certification requirements (e.g., ISO 50001 [Mc10]).

5 Embedding into the Doctoral Thesis

The author’s doctoral thesis proposes several distinct energy-aware programming concepts
which are presented in extracts in Section 3. This work is basis for further research on
reducing the energy demand of computing systems, including large-scale systems in dis-
tributed environments. The entailed responsibility (Section 4) is a logic consequence and
needs to be considered by future work targeting at energy-aware system design. Research
work contributing to this paper builds the science base of the author’s doctoral thesis.
The individual publications [H612, H614, H515] are presented with their abstract in the
following three subsections.

5.1 SEEP: Exploiting Symbolic Execution for Energy-Aware Programming

The research [H612] presents the initial work on energy-aware programming and exploits
the use of symbolic execution techniques to analyze program code for energy demand.

Abstract—In recent years, there has been a rapid evolution of energy-aware computing
systems (e.g., mobile devices, wireless sensor nodes), as still rising system complexity
and increasing user demands make energy a permanently scarce resource. While static
and dynamic optimizations for energy-aware execution have been massively explored,
writing energy-efficient programs in the first place has only received limited attention.

This paper proposes SEEP, a framework that exploits symbolic execution and platform-
specific energy profiles to provide the basis for energy-aware programming. More specif-
ically, the framework provides developers with information about the energy demand of

1779

Timo Honig

their code at hand, even for the invocation of library functions and in settings with mul-
tiple possibly strongly heterogeneous target platforms. This equips developers with the
knowledge to take energy demand into account during the task of writing programs.

5.2 Proactive Energy-Aware Programming with PEEK

PEEK [H614] proposes a programming kit around the task of energy-aware programming.
The work focuses on automation aspects and energy measurements.

Abstract—Optimization of application and system software for energy efficiency is of
ecological, economical, and technical importance—and still challenging. Deficiency in
adequate tooling support is a major issue. The few tools available (i.e., measurement
instruments, energy profilers) have poorly conceived interfaces and their integration into
widely used development processes is missing. This implies time-consuming, tedious
measurements and profiling runs and aggravates, if not shoots down, the development of
energy-efficient software.

We present PEEK, a systems approach to proactive energy-aware programming. PEEK
fully automates energy measurement tasks and suggests program-code improvements at
development time by providing automatically generated energy optimization hints. Our
approach is based on a combined software and hardware infrastructure to automatically
determine energy demand of program code and pinpoint energy faults, thereby integrat-
ing seamlessly into existing software development environments. As part of PEEK we
have designed a lightweight, yet powerful electronic measuring device capable of taking
automated, analog energy measurements. Results show an up to 8.4-fold speed-up of
energy analysis when using PEEK, while the energy consumption of the analyzed code
was improved by 25.3 %.

5.3 The FigarOS OS Kernel for Fine-Grained System-Level Energy Analysis

The research on FIGAROS [H615] takes energy-aware programming aspects to the oper-
ating-system level and it investigates how system kernels can be made self-conscious with
regard to energy and how static and dynamic optimizations are addressed at operating-
system level.

Abstract—FEnergy has become the most important operating resource for computing sys-
tems of all sizes—from embedded systems to large-scale high-performance computing
systems. However, at system level, engineers remain challenged at efficiently handling
energy as first-class operating system resource. The reasons for this are twofold: First,
increasingly complex hardware circuits are inherently difficult to model which makes
the creation of accurate energy models practically impossible. Second, available en-
ergy measurements at system level are coarse-grained and they are insufficient for fine-
grained system level energy measurements of the operating system.

1780

The Impact of System Software on the Sustainability of Computing Systems

The current advent of power constrained many-core systems and the road ahead towards
the era of dark silicon requires efficient energy control mechanisms in the system soft-
ware layer. In this paper, we present FIGAROS, an operating system kernel which imple-
ments primitives required for fine-grained system-level energy analysis. Our implemen-
tation of FIGAROS orchestrates energy measurements at hardware level by a low-level
system software infrastructure at kernel level.

6 Conclusions

This paper presents approaches for energy-aware programming to address ecological and
economical sustainability aspects for computing systems. Energy-aware programming is
an essential measure to establish sensibility for energy demand of program code right at
the time of development. Assisted by corresponding tool support programmers are able to
reason about their programming decisions with regard to energy demand. The introduc-
tion of sensibility for energy demand at programming level has several consequences for
programmers—and their design decisions. Besides optimizing their program code by re-
ducing its energy demand, programmers are now in position to control further ecological
and economical aspects affected by system and application software.

References

[Call] Cadar, Cristian; Godefroid, Patrice; Khurshid, Sarfraz; Pasdreanu, Corina S; Sen,
Koushik; Tillmann, Nikolai; Visser, Willem: Symbolic execution for software testing
in practice: preliminary assessment. In: Proceedings of the 33rd International Confer-
ence on Software Engineering. IEEE, pp. 1066-1071, 2011.

[CDEO8] Cadar, Cristian; Dunbar, Daniel; Engler, Dawson R: KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In: Proceedings of
the 12th Symposium on Operating Systems Design and Implementation. USENIX, pp.
209-224, 2008.

[CSPO5] Choi, Kihwan; Soma, Ramakrishna; Pedram, Massoud: Fine-grained dynamic voltage
and frequency scaling for precise energy and performance tradeoff based on the ratio of
off-chip access to on-chip computation times. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(1):18-28, 2005.

[DHKCO09] Dawson-Haggerty, Stephen; Krioukov, Andrew; Culler, David E: Power optimization:
A reality check. Technical report, EECS Department, University of California, Berke-
ley, October 2009.

[Esl1] Esmaeilzadeh, Hadi; Blem, Emily; St Amant, Renee; Sankaralingam, Karthikeyan;
Burger, Doug: Dark silicon and the end of multicore scaling. In: Proceedings of the
38th International Symposium on Computer Architecture. ACM, pp. 365-376, 2011.

[Fo08] Fonseca, Rodrigo; Dutta, Prabal; Levis, Philip; Stoica, Ion: Quanto: Tracking energy
in networked embedded systems. In: Proceedings of the 8th Symposium on Operating
Systems Design and Implementation. USENIX, pp. 323-338, 2008.

[Hal0] Halperin, Daniel; Greenstein, Ben; Sheth, Anmol; Wetherall, David: Demystifying
802.11 n power consumption. In: Proceedings of the 2010 Workshop on Power-Aware
Computing and Systems. USENIX, pp. 1-5, 2010.

1781

Timo Honig

[Hil2]

[H612]

[Ho14]

[H615]

[Jal2]

[Ka07]

[Ki76]

[KKP99]

[Mc10]

[Mo05]

[PHB15]

[Sall]

[TMW94]

[WB02]

Hihnel, Marcus; Dobel, Bjorn; Volp, Marcus; Hartig, Hermann: Measuring energy con-
sumption for short code paths using RAPL. ACM SIGMETRICS Performance Evalua-
tion Review, 40(3):13-17, 2012.

Honig, Timo; Eibel, Christopher; Kapitza, Riidiger; Schroder-Preikschat, Wolfgang:
SEEP: Exploiting symbolic execution for energy-aware programming. ACM SIGOPS
Operating System Review, 45(3):58-62, January 2012.

Honig, Timo; Janker, Heiko; Eibel, Christopher; Mihelic, Oliver; Kapitza, Riidiger;
Schroder-Preikschat, Wolfgang: Proactive Energy-Aware Programming with PEEK. In:
Proceedings of the 2014 Conference on Timely Results in Operating Systems. USENIX,
pp. 1-14, 2014.

Honig, Timo; Herzog, Benedict; Janker, Heiko; Schroder-Preikschat, Wolfgang: The
FigarOS Operating System Kernel for Fine-Grained System-Level Energy Analysis.
In: DAC Workshop on System-to-Silicon Performance Modeling and Analysis. ECSI,
2015.

Jan, C-H; Bhattacharya, U; Brain, R; Choi, S-J; Curello, G; Gupta, G; Hafez, W; Jang,
M; Kang, M; Komeyli, K et al.: A 22nm SoC platform technology featuring 3-D tri-
gate and high-k/metal gate, optimized for ultra low power, high performance and high
density SoC applications. In: Proceedings of the 2012 International Electron Devices
Meeting. IEEE, pp. 14, 2012.

Kansal, Aman; Hsu, Jason; Zahedi, Sadaf; Srivastava, Mani B: Power management in
energy harvesting sensor networks. ACM Transactions on Embedded Computing Sys-
tems, 6(4):32, 2007.

King, James C: Symbolic execution and program testing. Communications of the ACM,
19(7):385-394, 1976.

Kahn, Joseph M; Katz, Randy H; Pister, Kristofer SJ: Next century challenges: Mobile
networking for “Smart Dust”. In: Proceedings of the 5th International Conference on
Mobile computing and Networking. ACM, pp. 271-278, 1999.

McKane, Aimee: Thinking globally: How ISO 50001 energy management can make
industrial energy efficiency standard practice. Lawrence Berkeley National Laboratory,
2010.

Moore, Justin D; Chase, Jeffrey S; Ranganathan, Parthasarathy; Sharma, Ratnesh K:
Making scheduling “cool”: Temperature-aware workload placement in data centers. In:
Proceedings of the 2005 Annual Technical Conference. USENIX, pp. 61-75, 2005.

Pallister, James; Hollis, Simon J; Bennett, Jeremy: Identifying compiler options to
minimize energy consumption for embedded platforms. BCS The Computer Journal,
58(1):95-109, 2015.

Sampson, Adrian; Dietl, Werner; Fortuna, Emily; Gnanapragasam, Danushen; Ceze,
Luis; Grossman, Dan: EnerJ: Approximate data types for safe and general low-power
computation. In: Proceedings of the 32nd Conference on Programming Language De-
sign and Implementation. ACM, pp. 164-174, 2011.

Tiwari, Vivek; Malik, Sharad; Wolfe, Andrew: Power analysis of embedded software:
A first step towards software power minimization. IEEE Transactions on Very Large
Scale Integration, 2(4):437-445, 1994.

Weissel, Andreas; Bellosa, Frank: Process cruise control: Event-driven clock scaling for
dynamic power management. In: Proceedings of the 2002 Conference on Compilers,
Architecture, and Synthesis for Embedded Systems. ACM, pp. 238-246, 2002.

1782

