
Mapping XML to OWL Ontologies

Hannes Bohring* and Sören Auer+

* Benedixstr. 8, 04157 Leipzig, Germany
hannesbohring@gmx.de,

+ University of Leipzig, 04109 Leipzig, Germany,
auer@informatik.uni-leipzig.de,

Abstract: By now, XML has reached a wide acceptance as data exchange format in
E-Business. An efficient collaboration between different participants in E-Business
thus, is only possible, when business partners agree on a common syntax and have a
common understanding of the basic concepts in the domain. XML covers the syntactic
level, but lacks support for efficient sharing of conceptualizations. The Web Ontology
Language (OWL [Bec04]) in turn supports the representation of domain knowledge
using classes, properties and instances for the use in a distributed environment as the
World Wide Web. We present in this paper a mapping between the data model elements
of XML and OWL. We give account about its implementation within a ready-to-use
XSLT framework, as well as its evaluation for common use cases.

1 Introduction

Today XML has reached a wide acceptance as data exchange format in E-Business. An
efficient collaboration between different participants in E-Business is only possible, when
business partners agree on a common syntax and have a common understanding of the
basic concepts in the domain. XML covers the syntactic level, but lacks support for effi-
cient sharing of conceptualizations. The Web Ontology Language (OWL [Bec04]) in turn
supports the representation of domain knowledge using classes, properties and instances
for the use in a distributed environment as the World Wide Web.

The aim of this paper is to bridge the gap between XML and OWL. In particular we
propose a strategy how OWL ontologies may be generated automatically out of existing
XML data. This has to be done by establishing suitable mappings between the different
data model elements of XML and OWL.

Several strategies for mappings have been proposed. Some targeted either more on a gen-
eral mapping between XML and RDF others aim at mapping XML Schema to OWL
without considering XML instance data. But there is no complete approach, which fo-
cuses on a transformation from ”legacy” XML instance documents to OWL ontologies. In
[DMvH+00] the authors even assume, that a suitable automatic mapping between XML
and RDF is impossible, because XML does not contain any semantic constraints. It is

147

claimed that XML represents the document structure, but does not contain any informa-
tion about the meaning of the content.

Contrary, other approaches assume that there is some semantics in the XML documents,
which can be discovered out of the document structure. Melnik [Mel99a] for instance tries
to detect semantics in XML instance documents and to map them to RDF documents, but
with a simplified syntax [Mel99b]. Melnik assumes that every XML document has an
RDF model.

In [Vie] the authors propose an automatic mapping from XML contents to RDF meta-data
(called WEESA) by using an ontology, which was created from the corresponding XML
Schema. This ontology contains the model, but has no instances. The XML data will
not be mapped to its OWL equivalents. By now, the mapping from the XML Schema to
the OWL ontology is created manually. Our aim is it to be able to create the mapping
automatically. The WEESA system can be used furthermore to generate (X)HTML web
pages with RDF annotations with regard to the constructs defined in the ontology.

Steve Battle’s [Bat04] proposal describes a direct mapping between XML and an RDF
model, without passing through a special serialization like RDF/XML. Furthermore he
assumes, that an XML Schema is available which guides the mapping process in contrast
to Melnik’s approach, trying to establish generic mappings. Complementary, we try to
find a middle course. If we have an XML Schema available, we will use it to create the
respective OWL model. But if we do not have a suitable XML Schema, we generate one
out of the XML instance document. So we are even in absence of an XML Schema able
to extract conceptual relationships.

The authors of [FZT04] describe mappings from XML to RDF as well as from XML
Schema to OWL, but these mapping are independent of each other. That means, that OWL
instances have not necessarily to suit to the OWL model, because elements in XML doc-
uments may have been mapped to different elements in OWL. Furthermore this approach
does not tackle the question how to create the OWL model, if no XML Schema is available.

Another interesting approach is the Piazza system [HSM+03]. Piazza does not transform
existing XML data into RDF data respectively OWL ontologies, but mediates between
pairs of XML sources through a mediating schema. Piazza can help to create a huge
semantically interlinked database, but does not build an integrated ontology. A further
relevant difference between our approach and the Piazza system is, that the source and the
target must be known to produce a mapping. In our work only the source document have
to be known, a target ontology is proposed and an appropriate mapping generated.

In this paper we present a framework, which does the whole translation process com-
pletely: from a single XML instance document, over a (possibly) generated XML Schema,
finally to an OWL model with OWL instances. We also try to detect relational structures
in the XML documents, since we assume XML data to contain relational data, as stored in
databases. Our approach thus primarily focuses on data oriented XML. The ready-to-use
framework implements the mapping in the standard XML technology XSLT.

148

2 The Mapping

In this section, we present a proposal for a mapping from XML/XML Schema to OWL
which raises the XML source documents to the level of an OWL ontology. We assume the
XML documents to contain relational structures (see also Figure 1), try to detect them as
good as possible and represent them using OWL classes, properties and instances.

Figure 1: Dataflow diagram

The data model of XML [Bos97] describes a node labeled tree, while OWL’s data model
is based upon the subject-predicate-object triples from RDF [KCM02]. RDF-Schema
[BG02] defines a vocabulary for creating class hierarchies, attaching properties to classes
and adding instance data. Hence, we try to exploit the tree structure of XML to create a
corresponding class hierarchy. With OWL on the top of RDF and RDFS, restrictions, such
as cardinality constraints on properties, can be expressed. This enables the straightforward
representation of relational data in OWL: relations/tables correspond to classes, columns
to properties and rows to instances. But the detection of relational structures within XML
is difficult.

For instance, there is the general question, how to handle nested tags. On the the one hand
they can be considered representing a ”part-of” relationship or they express a ”subtype-of”
relationship. Due to focusing on data oriented XML, we can assume a relational structure
and use this implicit knowledge about the design of the source documents to improve the
transformation process.

For nested elements, we have chosen a middle course: For the case, when one element con-
tains another element, which contains not only a literal, we assume a ”part-of” relationship,
so that we can assume a 1:N relationship. This is mapped to an owl:ObjectProperty,
which establishes a relationship between two classes. But we also can create ”subtype-of”
relations, i.e. we link together named xsd:complexTypes and therefrom derived ele-
ments. Here multiple inheritance is possible (more than one domain).

Classes (owl:Class) will emerge from xsd:complexTypes and xsd:elements
according to the following rules: For the case, that an element in the source XML tree is
always a leaf, containing only a literal and no attributes, this element will be mapped to
an owl:DatatypeProperty having as domain the class representing the surrounding
element. XML attributes will be handled equally, i.e. mapped to
owl:DatatypeProperties, too. Despite there is no real database counterpart for
XML attributes and attributes are mostly used in document oriented XML, it makes sense

149

to assume them representing database columns.

XML Schema also can contain arity constraints like xsd:minOccurs or
xsd:maxOccurs, which we map to the equivalent cardinality constraints in OWL,
owl:minCardinality and owl:maxCardinality. Table 1 summarizes the map-
ping.

XSD OWL

xsd:elements, containing other elements
or having at least one attribute

owl:Class, coupled with
owl:ObjectProperties

xsd:elements, with neither sub-elements
nor attributes

owl:DatatypeProperties

named xsd:complexType owl:Class
named xsd:SimpleType owl:DatatypeProperties
xsd:minOccurs, xsd:maxOccurs owl:minCardinality, owl:maxCardinality
xsd:sequence, xsd:all owl:intersectionOf
xsd:choice combination of owl:intersectionOf,

owl:unionOf and owl:complementOf

Table 1: The mapping is based on these correspondences between XML schema elements and OWL
classes and properties

3 Example

In the this section we demonstrate the mapping at example data from the Citeseer Meta-
data Archive1. XML documents similar to the following excerpt represent metadata about
scientific publications:

<!-- ... -->
<record>
<header>
<identifier>oai:CiteSeerPSU:1</identifier>

</header>
<metadata>
<oai_citeseer:oai_citeseer>
<dc:title>A title</dc:title>

</oai_citeseer:oai_citeseer>
</metadata>

</record>
<!-- ... -->

1http://citeseer.ist.psu.edu/

150

Starting from an extract of a sample XML file, we generate an XML Schema. A section of
the automatically extracted XML Schema to the XML instance shown above could look
like:

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:oai="http://copper.ist.psu.edu/oai/oai_citeseer/">
<!-- ... -->
<element name="metadata">
<complexType>
<sequence>
<element ref="oai:oai_citeseer"

maxOccurs="1" minOccurs="1"/>
</sequence>

</complexType>
</element>
<element ref="oai:oai_citeseer">
<complexType>
<sequence>
<element ref="dc:title" maxOccurs="1"

minOccurs="1" type="xsd:string"/>
</xsd:sequence>

</complexType>
</element>
<!-- ... -->

</schema>

After the transformation the OWL model will contain the classes and properties shown in
Table 2. To simplify matters we do not show the OWL syntax.

Naming and namespaces: As you can see in Table 2, there are some names of properties,
which have no equivalent in the XML source document. If there are two elements with
the same name, but in different levels in the input tree, they would be mapped to a class
and property with the same name. This ambiguity is not permitted in OWL, because OWL
needs for every resource a unique identifier. Therefore we introduced two prefixes for
properties ”has” for owl:ObjectProperties and ”dtp” for
owl:DatatypeProperties. Instances of classes will get an automatically generated
value for rdf:ID.

The XML elements in the XML instance documents will be transformed to instances in
OWL according to the generated OWL model.

<Record rdf:ID="id2248394">
<hasHeader rdf:resource="#id2248377"/>

</Record>

151

Name/ID Type Constraints

Record Class hasHeader: minCard = 1
hasMetadata: minCard = 1

Header Class hasIdentifier: minCard = 1
Metadata Class hasOai citeseer: minCard = 1
Oai citeseer Class -

Name/ID Type Domain Range

hasHeader ObjectProperty Record Header
hasMetadata ObjectProperty Record Metadata
hasIdentifier ObjectProperty Header Identifier
hasOai citeseer ObjectProperty Metadata Oai citeseer
dtpIdentifier DatatypeProperty Header xsd:string
dc:title DatatypeProperty Oai citeseer xsd:string

Table 2: The generated OWL model for the example Citeseer data

The owl:DatatypeProperties are represented in two ways. The first one references
locally defined owl:DatatypeProperties.

<Header rdf:ID="id2251828">
<dtpIdentifier rdf:datatype="&xsd;string">
oai:CiteSeerPSU:1

</dtpIdentifier>
</Header>

The second way describes externally defined elements as those from the Dublin Core
Metadata Initiative2.

<oai_citeseer:oai_citeseer rdf:ID="id2243767">
<dc:title rdf:datatype="&xsd;string">A title</dc:title>

</oai_citeseer:oai_citeseer>

For a better support of document oriented XML, we also introduced a special datatype
property. This is used, if an xsd:element contains literal content as well as at least one
xsd:attribute. The xsd:element becomes an OWL class, the xsd:attribute
is mapped to a datatype property and the literal content will be stored in the additional
OWL datatype property.

Information about data types found in the XML Schema will be also integrated in the
ontology, as can be seen in the examples with owl:DatatypeProperties. For the
range value of owl:DatatypeProperties we use the built-in data types from XML
Schema [BM04].

2http://dublincore.org/

152

4 Implemented Framework

The mapping is implemented in XML stylesheet language transformations (XSLT [Cla99])
and thus interoperable with different programming languages. For XML data, to which no
XML schema is attached, a suitable intermediate XML schema is generated. The overall
architecture of the framework is shown in Figure 2.

The conversion process requires at most three steps (XML instance data only) and at least
one step (XML Schema only). When processing XML Schema only, we only create the
model of the ontology with classes and properties.

If we have XML instance data only we have to make an intermediate step. The first step
extracts an XML Schema out of the XML instance data so that we could create the model
in the second step. We decided to create the OWL model only out of an XML Schema
and not from an XML instance file directly for reasons of maintainability. Stefan Mintert
states in [Min05] that in every XML instance document an XML Schema is implicit ex-
istent, so we can try to extract it. Unfortunately, such an automatically generated XML
Schema could be incomplete, because XML instance documents do not contain as much
information about constraints as a manual created XML Schema. There are also several
XML Schema components, which cannot (yet) be discovered via stylesheet driven ex-
traction (e.g. SimpleTypes, patterns, substitionGroups, facets, the ID/IDREF mechanism,
etc.). Furthermore, XML instance documents can contain optional elements or attributes,
which were not in the sample document. Thus they are not in the generated XML Schema
and OWL ontology. For this reason we need for the XML Schema extraction a preferably
representative XML instance document, so that the XML Schema can serve as a good
basis. A further advantage of having such a basis is its reusability. This XML Schema
extraction is based upon an XSLT stylesheet from Charlie Halpern-Hamu [HH99], which
we have extended and adapted to our framework. In future versions of this stylesheet it
is planned to use multiple source documents and to add the detection of missing XML
Schema components to improve the XML Schema extraction process.

A stylesheet, which converts the XML instance data into the instances part of the ontol-
ogy, is created simultaneously. This stylesheet will be configured automatically to adjust
the transformation process of the instances to the OWL model. It determines whether el-
ements become classes or properties. That is necessary, because the XML instance data
can have optional elements or attributes and the created stylesheet will be their common
denominator.

To support the separation of model and data, the OWL model will be stored separately
from the OWL instances. The OWL instances will be connected to their model using
the owl:import property. Therefore every OWL instance, which references the OWL
model will obtain an adjustable namespace prefix.

By now our implementation consists of 4 XSLT stylesheets. A further stylesheet is gen-
erated automatically for the conversation of XML instance data to OWL instances. The
framework is designed to be easily extensible, so that the support for the missing XSD
components can be included and a better support for document oriented XML can be inte-
grated.

153

Figure 2: This chart illustrates the operating sequence of the application

5 Use Cases

As use cases for evaluating the presented approach we used publicly available biblio-
graphic data in XML from Citeseer, XML generated from Relational Database Manage-
ment Systems like MySQL or Firebird and XML data generated with Microsoft Excels
XML export. Unfortunately, none of these exported XML data is in pure data oriented
XML, so we have to deal with more or less document oriented XML.

The XML exporter from MySQL dumps a whole database and can easily mapped to an
ontology. We also want to map relational constraints like foreign keys, but MySQL does
not support them yet. So we examined the Firebird RDBMS, which makes use of such
relational constraints. Unfortunately, its XML exporter exports only a single database ta-
ble into an XML file. Because the generated XML Schema is common for all XML files
exported from a certain Firebird database, the OWL model is also suitable for the all re-
spective OWL instances. Furthermore, the generated stylesheet, which was created by
using the XML Schema, can be used for all of the XML files exported from this database.
The resulting OWL instances can now be combined through the owl:imports mecha-
nism. This has the advantage, that we obtain a modularized ontology. A problem is, that
the foreign key constraints are not easily detectable, because there is no information indi-
cating foreign keys in the XML file. Hence in many cases they might be detected out of
column names (e.g. author_id referencing the column id in the authors table). This
functionality is planned for future versions of the framework.

We have chosen Microsoft Excel as another use case, since it is widely used for working
with relational data. An Excel spreadsheet can be exported into XML and a spreadsheet
in MS Excel has much in common with a table in a relational database. Unfortunately,
the XML exported from an Excel file is document oriented XML. Excel’s XML does not
only describe the structure of the data, but it is also used to encode layout information. It
is difficult to distinguish whether an element is semantically important or responsible for
layout.

154

Databases may contain huge amounts of data and the XML files with the exported data
might be very large (e.g. the Citeseer archives contain 2 GB of metadata). Therefore it is
interesting how the transformation scales. This transformation can be compared with the
initial loading of a relational database. The results of the performance evaluation for the
Citeseer data are summarized in Table 3.

Number of records Lines File size Time for Processing

10 1122 62KB 0.110s
100 18078 952KB 4.402s
1000 180752 9746KB 4m 52.060s

Table 3: Performance evaluation for transforming Citeseer data.

6 Summary and Future Work

We presented an approach for generating ontologies automatically out of existing XML
data with relational origins. This is crucial for referencing and integrating conventional
XML and relational data sources into the Semantic Web.

OWL is semantically much more expressive than needed for the results of our mapping.
Furthermore (and especially if no XML Schema is available) the transformation is based
upon a heuristic method, so that possibly no optimal solution will be reached. For this
reason, there has to follow some subsequent manual work after the initial step of converting
the source documents, to refine and adapt the ontology until it suits the requirements.

Our subsequent work will be focused on not yet supported XML Schema components,
so that more detailed and precise ontologies can be generated. Furthermore, we want to
improve the support for document oriented XML (also with mixed content) by letting the
user control the transformation process to get more influence on the mapping. We also
want to reach an improvement of the performance when processing the OWL instances.

We presented an efficient implementation of our approach within an extensible XSLT
framework. The framework is ready-to-use with arbitrary XSLT processors and available
for download3.

References

[Bat04] Steve Battle. Round-tripping between XML and RDF. In International Semantic Web
Conference(ISWC), Hiroshima, Japan, November 2004. Springer, 2004.

[Bec04] Sean Bechhofer. Web Ontology Language (OWL) Reference version 1.0. W3C. Tech-
nical report, W3C, http://w3.org/TR/owl-ref/, 2004.

3http://semanticscripting.org/XML2OWL XSLT

155

[BG02] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. Technical report, W3C, http://www.w3.org/TR/2002/WD-rdf-schema-
20021112/, 2002.

[BM04] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes W3C Recommendation.
Technical report, W3C, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/,
2004.

[Bos97] Bert Bos. The XML data model. http://www.w3.org/XML/Datamodel.html, 1997.

[Cla99] James Clark. XSL Transformations (XSLT). Technical report, W3C,
http://www.w3.org/TR/xslt, 1999.

[DMvH+00] Stefan Decker, Sergey Melnik, Frank van Harmelen, Dieter Fensel, Michel C. A.
Klein, Jeen Broekstra, Michael Erdmann, and Ian Horrocks. The Semantic Web:
The Roles of XML and RDF. IEEE Internet Computing, 4(5):63–74, 2000.

[FZT04] Matthias Ferdinand, Christian Zirpins, and D. Trastour. Lifting XML Schema to
OWL. In Nora Koch, Piero Fraternali, and Martin Wirsing, editors, Web Engineer-
ing - 4th International Conference, ICWE 2004, Munich, Germany, July 26-30, 2004,
Proceedings, pages 354–358. Springer Heidelberg, 2004.

[HH99] Charlie Halpern-Hamu. Transform a sample instance to a schema.
http://incrementaldevelopment.com/papers/xsltrick/, 1999.

[HSM+03] Alon Halevy, Dan Suciu, Gerome Miklau, Igor Tatarinov, Jayant Madhavan, Nilesh
Dalvi, Peter Mork, Xin luna Dong, Yana Kadiyska, and Zachary Ives. The Piazza
Peer Data Management Project, May 24 2003.

[KCM02] Graham Klyne, Jeremy J. Caroll, and Brian McBride. Resource Description
Framework (RDF): Concepts and Abstract Syntax. Technical report, W3C,
http://www.w3.org/TR/2002/WD-rdf-concepts-20021108/, 2002.

[Mel99a] Sergej Melnik. Bridging the gap between XML and RDF. http://www-
db.stanford.edu/ melnik/rdf/fusion.html, 1999.

[Mel99b] Sergej Melnik. Simplified Syntax for RDF. http://www-db.stanford.edu/ mel-
nik/rdf/syntax.html, 1999.

[Min05] Stefan Mintert. Schluesselqualifikation; XML jenseits des Mainstreams. iX, 8:48–51,
2005.

[Vie] Gerald Reif Vienna. WEESA - Web Engineering for Semantic Web Applications.
http://citeseer.ist.psu.edu/725648.html.

156

