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Abstract: Metamodelling is an increasingly prevalent tool in conceptual modelling 
– in particular in the context of OMG standards such as UML, MOF and SPEM. 
However, when applying a standard metamodelling approach based solely on 
instantiation semantics, many problems arise. These are shown to be solved using a 
powertype-based approach instead. Here we summarize this approach and focus on 
the ease with which this meta-architecture can be extended to support additional 
attributes and subtypes. This extensibility is readily accommodated within the 
strictures of the new metamodel without the need to invoke extension mechanisms 
such as stereotypes and profiles (as is currently advocated in the UML and SPEM). 

1 Introduction 

Metamodelling has been an instrument used increasingly over the last decade. Following 
suggestions [He94] that it might be useful as an underpinning for creating a coalescence 
of the then disparate set of OO modelling notations, it has now become enshrined in 
many OMG standards. However, when applied to the process component in 
methodology modelling, some problems emerge [AK01b]. The most important of these 
from a practical viewpoint is the effect of the so-called strict metamodelling hierarchy 
[At97], [AK00b] on the transmission of data values across the multiple layers in the 
now-traditional four-metalevel hierarchy, as used in OMG’s UML, MOF and SPEM. 

Put simply, any attribute declared at level Mn must have a value allocated to it at level 
Mn-1 following the instantiation rules in use in strict metamodelling that dictate that only 
instance-of relationships can exist between adjacent metalevels. While this is fine for a 
modelling language, which is essentially defined at OMG level M2 and used at level M1,
for process standardization the definitions at level M2 are only realized (enacted) on real 
projects at level M0 i.e. one level lower than the M1 enactment layer for modelling e.g. 
[AK01a]. Thus, variables defined at level M2 have values at M1 and variables defined at 
M1 have values at M0. This is out of step with the notion that a standards body, like the 
OMG, wishes to standardize and “freeze” concepts at the M2 level whereas the 
development team wish to use those concepts with real values at the M0 level. 
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One way around this dilemma was proposed in [AK01a] in their attribution of a 
“potency” value to any meta-attribute that needed to have its value allocated more than 
the usual one level below its definition. This essentially allows a mixture of (implicit) 
generalization and instantiation semantics [GH05a], seemingly in defiance of the rules of 
strict metamodelling (although we note that Atkinson and Kühne [AK00a] go so far as to 
observe that the OMG’s UML, while espousing a use of strict metamodelling, seems 
rather to use it very loosely, with instances and their types mixed together in the same 
level e.g. class and object, association and link).

Rather than starting with an axiomatic assumption of strict metamodelling and then 
trying to find ways to support double layer instantiation within that strict framework, as 
exemplified by Atkinson and Kühne’s [AK01a], [AK01b] work, Gonzalez-Perez and 
Henderson-Sellers [GH05a] have proposed the use of powertypes [Od94]. 

In this paper, we summarize their proposals for using powertypes in full methodology 
(product plus process) modelling (Section 2 and 3). We then investigate, for the first 
time, the claim that such a powertype-based metamodelling framework is more flexible, 
specifically in terms of adding meta-attributes (Section 4.2) and extending the 
metamodel (Section 5). Such extensions in the UML world have been done by the 
increasingly complicated and poorly understood facility of stereotypes [AKH03]. Here 
we demonstrate how the adoption of a powertype-based metamodelling framework, 
instead of the strict metamodelling hierarchy, provides the much-needed and simple 
flexibility of extensibility sought after by OMG modellers. 

2 Powertype Patterns 

A powertype is defined as a type whose instances are subtypes of a second type called a 
partitioned type. The relationship between these two types, from an intuitive point of 
view, can be described as of a classificatory nature, although it can be argued that it 
carries instantiation semantics to a certain degree. However, it is not the aim of this 
paper to describe this relationship in depth but to use it. A powertype, together with the 
type that it partitions, plus the classificatory relationship between them, is called a 
powertype pattern (Figure 1). 

Figure 1. A powertype pattern, including a powertype (TreeSpecies) and a partitioned type (Tree). 
The powertype class is indicated by a black dot on its end of the line depicting their relationship. 

Powertype patterns are slightly more complex than this. The partitioning that the 
powertype exerts over the partitioned type is not random, but obeys a well defined 
criterion. This means that instances of the partitioned type can be organised in groups 
(partitions) according to the value of a given attribute (often called a discriminant) of the 
powertype [HE94], [KM93], [OMG99]. In our example, TreeSpecies.Name is the 
discriminant of the powertype pattern formed by Tree and TreeSpecies (Figure 1); this 
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means that each instance of TreeSpecies (which will have a particular and unique value 
for the Name attribute) represents a collection of instances of Tree, namely, those trees 
of the given species. 

The special nature of the classificatory relationship between the types involved in a 
powertype pattern raises an interesting issue: instances of the powertype and subtypes of 
the partitioned type represent the same thing. Following our example, instances of 
TreeSpecies represent specific species of tree, such as Oak or Sugar Maple. At the same 
time, subtypes of Tree (that use the powertype pattern’s discriminator) also represent 
specific species of tree. For example, the concept of Sugar Maple can be represented by 
an instance of TreeSpecies but also by a subtype of Tree (Figure 2). 

In Figure 2(b) using traditional (OMG) terminology, sm: SugarMaple would be at level 
M0; SugarMaple at M1 and TreeSpecies and Tree at M2. However, this does not agree 
with the basic rule of strict metamodelling i.e. that generalization relationships are only 
permitted within a metalevel and not across metalevels. Furthermore, in the OO 
philosophy, an instance of a class is always an object whereas a subtype of a class is 
always a class. Thus, from the right hand side of Figure 2 we would deduce that 
SugarMaple is a class because of its generalization relationship to the class Tree but, 
contrariwise, from the left hand side, that SugarMaple is an object because it is an 
instance of a class (the class TreeSpecies). So, is SugarMaple a class or an object? 
Actually it is neither; SugarMaple is a concept. Whether we choose to model it as a class 
or as an object is just a matter of convenience. Using powertype patterns it is clear how 
we can use both representations at the same time, so, for the purpose of this paper, we 
can say that SugarMaple “is” both a class and an object. Here we use the term introduced 
in [At98] of “clabject” to illustrate a conceptual entity that has both a class and an object 
facet, like SugarMaple in our example. It should furthermore be noted that this 
class/object dilemma abounds in the OO literature but is generally ignored [GH05b]. 

Since UML, while mentioning powertypes, only uses a stereotype notation for the 
powertype itself, it does not offer a notation for the classificatory relationship within the 
powertype pattern nor for an entity that is both class and object, here, for illustrative 
purposes only, we will represent clabjects as an individual object and an individual class 
inside an ellipse (Figure 3). 

It is possible to look at the same issue from a set theoretical perspective. The set of trees 
(roughly mappable to the Tree class) comprises all trees (instances of the Tree class, 
represented as dots inside the ellipse on the left in Figure 4) and can be partitioned into 
subsets (subclasses of Tree) such as SugarMaple, Oak and Elm. Now each of these is a 
tree species such that we can construct a new set, the elements of which are all 
individual tree species � the TreeSpecies set on the right hand side of Figure 4, which  

13



(a)

(b)

Figure 2. (a) A powertype pattern allows the representation of the same thing as both a class and 
an object. (b) Using more standard notation, the concept of Sugar Maple is modelled in the figure 
as an instance of TreeSpecies and also as a subtype of Tree. A specific sugar maple, sm, is also 

shown.

contains the three elements of Elm, SugarMaple and Oak. Thus, for example, Oak is an 
element in the TreeSpecies set (right hand side) and also a subset of the Tree set (left 
hand side). This duality is reflected in the different notation used in these two 
representational diagrams: Oak is represented as a “wedge” in the left hand diagram of 
Figure 4 and as a dot in the right hand diagram. A second example in a more technical 
software engineering domain, that of process modelling, is given in Figure 5. 
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Figure 3. SugarMaple is both a class and an object, so a clabject is used to represent it. An ellipse 
is used to depict the clabject since UML does not offer a notation for a model element being both a 

class and an object (after [GH05c]). 

Figure 4. Two representations of tree species: a tree species may be represented as a subset of the 
Tree set (left hand side) or as a single element in the TreeSpecies set (right hand side). 

Figure 5 shows with clarity how two different sets are possible: one in which there are a 
large number of elements (corresponding to the Tree or Task class in our examples) and 
a second which contains elements which are themselves of a classification nature 
(TreeSpecies or TaskKind). As we have seen, these latter are the powertypes. However, 
what is important in software engineering and modelling is that, while most people 
would readily discriminate between a tree and a tree species conceptually, the same 
cannot be said for software developers and modellers - with the exception of a small 
team who identified a similar notion in data modelling that they called materialization 
[DP02], [Pi94]. Our survey of the literature finds a large number of examples in which 
the two sets (Task and TaskKind in Figure 5) are convoluted. The same name (Task) is 
used for both, which means that in some arguments classes such as Task become a 
chameleon. Sometimes, Task is used to refer to the tasks that are actually performed by 
developers (with a duration and a start and end dates), and at other times the word Task 
is used incorrectly for the powertype class, which represents kinds of tasks and not the 
tasks themselves, very much like a TreeSpecies does not represent actual trees but 
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species of trees. Dissociating these two, now very obviously distinct, meanings (and 
their corresponding class notation within the OO context) opens the way for their use in 
methodology metamodelling. 

(a)

(b)

Figure 5. A second example, this time in the process modelling domain, illustrating (a) a 
powertype pattern between Task and TaskKind and (b) the set-theoretical equivalent. 

3 Applying Powertypes to the Methodology Domain 

We have noted that for constructing a methodology and using it on real projects, three 
metalevels are required and utilized. However, any individual tends to focus on only two 
of these for any specific purpose. The methodologist or method engineer is concerned 
with creating a methodology for the organization or project but is usually unconcerned 
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about the enactment of it; whereas software developers and project managers have little 
use or cognizance of the highest (metamodel definitional) layer [GH09a]. Thus, rather 
than defining a three layer hierarchy in terms only of “instance-of” relationships (as done 
in strict metamodelling and the OMG framework), the three layers are delineated in 
terms of this industry practice viz. project-level (called here endeavour), methodology 
level (called here simply method) and metamodel layer (Figure 6). The link between 
each pair of layers can be described at this stage as a representation, without further 
details of its nature [HG05b] – see also [Se03]. 

endeavour

method

metamodel
Activity

WorkUnit

Task Technique

* *

methodologies assessment quality tools

endeavourendeavour

methodmethod

metamodelmetamodel
Activity

WorkUnit

Task Technique

* *

methodologies assessment quality toolsmethodologiesmethodologies assessmentassessment qualityquality toolstools

Figure 6. The new three layer architecture to support used in conjunction with powertype patterns. 

This new layering architecture, more closely aligned with reality and practice (rather 
than with accidental, non-essential restrictions of specific modelling techniques), can 
now be shown to be consistent with the notion of a powertype pattern, as explained in 
Section 2. Concepts relating to the methodology specification are in the middle layer. 
Figure 7 shows one specific example, in which a Requirements Specification Document 
is included in the methodology as one of the possible kinds of work product. Such a 
method-level class typically has two different kinds of characteristics: (i) those relating 
to all such documents, which are a property of their class rather than the objects 
themselves and (ii) those that will always be present and therefore must be standardized 
yet not given values until the methodology is enacted on a particular project. This first 
kind of characteristic is modelled as an attribute of some class in the metamodel layer 
(here that class is called DocumentKind), which takes a value at the method level. The 
second kind of characteristic needs to be given a value at the project level yet 
standardized at the metamodel level, crossing over the method level untouched. As seen 
in Figure 7, this is accomplished by the use of a generalization relationship to a second 
metamodel class (here Document) and an instantiation relationship to the project level 
(here to the object with the title “MySystem” Requirements). It is now readily seen (by 

17



comparison with Figure 2 et seq.) that these metamodel- and method-level classes form a 
powertype pattern together with some clabjects generated from it. 

Figure 7. An example of a work product definition that uses a powertype pattern. 

Finally, we might note that, although most of the classes in a metamodel will likely be 
involved in powertype patterns (either as powertypes or partitioned types), some classes 
will stand on their own. These classes can be instantiated by a method engineer into 
objects in the method layer, but they cannot be formally transmitted down to the 
endeavour layer. These classes, which we call resources [HG05a], represent elements in 
the methodology that are used by software developers without being instantiated (Figure 
8), but only as a reference or guideline. Method-level entities that are instantiated into 
project elements (i.e. class facets of clabjects) are called templates [GH05c]. 

The use of powertypes, together with the templates/resources dichotomy, has been 
incorporated recently into the AS 4651-2004 standard [SA04] which itself became the 
base document for the ISO/IEC 24744 Project, “Software Engineering – Metamodel for 
Development Methodologies” (SEMDM in short), the core of which is depicted in 
Figure 9. The left hand side shows the top-level powertype patterns, while resource 
classes are shown on the right hand side. The scope of these standards encompasses both 
product and process as well as providing support for capability assessment. 
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Figure 8. Examples of templates and resources (after [HG05b]). 

MethodologyElement
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ModelUnitUsageKind
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+Expression
Constraint

+Description
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Outcome

ProjectElement
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Action
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+Status
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ModelUnit

ModelUnitUsage

+Description
Guideline

0..*

+DescribedElement

1..*  On

ProducerKind

+Name
ProducerStage

StageKind

Figure 9. The core of the SEMDM. 
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4 Usage of a Powertype-Based Methodology Metamodel 

The creation of a methodology from a metamodel requires the instantiation of each of 
the meta-elements into the elements that compose the methodology. With a method 
engineering approach, each metaclass can be considered independently, individual 
fragments instantiated and then the methodology constructed from these fragments by an 
appropriate configuration approach and/or tool.  

With a conventional metamodel (i.e. one not employing powertypes), this process 
utilizes regular instantiation except that, strictly, the elements of the methodology 
instantiated from the metamodel are more classlike than objectlike [GH05b]. In contrast 
powertype instantiation combines regular instantiation semantics with generalization 
semantics thus permitting the creation of clabjects – these are the methodology elements 
we require for methodology construction. 

In this paper, rather than expound upon the (powertype) instantiation of the whole 
methodology, we select, as an exemplar, a single meta-element, that of Task and its 
associated powertype class TaskKind. As noted above, the classes Task and TaskKind 
form a powertype pattern in the metamodel. TaskKind is the powertype of Task, and 
Task is called the partitioned type. TaskKind represents the kinds of tasks that can be 
defined at the methodology level, whereas Task represents the actual tasks that will 
occur at the endeavour level (i.e. when the methodology is enacted). The powertype 
pattern formed by Task and TaskKind can be denoted in shorthand as Task/*Kind 
(Figure 10). 

4.1 Simple Usage 

To use this for methodology construction, a method fragment is created by instantiating 
the powertype pattern. This is not a conventional OO instantiation but a more complex 
process. First of all, the partitioned type (Task in our case) is subtyped into a new class, 
ElicitRequirementsTask in our example. Then, the powertype is instantiated into an 
object, tk1 in our example. ElicitRequirementsTask and tk1 represent the same concept, 
i.e. tasks for requirement elicitation, but they represent it in different ways and for 
different purposes. Together, ElicitRequirementsTask and tk1form a clabject, indicated 
by an ellipse in the diagram. Notice how the object facet of the clabject describes the 
particular task kind by carrying values (for the attributes of TaskKind), while the class 
facet serves as a template for endeavour-level instantiation (see below). 

A method fragment is used by developers by instantiating its class facet, 
ElicitRequirementsTask in our example. Notice how attributes for any task are defined 
by the metamodel in class Task and take values at the endeavour level, in the etk1 object 
in the example in Figure 10. 

By using powertype patterns and clabjects, two sets of values exist: one, at the 
methodology level, describes the method fragment, and another, at the endeavour level, 
that describes the instances of this method fragment. 
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Figure 10. A powertype pattern in the task domain. 

4.2 Adding an Attribute at the Method Level 

Using a powertype-based metamodel, the methodologist has the opportunity to add 
attributes and associations to the classes in the methodology level as she/he defines 
them. This is not possible in a conventional approach because all attributes are frozen at 
the metamodel level. In this scenario, very similar to the previous one, a 
ValidateRequirementsTask method fragment is defined, and a NeedsSignOff attribute is 
to be added to it (Figure 11). This attribute represents that some requirement validation 
tasks, when actually performed at the endeavour level, will need signing off before the 
requirements can be considered validated. The methodologist captures this need of the 
methodology by incorporating this attribute into the class facet of the method fragment. 
In programming language terms, this is known as “programming by difference” and 
comprises a key strategy in the OO paradigm. 

Notice how this attribute, NeedsSignOff, is used, together with the attributes generic for 
every task, at the endeavour level in object vrt1. 
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5 Extending a Powertype-Based Methodology Metamodel 

So far we have explained how a powertype-based metamodel can be used “as is” to 
create method fragments. This section considers those cases when the metamodel is not 
fully appropriate for the task at hand and needs to be extended before it is used. In a 
conventional (e.g. OMG) approach, the only mechanisms available to provide 
extensibility are (1) extending the metamodel directly – thus going outside the standard 
and making the use of standard-compliant tools difficult; (2) extending the metamodel 
indirectly using OMG’s UML stereotypes. Unfortunately, the use of stereotypes is ill 
understood, poorly applied and, in UML version 2.0, is found to violate its underpinning 
theory [HG05c]. 

Figure 11. Adding a new attribute to a class at the method level. 

In contrast, the powertype-based metamodel, as used in ISO/IEC 24744 (SEMDM), can 
be extended without transgressing its standardized nature, as follows. Consider that the 
methodologist decides that many tasks in projects that use the methodology he/she is 
designing will need to be measured for performance, and so decides to refine the 
standard Task/*Kind powertype pattern provided by the metamodel and create a 
MeasuredTask/*Kind subtype of it (Figure 12), which incorporates the necessary 
infrastructure to manage performance measurement of tasks. In order to subtype a 
powertype pattern, two new classes (called extension classes) are introduced, each being 
a subtype of the classes involved in the original powertype pattern (called standard 
classes). In this example, MeasuredTask is subtyped from Task, and MeasuredTaskKind 
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is subtyped from TaskKind. The powertype pattern relationship between the extension 
classes parallels the standard one in the metamodel. 

Figure 12. Metamodel extension followed by usage. 

Note how MeasuredTask carries a Performance attribute, capturing the fact that, at the 
endeavour level, all measured tasks will have a performance value attached to them. 
Similarly, MeasuredTaskKind carries a MeasurementGuidelines attribute, which, for 
each particular kind of measured task, will contain information explaining how 
performance is to be measured. 

Once the extension powertype pattern has been introduced, the methodologist (the same 
who introduced it or another one) can use it in the conventional way, deriving method 
fragments from it as explained in previous sections. 

Notice how the attributes introduced at the metamodel extension level take values and 
are used at the methodology and endeavour levels. 

The mechanism here described is in stark contrast to the invention of the notion of 
profiles and stereotypes in the UML. There, the metamodel cannot be extended without 
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changing the (standardized and essentially immutable) M2-level metamodel. Here, an 
equivalent extensibility is accomplished without damaging the original metamodel yet 
permitting user-defined extensions (akin to a profile) all within the standard and 
supportable by tools. Furthermore, conventional, well-known OO building blocks such 
as attributes and specialization are used to extend the metamodel, rather than made-up 
constructs such as stereotypes and tagged values in the UML. 

6 Conclusions 

Metamodelling has become an increasingly accepted part of conceptual modelling, 
penetrating the standards of such organizations as the OMG and ISO. The approach used 
in OMG standards is that of strict metamodelling, which uses only instantiation 
semantics. While this works reasonably for UML and other modelling languages, it does 
not permit any degree of extensibility without invoking the notion of profiles and 
stereotypes (themselves widely debated and criticized and not part of conventional 
object-orientation); nor does it permit appropriate synergy between the product and 
process parts of a methodology metamodel, such as found in OMG’s SPEM. 

Here we have summarized a powertype-based metamodelling approach, discussed in 
detail earlier (e.g. [GH05a], [Od94]) before demonstrating and analysing the extension 
mechanisms appropriate to such an approach. In particular, we have shown how an 
attribute can readily be added to one of the metatypes in any standardized metamodel 
built in this way and, secondly, how the whole idea of profiles is obviated because the 
combined instantiation and generalization semantics that are a natural consequence to 
the use of powertype patterns allow the user to define subtypes within  the “metamodel 
layer” because both type and powertype can be specialized within this layer and serve as 
an intermediate “extension layer” as demonstrated in Figure 12 and Section 5. As a proof 
of viability beyond the (mostly) theory presented here, powertype patterns are the basis 
of an ongoing project within the ISO community (ISO/IEC 24744). 
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