Nature Inspired System Analysis

Vasil Tenev
Fraunhofer IESE, Fraunhofer-Platz 1, Kaiserslautern, Germany
Vasil. Tenev @iese.fraunhofer.de

Abstract—The process of cloning variants of a system
to accommodate increasing customization is often state
of the practice where code duplication is caused by the
combination of maintenance problems, high customization,
and time pressure. This particular situation motivates the
research on similarity analysis of system variants. Similarity
determination, variability information recovery, and evolu-
tion history reconstruction are prime goals in this context.
Analogous research problems appear in the bioinformatics.
The growing amount of DNA/RNA sequence data requires
efficient similarity analysis and proper visualizations. This
branch of computer science faces the tasks of simultaneous
aligning for multiple genome sequences, and estimating
evolutionary correlations in a given set of taxa. Hence,
we applied these techniques to analyze a group of related
systems from the BSD Unix family as prove of concept
towards model-based variant analysis of complex systems.

Index Terms—reverse engineering, software variants,
software evolution, visualization.

1. Introduction and Motivation

The rapid development in the embedded world demands
steady growth of customization flexibility for products
and services. We exploit methods for better understanding
of variability and regaining control over the increasing
management effort. At the same time, we want to enable
future (unpredicted, but required) functional adaptations
by reducing coupling and increasing cohesion. These
principles are reflected by variety of strategic reuse
practices [1]. Manufactures nowadays attempt to achieve
maturity of engineering and higher efficiency similar to
the automotive industry by developing a single product
line rather than many individual products [2].

Variability evaluation and reuse potential analysis be-
came important topics in this trend. Today’s development
of complex and extensive systems often takes advantage
reusing already existing artifacts. For a group of systems
with similar functionality this approach can result in costs
reduction and better resource management. Variants of
such systems are often developed by adjusting dupli-
cates of existing components that get into their own life
cycle, as known as software mitosis [3]. The resulting
branches in the system evolution could benefit from reuse
techniques. Due to poor documentation and if not done
on time, merging these clones can be highly time and
resource consuming task. The alternative — renewed for-
ward engineering — also needs a lot of effort and brings
high risk levels because of the missing knowledge about
the differences across diverse variants. Suitable similarity
analysis between such systems can compensate the lack of
information and support renovation to a family of system
variants. System engineering can take advantage of shared
catalog containing mutual artifacts towards a product line
approach [4].

44

As Hutchins [5] also discusses, there are many analo-
gies between the software evolution and the biological
evolution, and the research problems seem to be simi-
lar. This is motivation to investigate the application of
the bioinformatics concepts in the analysis of software
variants.

Related work. Many clone detection approaches exist
to analyze code inside one or across many systems
[6]. Along some refactoring and inspection techniques,
reverse engineering also profits from detecting basic simi-
larities between program artifacts, but most of them could
hardly be used for direct evaluation of commonalities be-
tween multiple systems or analysis on higher abstraction
levels.

Algorithms for comparison between system models
were proposed as well, e. g. [7]. These approaches analyze
abstract representations like UML class diagrams. The
introduced solutions are based on heuristic methods with
good-in-practise error rates achieved empirically, but only
some of them are stochastically proved. All techniques
show the importance of model-driven evaluation of large-
scale systems. An analysis on higher abstraction level
corresponds to the object-oriented development, exploring
some of its main characteristics: encapsulation, modu-
larity, polymorphism, and inheritance. As by biological
organisms, similarities between variants must be also
related to the correlations of these systems. The bioin-
formatics study these problems and suggest a variety of
well-known algorithms with formal proved properties and
empirical recognition.

This paper presents work performed in the context of
the Fraunhofer Variant Analysis approach —a framework
capable to employ various similarity detection algorithms
for similarity detection and visualization across set of
system variants [4].

I1. Approach

Problem Formulation. Similar to UML diagrams,
model-based representation of a system is a graph-like
structure, where various components are represented by
vertices and different types of arrows denote specific
structural and logical relations. (A.) To define similarity
between two or more systems, we use the typical change
events: insertion, deletion, and substitution. In the context
of models, computing the similarity between systems
then corresponds with a optimal sequence of change
events that lead from one system to another. Further-
more, clustering by similarity helps to identify pairs or
groups of closely related systems quantitatively. (B.) The
recognition of evolutionary relationships is important for
reconstruction of the evolution history. This information

Softwaretechnik-Trends 37:2, Mai 2017



386BSD 0.1

NetBSD 1.1

—

NetBSD 1.2

OpenBSD 2.0

NetBSD 1.3

0% T T T T T T T T T T 1 100%

Figure 1.

FreeBSD 2.0.5

———————* 386BSD 0.1

— FreeBSD 2.0.5

= NetBSD 1.3

NetBSD 1.2
NetBSD 1.1

L+ OpenBSD 20

or

; . T . T 13,253,502 LOC

Dendrogram (left) and cladogram (right) constructed for the example BSD systems. The evolutionary relationships are reconstructed

correctly and fully automatically, without using any knowledge about the history of the systems [8].

reveals whether the potentially unknown input systems
are variants developed in parallel, or rather consecutive
versions. The appropriate visualization techniques neces-
sary to present the results to a domain analyst for further
evaluation are discussed. Due to space limitations, for
more details and formal definitions we refer to [8, 9].

A. Similarity between Multiple Systems

In [9] we defined an approach for a simultaneous align-
ment on the structure of multiple software systems by
extending the existing algorithms for DNA aligning. An
approximation algorithm for pairwise aligning of software
systems is proposed and combined with an iterative
variant of Gusfield’s Center-Star method to construct
a multiple alignment. This proved that there exists a
polynomial approximation algorithm. We then analyzed
the source code of six systems from the BSD Unix family
in Figure 1 (containing from 5,404 to 12,608 code files).
Although we were unable to verify this huge data set, for
a smaller example (sys/kern folder with 55 to 72 files)
our algorithm has 94% precision and 94% recall.

For visualizing the quantitative information about pair-
wise similarity between the systems we used a dendro-
gram (Figure 1). The classical WPGMA algorithm was
used to generate the weighted average clustering.

B. Evolutionary Relationships

Using similarity data about related systems we showed
in [8] that cladogram can be used to present the recon-
struction of evolutionary relationships in software mitosis
(Figure 1). The length of tree branches is proportional to
the amount of common code. Classical algorithms assume
a perfect cladistic history: once a feature appears in an
ancestor, it is present in all of its successors. However,
for software variants this is often not the case, since
code parts might be exchanged between the variants after
they already split up. Hence, we can only reconstruct
a probable evolution history, which can differ from the
actual history if the code of historically near systems is
strongly dissimilar (e.g. due to a large-scale modification),
or the code of historically distant systems is similar
(e.g. due to cross-system cloning). We implemented an
algorithm for constructing a Hasse diagram to reflect a
non-perfect cladistic history. The diagram is reduced to
a tree by ignoring all edges having length less than a
defined threshold. In most cases, the cladogram tree can
be constructed unambiguously. If this is not possible, we

Softwaretechnik-Trends 37:2, Mai 2017

construct an extended tree where the possible evolution
alternatives are presented as parallel tree branches.

II1I. Conclusions

We presented an application of bioinformatics concepts,
i.e. multiple alignments, dendrograms, and cladograms,
in an analysis of software variants. As following steps,
we are planing to apply these results to model-based
representations of embedded systems to enable a model-
based variant analysis for self-awarded smart adaptable
systems.

References

[1] K. Pohl, G. Bockle, and F. Van Der Linden, Software
product line engineering: foundations, principles, and
techniques. Springer-Verlag New York Inc, 2005.

C. Krueger, “Easing the transition to software mass
customization,” in Software Product-Family Engi-
neering (F. van der Linden, ed.), vol. 2290 of Lecture
Notes in Computer Science, pp. 178-184, Springer
Berlin / Heidelberg, 2002.

D. Faust and C. Verhoef, “Software product line
migration and deployment,” Software: Practice and
Experience, vol. 33, no. 10, pp. 933-955, 2003.

S. Duszynski, Analyzing Similarity of Cloned Soft-
ware Variants using Hierarchical Set Models. PhD
thesis, Technical University of Kaiserslautern, 2015.
D. Hutchins, “A biologist’s view of software evolu-
tion,” in RAM-SE’05-ECOOP’05, pp. 95-105, 2005.
C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison
and evaluation of code clone detection techniques and
tools: A qualitative approach,” Science of Computer
Programming, vol. 74, no. 7, pp. 470 — 495, 20009.
Special Issue on Program Comprehension (ICPC
2008).

M. Girschick, “Difference detection and visualization
in UML class diagrams,” Technical Report TUD-CS-
2006-5, Technical University of Darmstadt, 2006.

V. Tenev and S. Duszynski, “Applying bioinformatics
in the analysis of software variants,” in 2012 20th
IEEE International Conference on Program Compre-
hension (ICPC), pp. 259-260, June 2012.

V. Tenev, “Directed Coloured Multigraph Alignments
for Variant Analysis of Software Systems,” Bache-
lor’s thesis, Technical University of Kaiserslautern,
December 2011.

(2]

(3]

[4

[

(5]

[8

—_—

[9

—

45





