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Abstract: This paper investigates the potential of fusion at normalisation/segmentation
level prior to feature extraction. While there are several biometric fusion methods at
data/feature level, score level and rank/decision level combining raw biometric sig-
nals, scores, or ranks/decisions, this type of fusion is still in its infancy. However, the
increasing demand to allow for more relaxed and less invasive recording conditions,
especially for on-the-move iris recognition, suggests to further investigate fusion at this
very low level. This paper focuses on the approach of multi-segmentation fusion for
iris biometric systems investigating the benefit of combining the segmentation result
of multiple normalisation algorithms, using four methods from two different public
iris toolkits (USIT, OSIRIS) on the public CASIA and IITD iris datasets. Evalua-
tions based on recognition accuracy and ground truth segmentation data indicate high
sensitivity with regards to the type of errors made by segmentation algorithms.

1 Introduction

Iris recognition challenges for on-the-move and less constrained acquisitions, like the

Noisy Iris Challenge Evaluation (NICE) [PA12], and Multiple Biometrics Grand Chal-

lenge (MBGC), illustrated the importance of robust iris segmentation in latest-generation

iris biometric systems. Iris verification rates as low as 44.6% [RJS+12] are reported for

unconstrained applications, and image quality has been shown to play a critical role in the

segmentation and normalisation process [AFB13]. Normalisation seems to be at the heart

of the problem, but combination past feature-extraction (see fusion scenarios in [RNJ06])

is easier and segmentation fusion lacks standardisation. ISO/IEC TR 24722:2007 does

not foresee multinormalisation, nor does ISO/IEC 19794-6:2011 define a segmentation-

only exchange format: there is a cropped and masked data format for normalised textures

following IREX K7, but without direct access to segmentation results/parameters. While

segmentation algorithms themselves might combine different approaches, iris segmenta-

tion fusion as proposed in [UW13] is widely ignored as a means to achieve more robust

and accurate segmentation. As a common alternative, multi-algorithm fusion is suggested

as a scenario [RNJ06] operating on the same input images. However, the expected in-

crease in accuracy is usually not justifying the cost (in terms of additional processing

power). Strong correlation of algorithms combined at system levels due to similar/same

normalisation steps, and the dominance of local Gabor-based features (following Daug-

man’s rubbersheet normalisation and original feature extraction [Dau04]) are likely to be

reasons for observed little impact on accuracy (compared to combining, e.g. image-based
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Figure 1: Iris Segmentation Fusion Framework.

and binary features [HRUW12]). Fusion at image data level, such as in [LVGV+15] fol-

lowing [SGCL14] reveals promising results, but requires the multiple execution of the iris

unwrapping and normalisation process (for each obtained segmentation). Furthermore,

given multiple normalised textures after segementation and unwwrapping, it is difficult to

determine faulty or highly inaccurate segmentation versions.

The novelty of this work is a thorough analysis of how segmentation-based fusion in iris

recognition can help in achieving higher accuracy considering the entire iris processing

chain involving feature extraction, which may itself be tolerant to deformation to a certain

extent. The latter observation raises the question on evaluation of fusion schemes at this

stage, as ground-truth conformance is just one of several impacting factors. Especially the

impact of outliers is highlighted in this paper. For this task, (1) a framework of combining

segmentation results following Daugman’s rubbersheet model is presented (see Fig. 1); (2)

a set of reference fusion methods combining segmentation curves, models, and masks is

implemented, and; (3) pairwise combination improvement is analysed on public datasets

with regards to both, ground-truth and recognition-acuracy. The following questions are

addressed in this paper: (1) Does the combination of automated iris segmentation results

yield more accurate result than each of the employed original segmentation algorithms? (2)

How does the choice of database and segmentation algorithms impact on iris segmentation

fusion? (3) How do outliers impact on overall recognition accuracy and how do ground-

truth-based vs. recognition-based evaluations relate to each other?

As an introduction to the topic of multi-segmentation fusion Section 2 reviews related work

on iris normalisation, fusion approaches, and segmentation data interoperability. Section 3

presents the proposed framework of segmentation fusion and discusses implementations.

An experimental evaluation of proposed techniques is given in Section 4, analysing results

with regards to questions outlined in this introduction. Finally, Section 5 concludes this

work on segmentation-based fusion for iris biometric systems.

2 Related Work

Modern iris recognition algorithms operate on normalised representations of the iris tex-

ture obtained by mapping the area between inner and outer iris boundaries P,L : [0, 2π) →

[0,m] × [0, n] to “Faberge” or “Rubbersheet” coordinates” (using angle θ and pupil-to-

limbic radial distance r) [Dau04], independent of pupillary dilation: R(θ, r) := (1 − r) ·

P (θ) + r · L(θ). Normalised texture and noise masks T,M : [0, 2π) × [0, 1] → C are

obtained (C is the target color space, M = N ◦ R, T = I ◦ R for the original n × m im-

age I and noise mask N). The latter usually considers reflections and upper and lower
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eyelid curves masking out occlusions, such that N(x, y) (= 0 if and only if pixel (x, y)

refers to an in-iris location. While normalisation is standardised, there are several iris seg-

mentation approaches for obtaining P,L and N . Original approaches employed circular

boundary-based segmentation, such as Daugman’s integrodifferential operator [Dau04]

and Wildes’ circular Hough Transform (HT) [Wil97]. Today’s advanced iris segmenta-

tion techniques are often multi-stage approaches combining various techniques: Active

shape models [AS06], clustering-based iris localization [THS10] (e,g. locating the sclera

for NICE.I data), AdaBoost-cascade and Pulling-and pushing models [HTSQ09], agent-

based methods [LPS09], the Viterbi algorithm at different resolutions [SGSD12], or itera-

tive multi-scale approaches and ellipsopolar transform for elliptical iris models [UW12b].

With the recent focus on visible-range (VR) iris segmentation compared to traditional

near-infrared (NIR) segmentation techniques, the robust combination of independent seg-

mentation approaches becomes an interesting aspect. Recently, [HAFW+14] compared

multiple segmentation algorithms on different VR and NIR datasets based on ground truth

information, illustrating the dependence of algorithms on database-specific assumptions

and underlining the need for more robust segmentation.

There are not many proposed fusion techniques operating before feature extraction, most

of them focusing on data-level fusion: Huang et al. [HMTW03] present a Markov network

learning-based fusion method to enhance the resolution of iris images. Hollingsworth et al.

[HPBF09] combine high-resolution images from multiple frames to create a single com-

bined representation. Jillela and Ross [JRF11] proposed image-level fusion with Principal

Components Transform. Recently, Llano et al. [LVGV+15] investigate the positive seg-

mentation impact of PCA-based fusion vs. Laplacian Pyramid and Exponential Mean at

image-level, i.e. multiple normalised iris textures are fused retrieved by following different

segmentation algorithms. A first fusion approach of segmentation information (i.e. prior

to normalisation) with the benefit of single normalisation and potentially simpler treatment

and classification of errors than post-normalisation fusion is proposed in [UW13].

This work builds upon the framework of fusion for multiple iris segmentations introduced

by Uhl and Wild [UW13], who combined evidence from human (manual) ground truth

segmentation as a proof of concept work, but without any tests on automated iris seg-

mentation algorithms and on a single dataset only. Two fusion methods were tested, both

achieved higher recognition accuracy independent of the employed feature extraction algo-

rithm (testing 3 approaches). Yet, the type of fusion technique (model-wise or data-wise)

did not have a huge impact on accuracy and manual segmentation was reported to be fairly

stable with 97.46% vs. 97.64% genuine acceptance rate (GAR), at 0.01% false acceptance

rate (FAR), without any severe segmentation outliers [UW13].

The performance on automated segmentation algorithms raises further questions, espe-

cially questions related to stability if algorithms fail: Accurate results of a cohort of seg-

menters might be severely affected by a single segmentation error. Further, evaluations

will be extended to ground-truth segmentation information as suggested by the Noisy Iris

Challenge Evaluation - Part I (NICE.I), and the F-measure used in [HAFW+14]: Errors

are estimated from the segmentation result (noise mask) Ni (or, more specifically, to esti-

mate boundary detection performance an artificial noise mask is constructed rendering the

iris using boundary curves Pi, Li) for each image Ii and compared using a ground truth
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mask Gi. Let tpi, fpi, tni, fni refer to true / false respectively positive / negative pixel

in-iris classifications for image index i (with dimension m× n), then:
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Error rate E1 refers of the rate of pixel disagreement between ground truth and segmen-

tation noise masks, E2 accounts for the disproportion between a priori probabilities, F1

gives a measure of correctly to incorrectly proportions. Augmenting [UW13], this paper

evaluates ground truth accuracy (using public IRISSEG-EP [HAFW+14]) and recognition

impact, including an exhaustive significance analysis, to gain a deeper understanding of

reasons for improvement. The McNemar test [McN47] is used for statistical significance

analysis. In contrast to [LVGV+15] this work does not assume access to multiple source

images and unlike [SGCL14] does not rely on multiple normalisations. However, the same

open segmentation and recognition algorithms (USIT) are employed for reproducibility.

3 Multi-Segmentation Fusion Methods

Modern iris recognition algorithms pushed by challenge measures (NICE.I E1, E2 as in-

troduced in Sect. 2) focus on the problem of boundary refinement, taking occlusions and

reflections into account [AS06, THS10, SGSD12]). For the Faberge mapping however, a

robust segmentation of true (potentially occluded) boundaries P,L is critical, neglecting

the presence of noise artifacts. This is to avoid non-linear distortions [UW12b]. While

such distortions could possibly be targeted by more sophisticated matching techniques

(e.g. by using Levenshtein distance), in identification mode it is more time-efficient to em-

ploy fast matching and study more advanced normalisation techniques, or combinations

thereof and subject to this paper. In case direct parameterisations of the algorithm are

available (e.g. center and radius for circular models, elliptical models, splines, or polygo-

nal boundary representations), the following techniques have been proposed in [UW13]:

Sum Rule: B(θ) :=
1

k

k
∑

i=1

Bi(θ); Aug Rule: B(θ) := ModelFit

(

k
⋃

i=1

Bi

)

(θ) (3)

• Sum-Rule Interpolation: This fusion rule combines boundary points Bi(θ) of curves

B1, B2, . . . Bk : [0, 2π) → [0,m] × [0, n] into a single boundary B, for pupillary and

limbic boundaries, in analogy to the sum rule.

• Augmented-Model Interpolation: This model combines boundaries B1, . . . , Bk

within a jointly applied parametrisation model ModelFit minimizing the model-error

(e.g., Fitzgibbon’s ellipse- [FPF99], or least-squares circular fitting), executed sepa-

rately for inner and outer iris boundaries. Models are combined, not only points.

Segmentation masks N are common intermediate results, as normalisation is usually inte-

grated rather than providing parameterisations of boundaries. A natural approach therefore

is the extraction of parameterisations using noise masks, e.g. by employing an elliptical

fitting. The following section illustrates the mask scanning process proposed in this work.
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Figure 2: Overview over the iris scanning and pruning process with examples.

3.1 Scanning Iris Masks

The mask fusion is an augmented-model interpolation based on a scan of the provided

iris masks. This fusion method is based on the assumption that the mask is available but

the original fitted model for the iris, pupil and eyelid boundaries are not, as would be the

case for the IREX K7 specification. It follows the basic outline of the augmented model

interpolation but skips the eyelid polygon fits. In a scan it is not necessarily possible to

differentiate between iris and eyelid based purely on the mask. The model used for the

augmentation is an ellipse fitting based on a scan of the iris mask.

First, the iris boundaries for each axis are determined. Then N equidistant scan lines are

used to generate points along the iris and pupil boundaries. The boundary points of the

provided masks are combined and pruned for outliers. Outliers typically happen when

the outer mask of an iris is not convex, leading to wrongfully detected pupil boundary

points along the iris boundary. The outlier detection is done by using the center of gravity

Cr of all the detected points for a given boundary. The radius for each point from Cr is

calculated and all points are pruned for which the radius has a z-score of greater than 2.5.

This is illustrated in Fig. 2 along with the difference of pruned and unpruned iris detection.

In order to get a stable outlier detection and correct boundaries a high number of scan lines

is desirable, for our experiments N = 100 was used. Furthermore, to properly associate

mask transitions with iris or pupil boundaries there should be no extra transitions. Such

transitions can be generated by noise exclusions in the mask. If the mask contains holes

of this kind, they should be closed by an dilate+erode morphological operation.
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(a) original (b) correct boundaries (c) without noise

Figure 3: Original OSIRIS mask, corrected version for rubbersheet mapping, and cor-

rected without noise masking.

The implementation of the tested OSIRIS algorithm produces masks which extend over

the actual boundaries used for unrolling the iris image, see Fig. 3a, which would produce

incorrect masks during the scanning steps. For the experiments we modified OSIRIS to

restricted the produced mask to the detected boundaries, see Fig. 3b. In addition, we

introduced an option to skip the noise mask, resulting in masks as shown in Fig. 3c. This

speeds up the fusion of the masks by allowing to skip the dilate+erode morphological

operations. The noise mask is only skipped for mask fusion not for calculation of the

OSIRIS scores.

The mask fusion algorithm produces two points clouds, pertaining to the iris and pupil

boundary. The actual mask is generated by fitting an ellipse to the point clouds by a least-

squares method [FPF99]. The segmentation tool from [HAFW+14] is used for unrolling

the iris image. It should also be noted that the mask level fusion only generates a mask

which is used for unrolling the iris. No noise or occlusion mask is generated and conse-

quently all tests performed on the fusion are performed purely on the unrolled iris image

without masking.

4 Experimental Study

Addressing the question of multisegmentation fusion performance, we assessed pairwise

combinations of the following segmentation algorithms: CAHT [RUW12], a traditional se-

quential (limbic-after-pupillary) method based on circular HT and contrast-enhancement;

WAHET [UW12b], a two-stage adaptive multi-scale HT segmentation technique using el-

liptical models; OSIRIS [PM07], a circular HT-based method with boundary refinement;

IFPP [UW12a] using iterative Fourier-series approximation and Pulling and Pushing meth-

ods. The motivation for selecting these algorithms were public availability as open source

software for reproducibility, therefore also basing experiments on ground-truth segmenta-

tions released with [HAFW+14, DBS] and referring to the public CASIA-v4 and IITD iris

databases. As feature extractors we used the wavelet transform-based algorithm by Ma et

al. [MTWZ04] and the local Gabor-filter based algorithm by Masek [Mas]. The results in

terms of equal error rate were obtained by using Hamming distance based verification, the

tools are provided by and further documented in the USIT package [RUW12].
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Table 1: Equal error rate for the segmentation fusion.

(a) Casia v4 Interval database

Equal-error rate [%] of Masek

CAHT WAHET OSIRIS IFPP

CAHT 1.22 0.92 1.03 1.30

WAHET 1.89 1.02 1.41

OSIRIS 1.04 1.44

IFPP 8.10

Equal-error rate [%] of Ma

CAHT WAHET OSIRIS IFPP

CAHT 0.99 0.64 0.84 1.17

WAHET 1.72 0.89 1.22

OSIRIS 0.73 1.53

IFPP 8.78

(b) IIT Delhi database

Equal-error rate [%] of Masek

CAHT WAHET OSIRIS IFPP

CAHT 1.85 3.60 1.65 1.38

WAHET 6.82 3.90 3.70

OSIRIS 1.40 1.94

IFPP 3.87

Equal-error rate [%] of Ma

CAHT WAHET OSIRIS IFPP

CAHT 1.72 4.06 1.95 1.43

WAHET 7.43 4.86 4.23

OSIRIS 1.21 2.40

IFPP 4.36

4.1 Impact on Recognition Accuracy

The main motivation for combining segmentation algorithms is to achieve a better over-

all system recognition accuracy. Whereas segmentation is an integral part of a biometric

recognition system, the advantage of a system-based evaluation is that it takes into account

that small segmentation errors do not necessarily implicate an impact on recognition ac-

curacy, as the feature extraction (and comparison) algorithm itself tries to extract features

invariant under slight transformations (e.g. small shifts, different illumination, etc.). Ta-

ble 1a gives the results of the evaluation on the CASIA-IrisV4-Interval [DBC] database,

and Table 1b gives the results on the IIT Delhi Iris Database [DBI]. The entries along the

principal diagonal are the results of the original segmentation algorithms. Fusion results

which are an improvement over both fused algorithms are shown in a bold font and fu-

sion results where the fusion performs worse than both individual algorithms are shown in

italics.

From Table 1 we can see that segmentation fusion increased performance in 10 out of

24 combination scenarios involving different algorithms and databases. While there is

only one case, IFPP fused with WAHET, which consistently increases the performance,

there are numerous cases where the fusion improves over both algorithms. In particular,

there is only one case, OSIRIS fused with CAHT with feature extraction of Ma on the

IITD database, where the combined performance is worse than both solitary performances.

Given that all employed segmentation algorithms aim for gradient-based detection rather

than employing completely different approaches and thus limiting the fusion potential as

any independence assumption is likely violated, the fraction of cases with improvement is

rather encouraging and deserves further attention.

In order to verify the statistical significance of results, we conducted McNemar tests

[McN47] dedicated to matching pairs of subjects. The test uses the dichotomous trait
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Table 2: Results of the McNemar test, reported as the X2 values. The row gives the single

method compared to the fusion as indicated by row×column.

(a) Casia v4 Interval database

X2 statistic for Masek

single method

CAHT WAHET OSIRIS IFPP

fu
se

d
w

it
h CAHT 24742 8 246149

WAHET 2543 13 247450

OSIRIS 1158 22002 243734

IFPP 928 8110 3729

X2 statistic for Ma

single method

CAHT WAHET OSIRIS IFPP

fu
se

d
w

it
h CAHT 28739 135 273347

WAHET 3993 1649 276351

OSIRIS 1620 15752 261445

IFPP 1438 7076 10532

(b) IIT Delhi database

X2 statistic for Masek

single method

CAHT WAHET OSIRIS IFPP

fu
se

d
w

it
h CAHT 49180 169 35918

WAHET 20317 42328 24

OSIRIS 1746 27835 17116

IFPP 3193 38721 3655

X2 statistic for Ma

single method

CAHT WAHET OSIRIS IFPP

fu
se

d
w

it
h CAHT 21271 4614 61327

WAHET 52945 78177 53

OSIRIS 368 10149 26311

IFPP 1145 21256 11669

of correct classfication (in relation to the known ground truth). We utilize the χ2 approx-

imation with the continuity correction proposed by Edwards [Edw48]. Table 2 reports

obtained X2 values at the EER operating point. Note that a critical value X2∗ ≥ 6.64 indi-

cates a rejection of the null hypothesis — that there is no difference between the two meth-

ods — with at least 99% significance. The table gives the comparison of single method

in the column, e.g. CAHT(column), with the fusion as indicated by column and row, e.g.

CAHT(column) fused with WAHET(row).

4.2 Ground-truth Segmentation Accuracy

To understand how fusion influences the segmentation performance we compared the seg-

mentation results to ground truth, which is available from two independent manual seg-

mentations. Fig. 4 gives the F-measure segmentation error introduced in Eq. 2 for IFPP,

WAHET and their fusion on the CASIA v4 interval database. The fusion exhibits a closer

conformity to the ground truth than each individual segmentation algorithm. Using the

outlier detection from [HAFW+14] we can further confirm the conformity to the ground

truth for the fusion; IFPP had 95 outliers, WAHET had 32 and the fusion only 16.

We compared Sum Rule segmentation fusion performance on “good” versus “bad” seg-

mentations using segmentation consistence between both algorithms as an indicative mea-

sure (we used distance of pupillary and limbic centers, as well as the absolute difference in

radii using threshold η = 10). Results indicated, that fusion performance on the “good” set

improved accuracy, while averaging performance for the “bad” set with deviating infor-

mation, rather than consistently eliminating over- and undersegmentation errors. Table 3
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Table 3: Fusion for good vs. bad segmentation results.

Segmentation error [%]

E1 E2

Good Bad Good Bad

CAHT 1.98 2.76 3.02 4.10

WAHET (NIR) 2.30 6.05 3.54 8.90

Fusion (Sum Rule) 1.87 3.85 2.87 5.61

(a) Casia v4 Interval database

Segmentation error [%]

E1 E2

Good Bad Good Bad

CAHT 2.61 5.00 3.48 8.33

WAHET (NIR) 2.77 15.31 3.73 20.76

Fusion (Sum Rule) 2.40 9.95 3.23 13.84

(b) IIT Delhi database

(a) IFPP

00.20.40.60.81

F-measure

(b) WAHET

00.20.40.60.81

F-measure

(c) Fusion (IFPP+WAHET)
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Figure 4: Segmentation comparison with ground truth on CASIA-v4-Interval.

illustrates this observation based on E1 and E2 error rates comparing segmentation results

on both databases for the CAHT and WAHET combinations (for IITD we used dataset-

optimised parameters to increase the set of segmentation-consistent images). Given that

small segmentation errors are likely to be tolerated by the feature extraction algorithm, we

identify the reduction in outliers as a strong factor in the overall improvement, which is

unlikely to be reflected in ground-truth-based evaluations aiming to identify statistically

significant improvements over the entire set. In the following some of the outliers will be

discussed to make the fusion impact clearer.

4.3 Analysis of Fusion Behaviour

For mask fusion, Fig. 5 shows samples from CASIA v4 interval database. Both the result-

ing segmentation as well as the point clouds for iris and pupil boundary are given. The
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(a) Shape mismatch

correction.

(b) Boundary mismatch

correction.

(c) Sample discrepancy

due to cut off iris.

(d) Matching errors.

Figure 5: Possible effects of combining masks.

(a) Detection flaw. (b) Missed boundary. (c) Pruning failure.

Figure 6: Boundary overestimation and non-convex masks.

correction behaviour is due to the least-squares ellipse fitting valuing the outer boundaries

higher. This leads to corrective behaviour when on of the masks has detected the wrong

shape (5a) or the wrong boundary, in this case collarette instead of iris (5b). There are

however limits to this, like in case the iris boundary being cut off, leading to a shape bias

in the fitting process as seen in Fig. 5c. Further, if both original segmentations exhibit the

same type of error the fusion can obviously not correct it, see Fig. 5d.

Fundamentally, the mask fusion values boundary points located farther from the center to

a greater extent, e.g. Figs. 5a and 5b. As long as the boundary detection of the iris un-

dershoots rather than overshoots the fusion is auto-corrective. A case where the boundary

detection overshoots is the OSIRIS fusion with CAHT on the IITD database. The OSIRIS

algorithm frequently overestimates the iris boundary. While this is often corrected by the

mask provided by OSIRIS the resulting non-convex and miss shaped masks can lead to

fusion problems. Examples comprise the cases of detection flaw and corresponding fusion

error (Fig. 6a), missed boundary and an almost correct mask (Fig. 6b), and pruning errors

due to a non-convex mask which is not sufficiently removed from correct points (Fig. 6c).

Essentially, as long as the boundary estimation is conservative, i.e. underestimates rather

than overestimates, the auto-corrective properties of the mask fusion result in an increased

performance. The same properties however will reduce the quality of the mask fusion

when boundaries are frequently overestimated. Furthermore, non-convexity of the mask

can lead to sample points which are attributed to the wrong boundary. These erroneous

samples can be pruned to an extent, but non-convex masks always carry the possibility of

a deformed pupillary boundary.
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5 Conclusion and Future Work

This paper analysed multisegmentation fusion using pairwise combinations of CAHT,

WAHET, IFPP and OSIRIS iris segmentation algorithms, revealing the autocorrective

properties of augmented model fusion on masks in most of the tested cases (best re-

sult 0.64% EER for WAHET+CAHT versus 0.99% EER for CAHT only). Evaluations

on ground-truth masks and recognition scores indicated, that ground-truth based evalua-

tions are likely to miss corrective behaviour for outliers, which is critical for the overall

task. Detailed error-specific analysis revealed case-specific corrective behaviour, which

will be a good starting point for future case-specific fusion approaches. Benefits of mul-

tisegmentation in contrast to traditional multialgorithm fusion comprise better normalised

source images available for feature-independent storage and the ability to focus on the

time-consuming segmentation process, where parallelisation and advanced fusion might

be most beneficial. Future work will focus on advanced, sequential approaches taking

processing time into account.
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