Adaptive Content Distribution Network for Live and
On-Demand Streaming

Yuta Miyauchi, Noriko Matsumoto, Norihiko Yoshida

Graduate School of Science and Engineering
Saitama University
Saitama 338-8570, Japan
{yuta, noriko, yoshida} @ss.ics.saitama-u.ac.jp

Yuko Kamiya, Toshihiko Shimokawa

Graduate School of Information Science
Kyushu Sangyo University
Fukuoka 813-8503, Japan

{kamiya, toshi} @nw.is.kyusan-u.ac.jp

Abstract: We have proposed an adaptive content distribution network (CDN), FCAN
(Flash Crowds Alleviation Network), which changes its structure dynamically against
a flash crowd, that is a rapid increase in server load caused by a sudden access concen-
tration. FCAN in our preceding studies responds only to static content delivery. In this
paper, we extend FCAN to alleviate flash crowds in video streaming. Through some
experiments, we confirmed that FCAN for video streaming is effective to alleviate
flash crowds.

1 Introduction

When a Web site catches the attention of a large number of people, it gets an unexpected
and overwhelming surge in traffic, usually causing network saturation and server malfunc-
tion, and consequently making the site temporarily unreachable. This is the “flash crowd”
phenomenon on the Internet. An example of a flash crowd is Figure 1, which shows the
traffic volume of Web site during the solar eclipse based on a real access log provided
from “LIVE! ECLIPSE 2006 [LEO6]. During the solar eclipse, the accesses from clients
increased several times higher than the normal condition by flash crowds.

We have proposed an adaptive content distribution network (CDN), FCAN (Flash Crowds
Alleviation Network), which changes its network structure adaptively depending on a load
fluctuation against flash crowds [Pan06, Yos08]. FCAN only focused on static content
delivery in our preceding studies, thus in this study, we extend FCAN to video streaming.

A large amount of clients receive a sequential stream from a streaming server, therefore
network traffic is concentrated on a specific site on the Internet. To assure resilience in

27

120 4 Eclipse access(60seconds average)

100

@ ®
=1 o
1 1

of requestes

N
o
1

20 4

T T
0 50 100 150 200 250

Time

Figure 1: Flash Crowds on “LIVE! ECLIPSE 2006 site

P2P video streaming, the FCAN framework is thought to be promising. There is a survey
paper on resilience in P2P video streaming [Abb11], however, there is no system which
changes its network structure dynamically according to load fluctuation.

In this paper, we describe FCAN’s extension. It uses Apple’s HTTP Live Streaming
[ADI11a] for stream segmentation and distributed delivery. This paper is organized as
follows: Section 2 provides a brief overview of HTTP Live Streaming. Section 3 presents
an overview of our previous FCAN for static content delivery. Section 4 gives FCAN’s
extending design for video streaming. Section 5 describes preliminary experiments with a
simple prototype. Section 6 contains some concluding remarks.

2 HTTP Live Streaming

Conventional standard streaming protocols such as progressive download and real-time
streaming do not allow switching of stream source servers on the client side dynamically.
Therefore, massive accesses from clients concentrates on a particular site on the Internet.
Accordingly, the server and its surrounding network choke up, and a flash crowd occurs.

In order to resolve this problem of conventional protocols, Apple has introduced a new
protocol for video streaming, HTTP Live Streaming (also known as “HLS”). It has been
proposed as a standard draft for the Internet Engineering Task Force [Panl1]. Figure 2
shows an overview of this protocol.

The server starts providing a video stream with the following procedure: (1) Encodes an
audio/video inputs; (2) Divides the encoded stream into a set of media segments (“.ts”
files), and makes an index (“.M3U8” file) which refers them; (3) Delivers them to clients
using HTTP on the Internet.

This protocol enable a client to switch the source server dynamically as opposed to the

28

Server

Media Stream
[Encoder Segmenter .

Internet

(HTTP)
Audio/Video
Inputs) O
Index Segments Client

Figure 2: HTTP Live Streaming Overview

conventional streaming protocols. The delivery system archives load distribution easily
with additional servers.

As another key feature, HTTP Live Streaming supports “adaptive bitrate.” The server
provides alternative streams with different quality levels of bandwidths, so as to enable
a client to optimize the video quality according to the network situation, as the load on
the network and CPU, both on the server side and the client side, fluctuates on a frequent
basis.

3 FCAN

FCAN is an adaptive CDN which takes the form of C/S or CDN depending on the amount
of accesses from clients. Specifically, in the C/S mode, a server provides contents to
clients as in a traditional C/S. In the CDN mode, when the server detects a coming of a
flash crowd, volunteer cache proxies in the Internet construct a temporary P2P network
and provide the content on behalf of the server. These volunteer proxies are recruited in
advance out of providers and organizations. In case servers in such providers and organi-
zations suffer from flash crowds, they will be helped by other volunteer proxies. FCAN is
built upon this mutually-aiding policy. Figure 3 shows an overview of FCAN.

In our preceding studies, we summarized some researches to alleviate flash crowds [Yos08].
These researches are divided into three categories: server-layer, inter-mediatelayer and
client-layer solutions, according to typical architectures of networks. FCAN is an inter-
mediate-layer solution, which employs an Internet infrastructure of cache proxies to or-
ganize a temporal P2P-based proxy cloud for load balancing. However, FCAN has some
extensions with some dynamic and adaptive features. Our FCAN studies achieved very
promising results regarding static content delivery on the real Internet [Miy11].

29

Server
:I Flash Crowds :l

Disappear Proxy
<:| C‘ E% Cloud

Structure Transition

g TTITTT
OO0 ™ 0000

Client O O O

C/S mode CDN mode

Figure 3: FCAN Overview

4 FCAN for Streaming
4.1 Structure Transition

First, We changed the behavior of structure transition in the previous FCAN design.

The server and the cache proxies in the proxy network always monitor the amount of ac-
cesses they receive from clients and evaluate the load on the network. The system switches
to the CDN mode if all nodes’ loads are higher than a certain threshold, and switches back
to the C/S mode if lower. Each cache proxy sends its own load information to the server
periodically, and the server determines whether to perform structure transition.

We use two thresholds to prevent “thrashing” between the two mode. The threshold for
transition from the C/S mode to the CDN mode is set to higher than the one for transition
from the CDN to C/S.

In peaceful times, the conventional C/S architecture satisfies most of the client requests.
A server and cache proxies, both of which comprise FCAN, do little more than what
normal ones do. When a flash crowd comes, the server detects the increase in traffic
load. It triggers a subset of the proxies to form an overlay, through which all requests are
conducted. All subsequent client requests are routed to this overlay.

The server-side procedure is outlined as follows: (1) Selects a subset of proxies to form a
CDN-like overlay of surrogates, and builds a distribution tree; (2) Pushes the index file and
stream segments to the node of the distribution tree, so as to meet the real-time constraint
of the video streaming; (3) Prepares to collect and evaluate statistics for the object from
the involved proxies, so as to determine dynamic reorganization and release of the overlay.

The proxy-side procedure is outlined as follows: (1) Changes its mode from a proxy to a
surrogate (or, in the strict sense, a mixed mode of a forward proxy and a surrogate); (2)
Stores flash-crowd objects (except the index file) permanently, which should not expire
until the flash crowd is over; (3) Begins monitoring the statistics of request rate and load,

30

Server
Under-load Under—load

Cache
PSS N Oggp Oggo
Provide //‘ Over-load Provide // Over-load Provide //‘

High Quality Request High Quality Request Low Quality Request

@) High Quality High Quality High Quality
Client U U
Recruit Degradation

Figure 4: Handling of load increase in CDN mode

and reporting them to the server periodically.

In the live streaming, the index file is updated periodically, therefore the server monitors
its composition, and pushes the segments at an appropriate time. Meanwhile, when the
proxy is released by the server, it discards the index so as to keep the consistency among
the nodes.

When the member server detects the leaving of the flash crowd, the involved proxies are
dismissed one by one with the following procedure: (1) The server notifies the proxy to be
dismissed; (2) The server requests the related proxies to modify the relation of connection;
(3) The proxy changes its mode from a surrogate to a proxy.

The CDN-like overlay transits back to the normal C/S mode when all the proxies are
dismissed. They are not all dismissed at once, since the low load may be just temporary,
and the system should therefore remain in the anti-flash-crowd mode for a while.

4.2 Dynamic Resizing and Quality Restriction

The proxy network is a pure P2P network. Therefore, it is highly fault-tolerant and scal-
able. Unlike traditional P2P systems, it does not include clients into the network itself in
order to assure reliability and security.

FCAN resizes a scale of the proxy network depending on a load fluctuation adaptively in
order to avoid troubles such as server down by massive access concentration. Figure 4
shows how the system works in the CDN mode.

When the server detects a coming of flash crowds, it forms a temporary proxy network as
shown in the lefthand side of Figure 4. If the initial network cannot handle increasing an
amount of accesses, the server recruits a new member proxy one by one as shown in the
middle of Figure 4.

If the server cannot recruit temporary proxies any more, it degrades the quality of the video
stream as shown in the righthand side of Figure 4. For example, in the situation that the

31

system provides video streams of two different qualities, high and low, it delivers the low
quality content as substitute for the high quality one under this quality restriction. The
network occupancy per client decreases so that the server can alleviate the load of whole
delivery network.

If the proxy network can easily handle all the incoming loads, the server may lift the
restriction of the stream quality at first. After the derestriction, it releases temporarily-
recruited proxies one by one until all proxies are dismissed. Finally, the system all turns
back to the normal condition.

4.3 Access Redirection

In our preceding studies, FCAN uses DNS-based redirection, i.e. the authoritative DNS
server redirects an access to an appropriate node depending on the network structure. We
use TENBIN [ShiO0] for the authoritative DNS server. It is a high-performance DNS
which allows server selection policies and DNS lookup entries to be changed dynamically.
DNS-based redirection works transparently to users, however, we confirmed “cache ef-
fect” problem which is caused by some DNS servers somewhere in the world which make
caches of the address resolution at their own discretion.

In this study, we make the client access redirect to an appropriate server through the medi-
ator. The mediator works on the same machine as the client software and relays requests
from the client to the servers. It handles client requests with the following procedure: (1)
Receives a list of working servers from the origin server; (2) Receives the content from a
certain server in the list, and provides it to the client; (3) When the mediator get a request
from the client next time, it receives new list from a certain server; (4) Return to (2).

Using the mediator, we eliminate the cache effect problem, and even utilize geographical
information-based redirection for example. While the mediator works non-transparently to
users, we expect that the function of the mediator can be implemented in browser cookies
in the future.

5 Preliminary Experiments

We conducted some preliminary experiments on a real network with a prototype of the
system. Figure 5 shows an overview of the experiments.

In our experiments, we use some hosts in Saitama University and Kyushu Sangyo Uni-
versity for a server, proxies, a pseudo client, and a client node. We use Apple’s stream
segmenter (mediastreamsegmenter) for the segmenter, and QuickTime Player for Quick-
Time X in the client.

The pseudo client is to trigger the FCAN’s functions against flash crowds. It submits
requests for randomly chosen segments to the server following the pattern shown in the
Figure 6. In the rest of this section, CP1, CP2 and CP3 are the proxies shown in the Figure

32

Parent Proxy Segmenter

)

Server

Audio/Video
Inputs

Child Proxy
Request Mass-Request
O=0| O=0
e e
Mediator Client Mediator Pseudo
Client

Figure 5: Experiment Environment

Table 1: Segments for On-Demand Experiment
Quality | Resolution | Average size | Duration
High 480 x 360 960 [KB] 10 [sec]
Low 320 x 240 410 [KB] 10 [sec]

5.

We made two experiments with two delivery methods, live and on-demand. In the on-
demand streaming experiment, the server provides high and low quality contents with
adaptive bitrates. We use segments shown in Table 1, which are samples of HTTP Live
Streaming in the Apple Developer’s site [AD11b]. The client software, the client has a
master index file indicating these two quality contents, and the QuickTime Player requests
segments of an adequate quality depending on load fluctuation following the master index.
On the other hand, in the live streaming experiment, the server provides contents in a single
quality in real time.

The server computes a load value regarding the size of requested segments. In the exper-
iments, thresholds for load detection are defined beforehand based on some experiences.
Workloads on the real Internet varies, and automatic and dynamic configuration of the
thresholds is difficult. We suppose they may be configured based on the server capacity
and the network bandwidth around the server.

Table 2 shows the time-line of the live experiment. We confirmed that the structure transi-
tion and dynamic resizing were performed depending on load fluctuation.

Table 3 shows the time-line of the on-demand experiment. In addition to the result of the
live streaming, the stream quality was limited during server load growth.

Table 4 shows the sequence of the stream segments which the client played in the on-
demand experiment. The client consistently requested the high quality contents until the

33

25

10 E

Number of Request

0 | | | | |
0 100 200 300 400 500 600

Time (seconds)

Figure 6: Request Pattern of Pseudo Client

Table 2: Time-line of Live Experiment
Time | Actions

0 [sec] | Start experiment
Pseudo client request start

30 [sec] | Client request start
130 [sec] | Structure transition to CDN
Recruit the core proxies (CP1, CP2)
220 [sec] | Recruit the additional proxy (CP3)
490 [sec] | Dismiss the additional proxy (CP3)
550 [sec] | Structure transition to C/S
Dismiss the core proxies (CP1, CP2)
600 [sec] | End experiment

end of the experiment. In the on-demand streaming, the segmentation is done before the
beginning of the experiment and the composition of the index does not change, therefore,
clients received some number of segments before playback. After the number 27, the
server degraded the stream quality for load alleviation, so the client received low quality
segments as substitutes for the high quality ones. As the server load decreased, the server
lifted the restrictions on the quality. After the number 45, the client herewith received high
quality segments as required again. During the experiment, no malfunctioning, such as
interrupt in the playback, was observed when the quality changed.

Figure 7 shows the load transitions of the server with FCAN and without FCAN in the
on-demand experiment. The case of the server with FCAN shows the average loads of
member nodes in the distribution network. The first peak at the 40th second shows that
“buffering” was done when the client started the playback as mentioned above. The load
on the server exceeded the higher threshold at the 130th second, then structure transition

34

Table 3: Time-line of On-Demand Experiment

Time

\ Actions

0 [sec]

Start experiment
Pseudo client request start

30 [sec]

Client request start

130 [sec]

Structure transition to CDN
Recruit the core proxies (CP1, CP2)

220 [sec]

Recruit the additional proxy (CP3)

250 [sec]

Quality degradation

430 [sec]

Quality improvement

490 [sec]

Dismiss the additional proxy (CP3)

550 [sec]

Structure transition to C/S
Dismiss the core proxies (CP1, CP2)

600 [sec]

End experiment

Table 4: Playback Time-line of Client

Segment Name \ Size \ Quality
fileSequenceO.ts | 926 [KB] | High
fileSequencel.ts | 946 [KB] High
fileSequence2.ts | 950 [KB] | High
fileSequence26.ts | 958 [KB] | High
fileSequence27.ts | 414 [KB] Low
fileSequence28.ts | 410 [KB] Low
fileSequenced4.ts | 414 [KB] Low
fileSequence45.ts | 958 [KB] | High
fileSequence46.ts | 958 [KB] High
fileSequence60.ts | 967 [KB] | High
fileSequence61.ts | 958 [KB] | High
fileSequence62.ts | 963 [KB] | High

35

to the CDN mode occurred so as to alleviate load concentration. However, the load on the
member nodes continued to increase even after the transition, a new member proxy was
recruited at the 220th second, and additionally the quality of segments was degraded at the
250th second, and consequently the server withstood the heavy load condition.

On the contrary, in the case of the server without FCAN, we observed that load values were
far exceeding ones of the server with FCAN consistently. We, therefore, confirmed that
FCAN’s features against flash crowds were performed as a result of the increase of client

25

server‘ with FCAN‘ (average \;alue of mer‘nber nodes,‘) ——

s server without FCAN ---x---
77X

20 - VA g

Load
X,

0 100 200 300 400 500 600
Time (seconds)

Figure 7: Comparison of load transitions in On-Demand Experiment

requests, and FCAN archived dynamic load balancing. We obtained equivalent results also
in the live streaming experiment.

6 Conclusion

In our preceding studies, FCAN only focused on the static content delivery, however, flash
crowds occur also in the video streaming. In order to alleviate flash crowds in the video
streaming, both live and on-demand, FCAN adopts a new features such as dynamic resizing
and quality restriction so as to raise a resilience of the system. In this paper, we proposed
FCAN’s extension for video streaming and demonstrated a prototype of the system on the
real Internet. Through some experiments, we confirmed that FCAN’s extension works
effectively to alleviate flash crowds.

We are still at a starting point toward practical implementation and promotion of FCAN.
Future research directions include: (1) quality guarantee in the CDN mode in the situation
that multiple proxies deliver the same stream content, (2) appropriate thresholds assign-
ments, and (3) implementation of dynamic access redirection using browser cookies.

References

[Abbl1] O. Abboud, et. al. Enabling Resilient P2P Video Streaming: Survey and Anal-
ysis. Multimedia Systems, Vol:17, Springer, pp.177-197, 2011.

[AD11a] Apple Developer. HTTP Live Streaming. http://developer.apple.com/
resources/http-streaming/, 2011.

36

[AD11b]

[LEO6]

[Miy11]

[Pan06]

[Panl1]

[Shi00]

[Yos08]

Apple Developer. Bip Bop All. http://devimages.apple.com/iphone/samples/
bipbopall.html, 2011.

LIVE! ECLIPSE. http://www.live-eclipse.org/, 2006.

Y. Miyauchi, et. al. Preliminary Study on World-Wide Imprementation of
Adaptive Content Distribution Network. Proc. Workshop on Self-Organising,
Adaptive, Context-Sensitive Distributed Systems , 11 pages, 2011.

C. Pan, et. al. FCAN: Flash Crowds Alleviation Network Using Adaptive P2P
Overlay of Cache Proxies. IEICE Tr. Comm., E§89-B(4), pp.1119-1126, 2006.

R. Pantos. IETF Internet Draft: HTTP Live Streaming. http://tools.ietf.org/
html/draft-pantos-http-live-streaming, 2011.

T. Shimokawa, et al. Flexible Server Selection Using DNS. Proc. Int. Work-
shop on Internet 2000 (in IEEE-CS 20th Int. Conf. on Distributed Computing
Systems), pp.A76—-A81, 2000.

N. Yoshida. Dynamic CDN against Flash Crowds. Content Delivery Networks
(R. Buyya, et al., eds.), Springer, pp.277-298, 2008.

37

