
Simplifying Syntactic and Semantic Parsing of NL Based
Queries in Advanced Application Domains

E. Kapetanios and D. Baer and P. Groenewoud

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH)
ETH-Zentrum, CH-8092 Zurich, Switzerland

email: kapetanios@inf.ethz.ch

Abstract: The paper aims at presenting a natural (sub)language based querying ap-
proach (MDDQL) for SQL (relational, object-relational) databases, which relies on an
ontology driven, interactive query construction mechanism. This guides the user to the
construction of queries that are semantically compliant with the application domain se-
mantics. To this extent, syntactic and semantic parsing of a query is done implicitly,
during the query construction, rather than syntactically and semantically parsing the
query after its formulation. Given also that the vocabulary terms are represented as ob-
jects having properties and not as simple natural language words, it is possible to cope
with the intentional meaning of terms as well as with homonyms, i.e., the same word
meaning different things, during the query construction. In addition, it is possible to
express the query terms in a different natural language without changing or providing
another syntactic and semantic parsing mechanism. Therefore, the generated SQL-
statement reflects not only the application domain semantics but is also identically
inferred from multi-lingual queries. This querying approach is currently applied to a
Swiss national registry, which consists of, at the moment, twelve data repositories of
patients’ records, but it can also be applied to any scientific or technical domain with
an advanced and hardly understood terminology.

Keywords: Natural Languages, Query Languages, Ontologies, Semantic parsing,
SQL, Information Retrieval, Automata.

1 Introduction

Querying databases through Natural Language (NL) based query languages - we exclude
keywords based querying - has always attracted research and development efforts in or-
der to ease access to and increase understandability of data repositories [DL96, BBFU96,
BM99, CCS00]. Syntactic and semantic parsing of NL based queries, however, turns out to
be tedious [AG99, MW01], especially when complex or advanced terminologies are used
like those found in scientific and technical application domains. Mostly, they rely on pars-
ing a query in terms of constructing a query tree which is compliant with the underlying
NL syntactic and semantic rules.

127



In addition, constructing a query presupposes that the user is familiar with the terminology
of the application domain. In other words, the user needs to know not only the typography
of words but also their meaning. It would be impossible or, at least, overoptimistic to
assume that one makes him/herself familiar with the full range of the scientific or technical
domain vocabulary. Therefore, the more advanced or complex terminologies become, the
more prone to syntactic and semantic mistakes becomes the process of NL based query
construction. Furthermore, the lack of awareness of the full range of the scientific or
technical terminology might also leave large parts of a database schema unexploited.

On the other side, since semantic parsing mostly refers to the NL based semantic proper-
ties of words within the query [Kle56, Knu68] and not to the application domain semantics
itself [UG96], it is possible to construct a syntactically and semantically correct query, in
terms of the NL related semantics, which is still meaningless [Ull62]. Moreover, enabling
querying of databases through multi-lingual vocabularies increases the complexity of syn-
tactic and semantic parsing of queries [Zhd02], since identical data should be accessed
from queries which have been parsed according to the underlying NL syntactic/semantic
rules. This turns out to be tedious, since either a single parser needs to be aware of various
NL related syntactic/semantic rules or different parsers need to be implemented.

Finally, as far as the semantic parsing process itself is concerned, it is tedious to take into
consideration the intentional meaning of words [MSPK96], regardless the underlying NL,
in order to resolve ambiguities such as those characterising homonyms, even if only a
sublanguage is concerned.

In our approach, we rely on a natural (sub)language based querying approach (MDDQL)
for querying SQL (relational, object-relational) databases, which is an ontology driven,
interactive query construction mechanism. This guides the user through an incremental
construction of queries, which is accomplished by suggesting terms being semantically
compliant with the application domain semantics. To this extent, syntactic and semantic
parsing of a query is done implicitly, during the query construction, rather than syntacti-
cally and semantically parsing the query after its formulation. Therefore, a query is not
prone to syntactic or typographic mistakes, where still the application domain semantics
are respected. Additionally, all available data might be exploited, since the whole database
schema as reflected by the vocabulary can be explored.

Given also that the vocabulary terms are represented as objects [Nor00] having properties
and not as simple words, it is possible to cope with the intentional meaning of terms as well
as with ambiguities as stated by homonyms, i.e., the same word meaning different things,
during the query construction. In addition, it is possible to express the query terms in a
different natural language without increasing the complexity of the syntactic and semantic
parsing mechanism. Furthermore, the generated SQL-statement is not only compliant
with the application domain semantics, but is also identically inferred from multi-lingual
queries.

This querying approach is currently applied to a Swiss national registry, which consists of,
at the moment, twelve data repositories of patients’ records, but it can also be applied to
any scientific or technical domain with an advanced and hardly understood terminology.

128



Organisation of the paper: Section 2 gives an insight into the organisational, ontolog-
ical structure of the query language vocabulary. Section 3 refers to the terms suggestion
mechanism as a kind of inference mechanism operating upon the ontological structure of
the vocabulary. Section 4 gives an overview of the MDDQL transformation and SQL-
statement generation logic. A conclusion summarizes what has been presented in the
paper. An example of a query construction and SQL-statement generation is presented
throughout all sections of the paper in order to illustrate the approach.

2 The query language vocabulary

The vocabulary of MDDQL is a set of terms which are conceived as objects. The vocab-
ulary terms refer to database elements such as attributes, values, etc. This frames-based
representation enables the representation of terms by taking into consideration properties
of terms rather than simply its name. Therefore, the name of the term as represented by
a natural language word becomes a property (slot) of the term. Further slots enable the
capture of the intentional meaning of the term as expressed by a given annotation, the
assignment of term unique or object identifiers, images illustrating a term, etc.

All vocabulary terms are connected to each other in a cyclic graph by using the term unique
identifiers and not the names of the terms. This provides a terminological space where all
application domain terms with their constraints on use are expressed. The links used for
the interconnection of terms either lead to hierarchical structures within the same class
of terms or to attributive structures, i.e., among different classes of terms. We mainly
distinguish among five classes of terms: concepts, relationships, properties, values and
operations.

Links which constitute hierarchical structures of terms are classified according to the se-
mantics of the linkage such as is-a, part-of, constitutes-of, etc. Attributive links connect,
for example, terms which belong to concepts with terms which belong to properties or
those which belong to relationships. These kind of links might specify the potential prop-
erties and relationships which circumscribe a particular concept.

Accordingly, there are, for example, terms which have been assigned the words Immedi-
ate therapy, Thrombolysis, Medication and are classified as concepts. Medication as an
instance of the class concepts, however, is defined more than once in the same vocabu-
lary. Therefore, consideration of terms is bound to the underlying context as given by the
intentional meaning of terms. This is defined in terms of slots such as annotation,
condition of measurements, measurement unit, etc., as well as in terms of
the hierarchical and attributive links connecting that particular term to other terms in the
neighborhood. The links, in our example, make clear the distinction between Medication
as kind of Immediate Therapy and Medication prescribed to Discharged Patients.

On the other hand, terms having assigned the names Date of thrombolysis, Reasoning
for denial of thrombolysis and classified as properties are connected with the term named
Thrombolysis, which is classified as concept, through attributive links. Similarly, the term
named given to, which is a member to the class of terms relationships, is further connected

129



with the term named patients with an attributive link too. Attributive links also connect
the terms named Thrombolysis and Medication with the terms named PCI preferred and
Aspirin, respectively, which, in turn, are members of the class of terms values.

Given this vocabulary organisational structure, it is possible to express homonyms, i.e., two
terms having assigned the same name, or even replace the assigned words as expressed in a
particular natural language such as English with the words as expressed in another natural
language such as German, without changing the organisational or ontological structure of
the vocabulary (ease of maintenance).

Despite the fact that Ontological Engineering is still a relatively immature discipline, some
methodologies and criteria of analyzing them can be found in [Lop99]. To this extent, the
ontological engineering approach taken so far is closer to the SENSUS-based methodol-
ogy, which aims at structuring and representing of conceptual structures to be used as a
dictionary for natural language processing [KL94, KCH+95, SS01, SS02]. However, one
of the major differences is that conceptual structures are organized around names of terms
and not around objects as it is the case for the MDDQL vocabulary.

Moreover, hierarchical and attributive links as well as slots can be assigned constraints
which make their validity relative to particular conditions. Therefore, query terms become
relative to a context as defined by the terms already included in the intented query and the
neighboured terms in the vocabulary. For example, constraints might have an impact on
the relativity of attributes and value domains according to the nature of the target database.
The term named Troponin I, classified as properties, is not valid, if the target database for
the intended query is the Triemli hospital, since there is no such measurement taking place
at this hospital.

The vocabulary is completed by terms which belong to the class of terms operations. This
class includes all terms standing for comparison, logical, or statistical operators. Con-
straints also hold on the validity of these terms, since not all sets of operations make sense,
when a particular context of terms is given, which are already included in the query. This is
mainly defined by their role as arguments for statistical or comparison/logical operations,
respectively, operators.

A detailed description of the inference of the validity of terms relying upon the assigned
constraints outlies the scope of this paper. In the following, we give an overall description
of the query construction mechanism, which is based upon the suggestion of meaningful
terms. It relies upon the organisation or ontological structure of the MDDQL vocabulary
and the terms already taken into consideration for the intended query.

3 The query construction paradigm

The major idea behind the MDDQL query construction mechanism has been the avoidance
of an a-posteriori syntactic and semantic parsing of a query. Following the conventional
approach of having, at first, the query typed by the user and, subsequently, parsed syntac-
tically and semantically by the system has the following drawbacks: a) the increased com-
plexity of the syntactic and semantic parsing of a query in a multi-lingual user community,

130



b) unexploitation of the intentional meaning of both application domain and operational
terms, c) no exploitation of the full range of scientific or technical vocabularies, given that
end-users are not fully familiar with the domain, and, therefore, query formulation is prone
to syntactic and semantic mistakes.

In order to alleviate query construction in complex domains and still having, as far as
possible, a meaningful query, i.e., a query which reflects the application domain seman-
tics, the MDDQL query construction mechanism relies upon suggestion of terms through
a human-computer interaction mechanism rather than the conventional approach of first
typing and then parsing. Three sub-goals, however, had to be considered.

• The constructed query should be reflected by a high-level query tree including all
terms of the intended query.

• Only those terms should be considered which are compliant with the application
domain semantics. Therefore, the suggestion of terms is performed on the basis of
semantic inferences which rely on the organisational or ontological structure of the
vocabulary.

• Generation of the corresponding SQL statement by traversing the high-level query
tree.

Figure 1: A snapshot of the MDDQL query construction blackboard

The query construction takes place on a blackboard as depicted in figure 1. All terms
appear on the blackboard by using the values (words) as assigned to the slot name of the

131



vocabulary terms. The user has the possibility of starting the query construction process
with a term as selected from a list of initial terms which appears on the left panel. The
list includes those terms which correspond to major concepts characterizing the applica-
tion domain. Alternatively, a searching mechanism is also available in order to locate the
requested term within the given vocabulary, in order to begin the query construction.

Since searching is done on the basis of a non-unique name assumption, i.e., on the words
assigned as values to the slot of terms name, all relevant terms are included in the answer
together with their context as defined by the linkages and the frame structure of terms.
Note that in order to define the neighbored terms, the ontological structure of the vocab-
ulary is being navigated in terms of the term unique identifiers (TUI’s) and not the words
themselves.

The three panels on the right is a means of expressing the intended query. The panel at the
top includes only terms which belong to the classes of terms concepts and relationships.
Therein, it is only possible to express queries in terms of subject-predication associations
in a sub-language. For example, patients having received immediate therapy is a query
expression with the term named patients in the role of the subject and the terms named
{having received, immediate therapy} in the role of the predication. The terms appearing
on the two panels at the bottom express the values based restrictions and what has to be
included in the query result (projection), respectively.

Since construction of the query takes place in terms of suggestion of terms, we distin-
guished between two basic categories of suggestions: a) those which refine the intended
query and, consequently, the query result, b) those which decide upon inclusion of prop-
erties or attributes within the query results, i.e., a metaphor for the projection operation.
All kinds of suggestions can be requested by drop-down menus activated on each particu-
lar application domain term of the intended query. For instance, having selected the term
named Patients, which is classified as concepts term and placed on the top panel, there
are following possible kinds of restrictions to be suggested in order to further refine the
intended query:

• Set of predications such as faced with hospitalization, having risk factors, having
received immediate therapy, which are constructed by following all ougoing edges
(pair of terms) in the ontological structure of the vocabulary, as connected to that
particular term by attributive links with the first term classified as relationships.

• Specializations of generic terms such as the terms named discharged or passed away
which are constructed from outgoing hierarchical links.

• Value based restrictions as posed on characteristic properties of the affected term
classified either as concepts or relationships, such as height, weight or gender, which
are constructed from outgoing attributive links providing connections to terms clas-
sified as properties within the ontological structure of the vocabulary.

The projection operation, i.e., attributes to be included in the query result, is simulated by
selecting one or more attributes from the suggested set of terms, which are classified as
instances of the class properties and are compliant with the ontological structure of the

132



vocabulary. Outgoing attributive links are allowed for terms being members of either the
class concepts or the class relationships.

3.1 Reflecting the query on a high-level MDDQL query tree

The construction of the query, however, is reflected by the synchronous construction or
manipulation of a high-level MDDQL query tree construct, which resides in the working
memory of the query construction blackboard. The query tree is defined in terms of query
term nodes. A node is conceived as a thin version of the frame based definition of the
corresponding term from the ontological structure of the vocabulary. This means that
they carry on only the values which are necessary for the MDDQL to SQL transformation
(figure 2).

For example, the values of the slot annotation are not included in the query tree, since
they are only useful for the selection of query terms. To the contrary, the values of the
slot symbol - represented in angle brackets - are always included, since they refer to the
corresponding texture of word as used by the storage (database) model, e.g., names of
tables, attributes, codes for values, etc. (more details in 4.1.1).

Assuming that the intended query would be the dates of thrombolysis for
discharged patients, where reasoning for denial of thrombol-
ysis is that PCI has been preferred, as given by free text, the incremen-
tal query construction is reflected by the four query tree manipulation stages as depicted
in figure 2. At stage (A), the query tree reflects the refinement of patients by the selected
predication having received immediate therapy. At stage (B), the query tree reflects the
further refinement of the intended query through the selected specialisation term of dis-
charged, i.e., restriction of the query result to those patients who have been discharged.

At stage (C), the query tree reflects a further refinement by focussing on thrombolysis as a
kind-of immediate therapy, which has been selected from suggested specialization terms.
Finally, stage (D) reflects the query tree having taken the final form before submission,
where the terms named date, reasoning for denial, PCI preferred will be interpreted by
the MDDQL to SQL transformation algorithm: the first as a projection, the two others as
value based restriction.

Since it is semantically meaningless to ask for the date of thrombolysis in conjunction
with the restriction that there must be a reason for denial of thrombolysis, it is known to
the ontological structure of the vocabulary that this pair of terms is mutually exclusive.
Therefore, the intended query, respectively, the query tree will be rejected as meaningless
prior to its submission for transformation and execution.

To this extent, a meaningful assignment of operators or operations is also taken into ac-
count in the intended query. Therefore, only semantically consistent, for example, op-
erators are suggested according to the nature of attributes. This also applies to the class
of unary operations such as average, maximum, minimum, etc., which can be suggested
as applicable functions for properties such as Height but not to Gender, since the latter
has been classified as a Categorical Variable in the ontological structure of the

133



TUI Name

Symbol

Patients

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI: Term Unique Identifier

(A)
(B)

(C) (D)

Patients

having received

immediate therapy

having received

immediate therapy

discharged

having received discharged

patients

immediate therapy

thrombolysis

TUI Name

Symbol

patients

having received discharged

immediate therapy

thrombolysis

Date
Reasoning of denial

PCI preferred

<:PATIENTADMIT> <:PATIENTADMIT>

<:PATIENTADMIT>
<:PATIENTADMIT>

<:PATIENTTHER>

<:PATIENTTHER>
<:PATIENTTHER>

<:PATIENTTHER>

<:PATIENTTHER>

<:PATIENTTHER>
<:PATIENTTHER>

<:PATIENTDIS>

<:PATIENTDIS>

<:PATIENTDIS> <:PATIENTTHER>

TUI Name

Symbol
TUI Name

Symbol
TUI Name

Symbol

TUI Name

Symbol

TUI Name
TUI Name

Symbol

<:PATIENTTHER:THRMBLYS:1>

Symbol

<:PATIENTTHER:THRMBLYS:1>

<:PATIENTTHER:THRMBDAT>
<:PATIENTTHER:WHYNOTHR>

<3>

CTN

CTN

CTN

CTN

PTN PTN

RTN

VTN

Figure 2: Incremental MDDQL query tree construction and manipulation

vocabulary.

The default logical and comparison operators holding for the constructed query tree, if no
other semantically compliant operator has been selected, are the AND and the equals
operators, respectively. For the sake of simplicity, we do not cover all aspects of opera-
tor/operation assignment to the query tree nodes.

In the following, only the major aspects of the MDDQL query transformation logic is
presented. We intend to give an insight into the transformation logic rather than presenting
all algorithmic details and, therefore, outrange the scope of the paper.

134



4 MDDQL query interpretation and transformation

The transformation logic of an MDDQL query tree towards an SQL-statement is based on
filling an SELECT FROM WHERE pattern conceived as an assembly of the SELECT,
FROM and WHERE clauses, while traversing the submitted MDDQL query tree in a
depth-first strategy. The tokens to be written as well as their destination, i.e., SELECT,
FROM or WHERE clause, to which they belong, are determined by

• the notation of the corresponding storage model symbols (see also values of the
slot symbol as depicted in figure 2), which are elements of the description of the
storage or database model and values,

• the nature of the submitted MDDQL query tree,

• the meta-data which refers to the description of the logical database schema.

In the following subsection 4.1, we briefly refer to each of these SQL-statement generation
ingredients, before embarking into the overview of the transformation logic (subsection
4.2).

4.1 The ingredients

4.1.1 The storage model symbols (SMS)

All database model and value elements, which constitute an implemented database, are
conceived as storage model symbols. They are referred as assemblies of one or more
names of relations (tables), attributes, values, as well as the database itself, however, in the
following interpretation order as defined by the notation

< [database] : relation : attribute : value >

This notation indicates, implicitly, the assignment and role of an element within the stor-
age model with database being optional. For example, the term named thrombolysis, in
the ontological structure of the vocabulary, is realized by the SMS <: PATIENTTHER :

THRMBLY S : 1 >. This indicates the fact that thrombolysis has been realized as the
value 1 of the attribute THRMBLYS that is part of the definition of the table PATIENT-
THER.

Given that abstract data types can also be referred by SMSs too, an attribute in the SMS
notation can be described as dot separated list of attributes, whereas a value can be de-
scribed by a list of values. For example, the term named instances of regular medication
is represented by the SMS <: HISTPATIENT : HISTMED.ITEM NAME >, where
ITEM NAME is an attribute of the nested table HISTRMED. Accordingly, the term named
smoker is not directly represented by one single value and, therefore, the corresponding

135



SMS takes the form <: HISTRF : SMOKE : [1, 2] >, where [1, 2] stands for various
categories of smoker such as ex-smoker, and current smoker.

The SMS contents not only become parts of the contents of the SELECT, FROM and
WHERE clauses, since they provide the tokens for the generated SQL-query, but they also
partly determine additional sequences of characters or restrictions to be considered by one
or more clauses. For example, since we are interested in only those patients having
received thrombolysis as a kind of immediate therapy, as reflected
by the query tree (D), figure 2, the query result will be restricted not only by the in-
ferred equijoin between the relations PATIENTADMIT and PATIENTTHER (see below
for more details), but also by a value based restriction in the WHERE clause, such as
THRMBLY S = 1. Instead, if the SMS <: PATIENTTHRMBLY S > would hold in-
dicating that a separate relation would have been used in order to realize the concept throm-
bolysis, then an equijoin between the relations PATIENTTHER and PATIENTTHRMBLYS
is inferred.

4.1.2 The nature of the submitted query tree

The major contribution to the form of the generated SQL query statement, however, comes
from the nature of the submitted MDDQL query tree, in terms of a) the semantic classifi-
cation of the query tree nodes, b) their arrangement within the query tree.

Given that each term fro which a query tree node has been derived is mainly classified as
concepts, relationships, properties, values, operators - just to name a few - in the ontolog-
ical structure of the vocabulary, the potential structure of a submitted MDDQL query tree
is specified in the following in terms of constraints that the arrangement of nodes in the
MDDQL query tree should satisfy. The query tree nodes will be referred in terms of their
ontological classification as abbreviated in the following: a) Concept Term Node CTN,
from terms which are instances of the class concepts, b) Relationship Term Node RTN,
from terms which are instances of the class relationships, c) Property Term Node PTN,
from terms which are instances of the class properties, d) Value Term Node VTN, from
terms which are instances of the class values.

The MDDQL query tree specification constraints holding are: a) the root is always a CTN,
b) a VTN has an incoming edge from a node which is either a VTN or a PTN, c) a PTN
has an incoming edge from a node which is either a PTN or CTN or RTN, d) if CTN is not
root, then a CTN has an incoming edge from a node which is either a CTN or RTN.

An example of ontological classification of the query term nodes is given by the query
tree (D) as depicted in figure 2. The classification acronyms are given as values of the
corresponding slot of a query term node.

4.1.3 The meta-data for the logical database schema

The description of the logical database schema is given by an XML based notation. This
aims at describing the definition of tables in terms of assigned attributes, primary and for-
eign keys, data types, etc. A subset of such a description is given in the following:

136



< Relationname = ”P AT IENTADMIT” >
< Attributename = ”P AT IENTID” dt : type = ”NUMBER” primary = ”primary”

< RefT able relation = ”P AT IENTT HER” attribute = ”P AT IENT ID”/ >
< /Attribute
< Attributename = ”HOSP REC ID” dt : type = ”V ARCHAR2” primary = ”primary” >

< RefT able relation = ”CONDIT ION” attribute = ”HOSP REC ID”/ >
< RefT able relation = ”V IT ALSIGNS” attribute = ”HOSP REC ID”/ >

< /Attribute >
< Attributename = ”SUBMISSION DAT E” dt : type = ”DAT E”/ >
< Attributename = ”BIRT HDAT” dt : type = ”DAT E”/ >
< Attributename = ”SEX” dt : type = ”V ARCHAR2”/ >
< Attributename = ”ADMISDAT” dt : type = ”DAT E”/ >
< Attributename = ”HEIGHT” dt : type = ”NUMBER”/ >
< Attributename = ”W EIGHT” dt : type = ”NUMBER”/ >
< Attributename = ”P AT INSURANCE”dt : type = ”V ARCHAR2”/ >
< Attributename = ”P AT T RANSFER” dt : type = ”V ARCHAR2”/ >

< /Relation >

This kind of meta-data is required in order to infer the names of the attributes over which
two tables should be joined as well as the types of the attributes involved in the WHERE
clause (value based restrictions) and the SELECT clause (presentation of the query result).
For instance, if the given type of an attribute in the WHERE clause is VARCHAR2, then
the corresponding value will be enclosed in single quotes.

4.2 The cooking

It is not our intention to present the specification of the automaton underlying the imple-
mentation of the transformation logic. We would like, however, to give a short description
of the transformation logic.

Since the MDDQL query tree is traversed in a depth-first strategy, the SQL-statement
generation is conceived as an automaton having as an initial state q 0 = {S0, F0, W0},
where S0 ≡ F0 ≡ W0 ≡ {}, with S, F , W representing the SELECT, FROM, WHERE
parts of the SQL-statement.

The combination of classifications of the MDDQL query term nodes, which constitute a
visited edge, determine what to write and in which part of the SQL-statement. In other
words, each visited edge might cause a move from one state to another such that q i =
{Si, Fi, Wi}, with, for example, Fi �= {}.

For example, if a < PTN, V TN > edge is being visited, this causes the generation of a
value based restriction for the WHERE clause such as WHYNOTHR = ’1’ (query tree (D) in
figure 2). If an edge is being visited having a PTN as a leaf node, then the corresponding
symbol is written into the SELECT clause such as THRMBDAT (query tree (D), figure 2).

Accordingly, inference of equijoin operations becomes a matter of detecting such opera-
tions during the traversal of the submitted MDDQL query tree by the query transforma-
tion algorithm. This, mainly, depends (a) on the combination of ETN and RTN query
term nodes which belong to the visited query tree (sub)path as well as (b) the contents of
the corresponding SMSs. Thus inferred equijoin operations take also into account how a
relationship has been implemented. An equijoin operation is enabled for both:

• additional relation (table) such as those realizing N:M relationships between entity
sets,

137



• no additional relation (table) such as those realizing 1:1 or 1:N relationhips be-
tween entity sets.

In both cases, additional equijoin based restrictions need to be considered for the WHERE
clause. The conditional restriction is built upon the input provided by the XML meta-
data specification of the logical database schema, as briefly presented above. For instance,
given a visited edge < CTN, CTN > having two different names of relations in their
SMSs, such as PATIENTADMIT and PATIENTDIS (query tree (D), figure 2), an equijoin
operation is inferred in terms of their primary/foreign keys. In other words, the SQL-
statement under generation has been moved into a state where PATIENTADMIT PATIEN-
TADMIT and PATIENTDIS PATIENTDIS are written into the FROM clause (the second
token stands for the variable), with the restriction PATIENTADMIT.PATIENT ID = PA-
TIENTDIS.PATIENT ID added to the WHERE clause.

Similarly, given the combination < CTN, RTN,CTN > in a visited path having PA-
TIENTADMIT, PATIENTTHER and PATIENTTHER as corresponding SMSs, only the PA-
TIENTADMIT PATIENTADMIT, PATIENTTHER PATIENTTHER are considered for the
FROM clause, respectively, only the equijoin restriction PATIENTADMIT.PATIENT ID =
PATIENTTHER.PATIENT ID is considered for the WHERE clause, since the relationship
has been implemented by using only two tables. This is inferred from the identical SMS
<: PATIENTTHER > as assigned to both the RTN and one of the connected ETNs).

It is also possible to consider nested tables as well as operators, which are assigned to
particular query tree nodes. A thorough description of the automaton outlies the scope
of this paper. The final state Sqf

, Fqf
, Wqf

of the automaton reflects the generated SQL-
statement and is reached when the MDDQL query tree has been fully traversed. Following
our example (query tree (D) from figure 2), the constructed query will take the form:

SELECT PATIENTTHER.THRMBDAT
FROM PATIENTADMIT PATIENTADMIT, PATIENTTHER PATIENTTHER,

PATIENTDIS PATIENTDIS
WHERE PATIENTADMIT.PATIENT ID = PATIENTDIS.PATIENT ID AND

PATIENTADMIT.PATIENT ID = PATIENTTHER.PATIENT ID AND
PATIENTTHER.THRMBLYS = ’1’ AND
PATIENTTHER.WHYNOTHR = ’3’

The same SQL-statement would have been generated, if words from a different natural
language were assigned as values for naming terms in the ontological structure of the vo-
cabulary and, consequently, in the submitted query tree nodes. To this extent, the MDDQL
transformation / SQL-statement generation logic remains unchanged. Finally, the elements
(attributes and values) of the query result are presented to the user in such a way that they
are interpretable in the natural language in which the query has been posed.

138



5 Conclusion

We presented a querying approach which simplifies syntactic and semantic parsing of
queries, especially in multi-lingual, advanced application domains such as scientific or
technical ones. The approach relies on an ontology driven, interactive query construction
mechanism, which leads to the interactive construction and manipulation of a high-level
query tree rather than constructing a syntactic and semantic query tree while parsing a
completely constructed query. This turns out to be cumbersome, since the complexity of
syntactic and semantic parsing increases considerably or ineffective, since constructing a
query with natural language terms presupposes a considerable knowledge of the scientific
or technical domain terminology. This is also strengthened by the fact that semantic pars-
ing by also taking into consideration the intentional meaning of terms is tedious or even
impossible. The high-level query tree gets transformed into SQL-statements with respect
to the underlying application domain semantics. This querying approach, however, can
similarly be applied for the generation of any database specific query statements, which
are not bound to the SQL syntax.

References

[AG99] Vincenzo Ambriola and Vincenzo Gervasi. Experiences with Domain-Based Parsing of
Natural Language Requirements. In 4th International Conference on Applications of
Natural Language to Information Systems, Klagenfurt, Austria, 1999. IOS Press.

[BBFU96] J. Bernauer, A. Benneke, A. Fuesechi, and M. Urban. Structured Data Entry for Medical
Records and Reports. In Second International Workshop on Applications of Natural
Language to Information Systems, Amsterdam, The Netherlands, 1996. IOS Press.

[BM99] Batrice Bouchou and Denis Maurel. Natural Language Database Query System. In 4th
International Conference on Applications of Natural Language to Information Systems,
Klagenfurt, Austria, 1999. IOS Press.

[CCS00] Roger H.L. Chiang, Chua Eng Huang Cecil, and Veda C. Storey. A Smart Web Query
Engine for Semantic Retrieval of Web Data and its Application to E-trading. In 5th
International Conference on Applications of Natural Language to Information Systems,
pages 215–226, Versailles, France, 2000. IOS Press.

[DL96] F. Dinenberg and D. Levin. Natural Language Interfaces for Environmental Data Bases.
In Second International Workshop on Applications of Natural Language to Information
Systems, Amsterdam, The Netherlands, 1996. IOS Press.

[KCH+95] K. Knight, I. Chancer, M. Haines, V. Hatzivassiloglou, E.-H. Hovy, Masayo Iida,
Steve K. Luk, Richard Whitney, and Kenji Yamada. Filling Knowledge Gaps in a
Broad-Coverage Machine Translation System. In Proc. of IJCAI95, pages 1390–1397,
Montreal, Canada, 1995.

[KL94] K. Knight and S. Luck. Building a Large Knowledge Base for Machine Translation. In
Proc. of the AAAI-94, pages 779–784, Seattle, USA, 1994.

[Kle56] S. C Kleene. Automata studies, chapter Representation of events in nerve nets and finite
automata, pages 3–42. Princeton Univ. Press, Princeton, N.J., 1956.

139



[Knu68] Donald E. Knuth. Semantics of Context-Free Languages. In Mathematical Systems
Theory, volume 2, pages 127–145. 1968.

[Lop99] Mario Fernadez Lopez. Overview of Methodologies for Building Ontologies. In Proc.
of the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods (KRR5), Stock-
holm, Sweden, August 1999.

[MSPK96] M.-S.Jeon, S.-Y. Park, and M.-S. Kim. Extraction of Exact Meaning Using a Keyfact
Concept System. In Second International Workshop on Applications of Natural Lan-
guage to Information Systems, Amsterdam, The Netherlands, 1996. IOS Press.

[MW01] Markus Mittendorfer and Werner Winiwarter. Experiments with the Use of Syntactic
Analysis in Information Retrieval. In 6th International Conference on Applications
of Natural Language to Information Systems, pages 37–44, Madrid, Spain, 2001. IOS
Press.

[Nor00] M. C. Norrie. Advances in Object-Oriented Data Modelling. In M. Papazoglou, S. Spac-
capietra, and Z. Tari, editors, Object-Oriented Data Modelling Themes, pages 1–18.
MIT Press, 2000.

[SS01] Vijayan Sugumaran and Veda C. Storey. Creating and Managing Domain Ontologies for
Database Design. In 6th International Conference on Applications of Natural Language
to Information Systems, Madrid, Spain, 2001. IOS Press.

[SS02] Vijayan Sugumaran and Veda C. Storey. An Ontology Based Framework for Generating
and Improving DB Design. In 7th International Workshop on Applications of Natural
Language to Information Systems, pages 1–12, Stockholm, Sweden, 2002. Springer
Verlag.

[UG96] M Uschold and M. Grueninger. Ontologies: Principles, Methods and Applications.
Knowledge Engineering Review, 2, 1996.

[Ull62] S. Ullman. Semantics - An Introduction to the Science of Meaning. Blackwell, Oxford,
1962.

[Zhd02] Anna V. Zhdanova. Automatic Identification of European Languages. In 7th Interna-
tional Conference on Applications of Natural Language to Information Systems, pages
76–84, Stockholm, Sweden, 2002. IOS Press.

140


	page1261: 125
	page1271: 126
	page1281: 127
	page1291: 128
	page1301: 129
	page1311: 130
	page1321: 131
	page1331: 132
	page1341: 133
	page1351: 134
	page1361: 135
	page1371: 136
	page1381: 137
	page1391: 138


