

Trust in activity tracker measurement and its link to user acceptance

Daniel Trommler¹, Christiane Attig¹, & Thomas Franke² ¹Chemnitz University of Technology, Germany; ²University of Lübeck, Germany

Trust in Activity Tracker Measurement

- Activity trackers provide physical activity data (e.g., step count, calorie consumption) as feedback to users and facilitate the comparison of the current activity level with a specified activity goal [1, 9]
 - → Activity trackers constitute a partial automation of self-regulation [3]
 - → What happens when the underlying data is precise but inaccurate?
- Key variable: trust in automation [e.g. 6]
 - User transfers responsibility to automated system and has to rely on the assumption that the automation works correctly [6]
 - If assumption is violated: decreased trust, possibly leading to impaired user acceptance [2]

Research objective: Examination of perceived trustworthiness of activity tracker measurement in everyday usage and its relation to user acceptance

Research questions:

- (Q1) To what extent do users perceive optimal trustworthiness of activity tracker measurement?
- (Q2) To what extent is perceived trustworthiness of activity tracker measurement related to user acceptance of activity trackers?

Method

N = 79 current activity tracker users $M_{\text{age}} = 34.4 \text{ years } (SD = 10.5); 62\% \text{ female}$ Day before study participation: M = 14,440 steps, M = 2,530 kcal

Online questionnaire examining daily interaction & user experience Reliability excellent for all used scales (Cronbach's alpha >.9)

Q1 Perceived trustworthiness of activity tracker measurement

- 1. (TIAS) 12-item trust in automated systems (TIAS) scale [7, German translation by 2]
- 2. (FOST) 5-item facets of system trustworthiness (FOST) scale [5, see below]

Both scales: 6-point Likert scale (1 – *completely disagree* to 6 – *completely agree*)

Q2 User acceptance

Conference on Pervasive and Ubiquitous Computing (pp. 623–634). New York, NY: ACM.

9-item Van der Laan acceptance scale [8]

Trust Assessment – FOST Scale

- 5-item facets of system trustworthiness (FOST) scale [5]
- Specially designed to assess trust in information interfaces
- Reference system can be adapted to specific context (e.g., present study) "information/system" specified as "measurement of step count / calorie consumption")

ı	How do you evaluate the <i>[information/system]</i> (i.e., the display and the calculation algorithm behind it)?				Download German & English version of the FOST scale: https://goo.gl/WRd6t4			
		lease indicate the degree to which you gree/disagree with the following statements.	completely disagree	largely disagree	slightly disagree	slightly agree	largely agree	completely agree
	1	The [information/system] is reliable.						
	2	The [information/system] is precise.						
	3	The [information/system] is traceable.						
	4	I can trust the [information/system].						
	5	I cannot depend on the [information/system].						

[1] Attig, C., & Franke, T. (2018). I track, therefore I walk — Exploring the motivational costs of wearing activity trackers in actual users. International Journal of Human-Computer Studies. [2] Beggiato, M., & Krems, J. F. (2013). The evolution of mental model, trust and acceptance of adaptive cruise control in relation to initial information. Transportation Research Part F, 18, 47-57 [3] Carver, C. S., & Scheier, M. F. (2000). On the structure of behavioral self-regulation. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Ed.), Handbook of self-regulation (pp. 41-84). San Diego, CA: Academic Press. [4] Epstein, D. A., Caraway, M., Johnston, C., Ping, A., Fogarty, J., & Munson, S. A. (2016). Beyond abandonment to next steps: Understanding and designing for life after personal informatics tool use. In Proceedings of the 2016 CHI Conference on Human Factors in Computing System (pp. 1109-1113). New York, NY: ACM [5] Franke, T., Trantow, M., Günther, M., Krems, J. F., Zott, V., & Keinath, A. (2015). Advancing electric vehicle range displays for enhanced user experience: The relevance of trust and adaptability. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 249-256). New York, NY: ACM [6] Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human Factors, 57, 407-434. [7] Jian, J.-Y., Bisantz, A. M., & Drury, C. G. (2000). Foundations for an empirically determined scale of trust in automated systems. International Journal of Cognitive Ergonomics, 4, 53-71. [8] Van der Laan, J. D., Heino, A., & De Waard, D. (1997). A simple procedure for the assessment of acceptance of advanced transport telematics. Transportation Research Part C, 5, 1-10. [9] Yang, R., Shin, E., Newman, M. W., & Ackerman, M. S. (2015). When activity trackers don't "fit": End-user difficulties in the assessment of personal tracking device accuracy. In Proceedings of the 2015 ACM International Joint

Results

Perceived trustworthiness of activity tracker measurement

- Substantial variance in perceived trustworthiness (e.g., see 25th/75th percentile values)
- Substantial share of participants with suboptimal perceived trustworthiness ratings
- Average trustworthiness for calories significantly lower than for steps (p < .001)
- Significant differences against **test value 6** (i.e., ideal trustworthiness; all p < .001)

Q2 User acceptance

- Step count: large significant correlations between trustworthiness and acceptance (all p < .001)
- Calories: moderate to large significant correlations between trustworthiness and acceptance (all p < .001)

		TIAS	FOST			
	Steps	Calories	Steps	Calories		
M (SD)	4.65 (0.89)	4.05 (1.04)	4.58 (1.09)	3.93 (1.33)		
P25 / P75	4.08 / 5.42	3.17 / 4.83	3.80 / 5.40	2.80 / 5.00		
Ratings <6	95%	97%	86%	92%		
Ratings <5	63%	80%	48%	70%		
Ratings <4	20%	43%	27%	39%		
Diff. M _{calories} / M _{steps}	d = 0.5	58, <i>p</i> < .001	d = 0.51, p < .001			
Test against value 6	<i>d</i> = 1.52	<i>d</i> = 1.88	<i>d</i> = 1.30	<i>d</i> = 1.56		
Trust - Acceptance	$r = .64$, $\rho = .60$	$r = .52$, $\rho = .52$	$r = .59, \rho = .58$	$r = .49, \rho = .53$		

Discussion

Summary

- Results show high variance in ratings of trustworthiness of activity tracker measurement, indicating potential for optimization of perceived trustworthiness
- Perceived trustworthiness strongly connected to user acceptance
- **High convergence** between TIAS and FOST indicates that **FOST** can be used as a highly economical alternative to measure trustworthiness of information interfaces in the context of automated systems

Implications for interface designers and researchers

- . Improving trustworthiness of activity tracker measurement as key design goal
 - Design approach: deeper understanding of subjective factors influencing trustworthiness of activity trackers necessary (e.g., transparency of measurement and measurement errors)
- 2. Examining activity tracker abandonment
 - Issues in trustworthiness might be one factor contributing the high rate of abandonment of activity tracker usage [4]

Limitations

- Participants reflect certain user group of activity tracker users (users with high usage) intensity and rather high activity level)
- Further user groups (e.g., novice users, casual users, former users) should be examined to gain insight concerning generalizability of findings

Authors at the Conference

Christiane Attig

Christiane Attig is a PhD candidate in the field of Engineering Psychology. Her current project examines behavioral indicators for helplessness in HCI.

Thomas Franke

Thomas Franke is a professor of **Engineering Psychology and Cognitive** Ergonomics. He is particularly interested in user diversity and a resource perspective on user-technology interaction.

