
A UML-Agnostic Migration Approach

From UML to DSL

Hendrik Bünder
buender@itemis.de

itemis AG

Abstract

Compared to UML-based modeling, domain-specific
languages (DSL) offer many advantages such as sim-
plified tooling and lower costs. When migrating ex-
isting UML models to DSLs, however, it is difficult
to guarantee that the same source code is generated
afterwards. Due to the fact that existing UML mod-
els and the former generated source code may already
be inconsistent. To cope with these inconsistencies
the paper reports on a UML-agnostic migration ap-
proach based on the existing source code. The paper
elaborates on the concept, the tool-chain and the test
environment of the introduced approach.

1 Introduction

Over the last decade, open source frameworks for
creating domain-specific language workbenches have
improved significantly. Thereby, it has become eas-
ier to utilize model-driven software engineering based
on domain-specific languages (DSL). However, many
companies already adopted model-driven engineering
at the beginning of the 21st century. Typically, Uni-
fied Modeling Language (UML) models are the basis
for these approaches [1]. In most cases, these mod-
els are created and maintained with expensive pro-
prietary tools such as Rational Software Architect or
Enterprise Architect.

Obviously, companies willing to migrate from a
UML-based to a DSL-based approach face many chal-
lenges. First, all concepts of the former approach need
to be available in the domain-specific language. Sec-
ond, the migration needs to be automated to han-
dle a large number of existing UML models. Third,
the migration approach must cope with inconsisten-
cies between the models and the actual source code.
Finally, the source code generated from the migrated
DSL model has to equivalent to the source code used
as input for the migration.

The following will elaborate on an automatic mi-
gration from UML-based to DSL-based model-driven
software engineering performed under the precondi-
tion that all present concepts are available in the DSL
approach. To handle inconsistencies between UML
model and actual source code, the latter is the only
migration input. Also, the following will describe the

test process to ensure that the newly generated source
code is equivalent.

2 Migration Approach

To illustrate the migration process the data layer of
an application written in Java will be migrated to an
instance of an Entity DSL. The language workbench
for the Entity model was created using the Xtext [4].
Based on a grammar written in the Xtext-specific Ex-
tended Backus-Naur Format, the editor, parser and
abstract syntax tree for the Entity DSL is generated.
Besides, an Entity to Java code generator was imple-
mented using the Xtend programming language [3].

Figure 1: Migrating from Source Code.

Figure 1 shows the process of migrating existing
source code written in Java to a textual representation
of an Entity DSL model. Since Java input and Entity
DSL are both managed within the Eclipse IDE, the
migration utilizes further Eclipse plugins. First, the
Java sources of a project to be migrated are parsed
by the Eclipse Java Tools. Based on the instantiated
Java abstract syntax tree (AST) the DSL Migrator
creates elements of the Entity AST. For every Java
class extending the DataObject interface, the DSL
Migrator creates a new instance of the Entity class.
Moreover, for every field or operation in such a class, a
new attribute or operation is created, respectively. In
addition, to the AST elements shown in the simplified
example, the DSL Migrator also creates more detailed
artifacts such as data types, parameters or exceptions.
Although the migration approach relies on the source
code, this source code has to abide by a particular

36 Softwaretechnik-Trends 37:2, Mai 2017



structure regarding available class files, implemented
interfaces, etc. to be successful.

After the Entity DSLs AST has been created, the
DSL Serializer serializes the content of the AST. The
DSL Serializer has been inferred from the the Xtext-
specific grammar and will create a text file accord-
ingly. As Figure 1 has shown, the whole migration
process can be executed using tools from the Eclipse
ecosystem.

3 Testing the Migration Approach

After implementing the migration process, automated
tests verified that the generated Java files are equiva-
lent to the previous source code. The tests were im-
plemented using the Xpect framework which is dedi-
cated to testing Xtext domain-specific languages [2].
Besides support for parser, formatting and proposal
tests, Xpect also offers functions for setting up com-
plete Eclipse workspaces.

Figure 2: Testing the Migration Process.

Figure 2 shows the test process implemented using
Xpect. In the setup phase of the test, Xpect creates
an empty workspace and imports a predefined sample
Java project. The first step of the actual test routine
starts the migration process as shown by Figure 1. In
the next step, the generator turns the migrated Entity
DSL model into Java code. Finally, the test verifies
that the generated source code is equivalent to the
code used as input for the migration.

The test case described above is suitable for testing
if from a known input to the migration process the
expected output is generated. However, to test the
migration approach thoroughly source code from ex-
isting software components should be used as input to
the process. Although the migration is still expected
to create equivalent source code, the test result should
contain additional information.

4 Extending the Migration Approach
Test

The following will describe how the test approach
was extended to be executed for a variable number
of existing software components. Moreover, the re-
port provides detailed data on differences in the gen-
erated code, the total execution time, the number of
migrated elements, and errors occurred during the mi-
gration.

Figure 3 shows the extended process to run the mi-
gration test for multiple existing software components.
The elements highlighted in green were changed in
comparison to the process described in Figure 2. First,
the workspace setup imports multiple software com-
ponents. Second, an additional step in the process

creates a detailed report on the migration. Finally,
the process persists every migration report per com-
ponent as a file.

Figure 3: Testing the Migration Process.

The migration is executed on a dedicated contin-
uous integration environment, to migrate the more
that 500 software components efficiently. Depending
on the software component size each migration takes
between 20 seconds and several minutes. To efficiently
migrate all software components, they are migrated
in parallel doing 100 components per workspace. In
this setup, the overall migration takes approximately
4 hours and is executed once a day. Thereby, effects
of changes in the DSL Migrator or the software com-
ponents on the migration is reported on a daily basis.
A simple web page shows the migration result data
per software component.

5 Conclusion

The Eclipse ecosystem offers powerful tools to im-
plement a UML to DSL migration fully. However,
the UML-agnostic approach heavily depends on the
source code abiding a particular structure. The mi-
gration process mainly benefits from the JDT parser
and the DSL Serializer. While those two handle
parsing and serializing, the DSL Migrator can com-
pletely focus on the model-to-model transformation
on the meta-model level.

Additionally, it has been shown that testing the
approach with artificially created projects is an im-
portant first step of verification. However, to ensure
that the migration is working, it must also be tested
with existing software components. To summarize,
the extended testing approach offers many benefits:
first, the migration can be tested automatically for all
existing software components. Second, the generated
migration report is easily accessible and gives a quick
overview of problems during the migration.

All in all, it has been shown that the UML-agnostic
migration approach can be implemented and tested
completely within the Eclipse ecosystem.

References

[1] OMG. UML - What is UML. url: http://www.
uml.org/.

[2] Xpect. Xpect. url: http://www.xpect-tests.
org/.

[3] Xtend. Xtend. url: https://www.eclipse.org/
xtend/.

[4] Xtext. Xtext - Language Engineering for Every-
one. url: https://www.eclipse.org/Xtext/.

Softwaretechnik-Trends 37:2, Mai 2017 37




