
Projectional Editing of Software Product Lines (Extended
Abstract)

Benjamin Behringer1, Jochen Palz2, Thorsten Berger3

Abstract: A software product line is a portfolio of software variants. To implement its common and
variable features, a variety of techniques emerged, representing the feature implementation either as
annotated code or as dedicated feature modules. While each technique provides distinct advantages,
developers need to choose one feature representation and then adhere to it when the product line
evolves. In this extended abstract, we describe PEoPL, an approach [BPB17] that combines the
advantages of diferent feature representations. Developers can engineer features using the most-suited
representation, switch it seamlessly, and even use diferent representations (editable views) in parallel.

Keywords: projectional editing; software product lines; variability mechanisms

A software product line (SPL) is a portfolio of system variants engineered in an application
domain. It implements common and variable features using implementation techniques
called variability mechanisms. Many such mechanisms have emerged, typically classiĄed
into annotative (e.g., preprocessors) and modular (e.g., feature modules) mechanisms.
Each represents a featureŠs artifacts diferently, with distinct advantages and disadvantages.
For instance, annotative mechanisms are easy to apply, but annotations clutter source
code, obscure control Ćows, and force developers to work on all variants in parallel.
They also lead to scattered and tangled feature implementations, challenging program
comprehension, maintenance, and evolution. In contrast, feature modules ease the latter
by realizing features modularly in cohesive units. Unfortunately, creating feature modules
imposes substantial engineering overhead, while their interaction with other features is more
diicult to comprehend, both hindering their adoption in practice.

Although these representations are complementary, existing SPL engineering approaches
typically focus on one representation. Most importantly, developers need to choose one
representation per feature and to adhere to it for maintenance and evolution. While
refactorings were proposed for migrating between annotative and modular representations,
they do not allow to quickly switch the representation during evolution and maintenance.
Ideally, developers could always select the best-suited representation.

1 htw saar, Germany, benjamin.behringer@htwsaar.de
2 htw saar, Germany, jochen.palz@htwsaar.de
3 Chalmers | University of Gothenburg, Sweden, thorsten.berger@chalmers.se

cbe

M. Tichy, E. Bodden, M. Kuhrmann, S. Wagner, J.-P. Steghöfer (Hrsg.): SE 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 155

https://creativecommons.org/licenses/by-nc/3.0/
benjamin.behringer@htwsaar.de
jochen.palz@htwsaar.de
thorsten.berger@chalmers.se
https://creativecommons.org/licenses/by-nc/3.0/

editing

Variability representation projections

Developer

rendering

 Target language
+ Core-Variability language (CoreVar)
+ Target-language-specific
 CoreVar tailorings (e.g., JavaVar)

modular annotative blended variant ext..

.

.

 Rendering rules + editing operations...

Common variational AST

Internal representation

External representation

Abb. 1: PEoPL separates internal and external variability representations

In our main publication [BPB17], we present PEoPL, an approach that combines the beneĄts
of annotative and modular variability mechanisms. PEoPL allows developers to quickly
switch representations and even use diferent representations side-by-side. The core idea of
PEoPL is to establish an internal representation of the SPL and separate it from the external
representations that developers use. Fig. 1 illustrates the approach. Internally, PEoPL persists
an abstract syntax tree (AST) adhering to a programming language composed with our
languages CoreVar (to internally represent feature artifacts) and a programming-language-
speciĄc tailoring of CoreVar (to realize well-formedness constraints). We currently provide
such tailorings for Java, C, and fault trees. Externally, the AST is rendered into editable
projections used by developers. According to the projectional-editing paradigm, the editing
gestures of developers directly change the AST, without any involvement of parsing [Be16].
The AST is rendered into concrete syntax using projections. We currently provide projections
showing artifacts as textual annotations (e.g., #ifdef), visual annotations (colored bars),
feature modules, annotations blended into modules, fade-in modules (i.e., show external
code within a module), individual variants (i.e., hide non-selected features), and reused

code snippets (e.g., to support cross-cutting aspects) [Be17]. We realize PEoPLŠs concepts
in a full-Ćedged IDE based on JetBrains Meta Programming System (MPS).

We evaluate PEoPL by adopting and implementing eight Java-based SPLs, such as the
Berkeley DB (70kLOC, 42 features, 218 classes). Our evaluation shows the feasibility of the
approach, especially that internal and external feature representations can be separated, and
that it scales. A preliminary user study conĄrms the beneĄts of our external representations
and of seamlessly switching them. Controlled experiments are subject to our future work.

Literaturverzeichnis
[Be16] Berger, Thorsten; Völter, Markus; Jensen, Hans Peter; Dangprasert, Taweesap; Siegmund,

Janet: Eiciency of Projectional Editing: A Controlled Experiment. In: 24th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE). 2016.

[Be17] Behringer, Benjamin: Projectional Editing of Software Product LinesŮThe PEoPL Ap-
proach. Dissertation, University of Luxembourg, 2017.

[BPB17] Behringer, Benjamin; Palz, Jochen; Berger, Thorsten: PEoPL: Projectional Editing of
Software Product Lines. In: 30th International Conference on Software Engineering (ICSE).
2017.

156 Benjamin Behringer, Jochen Palz, Thorsten Berger

