Automating the Indexing and Retrieval of Reusable Software

Components
Mafedh Milil, Petko Valtchev!, Anne-Maric Di-Sciullo?, Philippe Gubrini!

) Département dInformatique, UQAM
¥ Département de Linguistique, LQAM
P EREE, suce, “Centre Ville”, Montréal, Québee, Canada, 113 IPK

Abstract: Developing libraries ol reusable components 15 a key issue in the software
reuse ficld. In this paper, we focus on a sct of indexing and retricval methods devised
for the ClassServer experimentul library tool. We compare string scarch-bused retrieval
methods to kevword-based ongs. As the main conecrn i reusc 18 cost, we argue that
the sccond method, which is widely belicved 1o be tar more expensive in development
resources than the first one, might be successfully assisted by some (semi-) aulomatic
Lools o reduce its wetual cost. We thus deseribe 1 possible way to aulomate two of the
pre-processing steps, the identification of the domain concepts to form the controlled
vocubulary und the extraction of the vocabulury™ hicrarchical structure. Both methods
have been implemented and tested within the ClassServer system.  Notwithstanding
the results of prelimimary experiments, we were able to observe the positive cttects
ol our approach and identily possible enhancements [or both extraction methods and
experimental design,

1 Introduction

Software reuse is seen by many researchers as an important factor in improving software
development productivity and software products quality. There are many challenges to soft-
ware reuse, including managerial practices and organizational structures, m addition Lo the
myriad of technical challenges that need to be addressed | MMMOY3|. In this paper, we focus
on computer support for soltware component search and retrieval. A wide range ol com-
ponent categorization and scarching methods have been proposed, from the simple string
scarch (sce e.g. [ Mi194]) to faceled classification and retrieval (e.g. |[PDF&7, Os192]) to sig-
nature maitching (sce ¢.g. [ZW93]) to behavioral matching (see c.g. [ZWO5, MMM94]) or
even |Hal93|. Different methods strike different trade-offs between performance and cost of
implementation, mcluding both initial sct-up costs, and the cost associated with formulat-
ing, exceuting and refining, queries [MMM35]. Retrieval experiments have systematically
used recall and precision measurcs. However, these measures do not take into account the
intended use of the retrieved items, and often assess relevance in a binary, vesino, fashion.
Furthermore, for the case of reusable components where cost is a factor, we argue thart the
developing costs of the various methods should net be 1ignored in a fairly set comparison.

The study reported in this paper compares two kinds of indexing and retrieval methods, a
full-text retrieval and a multi-faceted classification using a controlled vocabulary. To bring
hoth methods to a level-playing field we tried to automate as muceh of the pre-processing
involved in controlled vocabulary-based methods as possible. In what follows, we describe
the approaches we suggest for both the discovery of useiul domain concepls and their hi-
erarchical ordering, and the experiments of the possible uses of the resulting controlled
vocabulary {or retneval purposes.

The paper starts with a deseription of our experimental library tool, ClassServer {Sce-

75



tion 2). Section 3 presents two competing approaches for component indexing and retrieval
in ClassServer. Section 4 describes our automaiic approach Lo vocabulary constructing and
document indexing, Section 5 summarizes the results of the experiments with the automatic
tools as well as with the resulting library,

2  The ClassServer tool

Our work on supporting development with reusable components centers around a tool kit
called ClassServer which 1s deseribed below.

2.1 System architecture

ClassServer integrales a sel of wols For representing, classifying, retrieving and navigating
through reusable components (see Figure 1) Components consist essentially of objeet-
oriented source code components, occasionally with the accompanying textual documenta-
tion. Raw input source files are put through various tools called extractors which extract
the relevant pieces of information, and package them into ClassServer’s internal represen-
tation format for the purposes ol representing, classifying, indexing and retrieving com-
ponents, So far, we have developed extractors for Smalltalk and C4+—. The information
extlracied by these tools includes language-defined structures, such as classes . variables |
mcthods , and method parameters for the case of C——. Figure 1 shows a very schematic

Pl ews reorieval Kevaord romievs]

Ikt 1o

K eerord segmel- Coriporent

e ‘_P:'.ﬂ. et seareh el U

)
Lopweord] miduwer ’\
A
" L |
= Tu'l-tesn irdeser \

.
" \ . :

e ‘ .‘:'.I'uCll.:CNZ_:\-.’!I\{:I]l% .-.'!dl‘.l#l' ‘
_, Y N

it W e Jeinon Feaur L\.’i’/y

Fig. 1: Overall architeeture ol ClassServer.

view of ClassServer which may be seen as a sum of three subsystems whereby the first one
supports the required functionalities for full-text retrieval. T'he other subsystems, i.e., the
component browser and the keyword retrieval subsystem, use the structured represcentation
ol the components that 15 extracted by the “semantic/siructural parser” {(sce Figure 1) to
support conlrolled vocabulary retrieval.

2.2 Representing components
Each kind of component 1s defined by a desenipuive template that includes: 1) structural
information describing the kind of subcomponents a component may have (e.g. a class has

views, a view has variables and methody), 2) code, which 1s a string containing ithe definition
or deelaration of the component in the implementing language, and 3) deseriptive attributes

76



used for search purposes like an author and an application domain fora class, a
purpose lor a method., cle. Figure 2 shows parts ol the network of components represent-
ing a typical C++ class. This particular network includes four kinds of compoencents: classes,
variables, methods, and method parameters,

The attnbules represent non-siructural non-ntrinsic propertics ol sellware components;
they are often derived from non-code information such as documentation, or entered explic-
itly by the “component library manager™ [PD90]. Aliribules have two propettics ol their

{’a=me Persco {

privake: Ul 'ersen

|
D At
-

Turpeee;

[P

.f
kN

Fig. 2: Representing a C+— class with a network of reusable componcenrs.

own: |) text, a (natural language) textual deseription, and 2} values, a collection of
key words or phrases, taken [rom a predefined set which is referred to as the vocabulary
ol the attnbute. The text 15 used mainly by human users and lor docurnentation genera-
tion |Mil94]. Multiple values in an attribute are considered to be alternative values ((QRed),
rather than partial ones (ANDed). Tor example, for the attnbute Purpose of'a component,
several values mean that the component has many uses, and not a single use defined by the
conjunction of several terms,

2.3 Example library

Our experiments were carried out over the entire OSE Iibrary |Dum94] which contains
some 200 classes and 2000 methods distribuied across some 230 *.h files wath, typically,
one class per file. For the purposes of supporting plain-text indexing and retrieval, the
230 files were pul through the plain text mdexing ool, which generated an inverted hist of
unique word stems. Further, a shell seript put the files through a C+— pre-processor before
they were input inte the C- 1 exiractor. [n addilion to source code, the library includes a
considerable amount of on-line HTMI. documentation. Beeause of its good quality and
format consistency, we were able to extract individual paragraphs from the documentation
and assign them as text values for the Description atirtbule of various components
{classes, methods, variables).

3 Component retrieval within ClassServer

We have implemented a set of concrete retrieval methods within ClassServer, In what fol-
lows, we focus on “controlled-vocabulary™ versus “full-text” indexing and retrieval,

77



3.1  Full-text versus controlled-vocabulary indexing

Before enabling a retrieval mechanisim, the documents/components in a library should be
properly indexed. Filling in the values property is referred to as classificarion, cafego-
rizetion or indexing. Typically, the task is carricd out manually: human experts read about
the soltware component, and sclecl key words or phrases that best deseribe 1ts “content”,
this assigning an index to each component. Index terms are chosen among a predefined set
ol key terms, referred 1o as the controfled vocabulary. In some cases, we used automaiic
controlled-vocabulary indexing wherchy a key word or phrase is assigned to an attribute if
it occurs within the text field.

['or a given vocabulary, the lerms of the vocabulary (key words and phrases) may be
organized along a conceptual hierarchy. Figure 3 shows excerpts of the conceprual hierar-
chics ol key phrases lor the attnbutes 2pplicationDeomain (Figure 3.a) and Purpose
(Figure 3.b). Typically, for a given attribute, the keywords are organized in a single hicr-
archy whose root is the name ol atiribute itself. Notice that the ApplicationDomain
hicrarchy of key phrases is inspired from the (ACM)} Computing Reviews s classification
structure |[ACMES]. The hierarchical relationship between key phrases is a loose form of
generalization, commonly relerred to in information retrieval as “Broader-Term™ [SME3].

- DataBagelnterropation

-

InfgrmanonBomrioval «=— . )

T)ccision‘suppo1-1c-""/ rmAnonREE Question Angwaring
; ; =T

- FncodingDecoding - - DweuntentRetricyval

/, Communivations === \

clfasamg - - -
- e Datal emversion AdminisirativeDataProcessing
- Dt PProeessiny =27

Function {— e rerAided B i
o . . - sineering
— iliring ApplicationDomain £ ComputerAidedtngineering

| Fata Acousition ==

= Sampling - - - LileAndMuedical Seicnees

i Command AndContrel (b SoctalandBehavioralSciences

Fig. 3: Hierarchies of key phirases lor the altributes Zurpose and Applicationbomain.

In contrast, the basic premise behind automatic indexing 1s that the words that occur in
the document with @ certain statistical profile are good content indicators [ SME3], Thus, a
docurmnent 15 deseribed by a (possibly weightled) set of words or lexical unils.

3.2 Full-texi versus controlled-vocabulary reirieval

Different indexing strategies support different retrieval techniques. With a controlled vo-
cabulary, information seekers can only form queries using terms from the vocabulary. With
full-textindexing no such himitations hold. Given a natural language query ¢, the free-lext
retrieval algonthm retums the set of components S whose documentation ineludes any of
the significant' words in (.

In addition, the relevanee of a document/component could be assessed in different ways,
thus leading to speeifie retrieval methods like boolean or weighted veetor methods. In our
case, attribute values (key words and phrases) are used in boolean retrieval whereby com-
ponent attribute values are matched against required attribute values (queries). The hier-
archical relationships within an indexing vocabulary are used to extend the basic retrieval

"anguage ailiary consimicts and domain specific words of common use are excluded, Furthemmore, words
ol hath the docurnents and the query are redueed to thetr stens [FRY 94,

78



algorithms by adding different degrees of matehing (instead of rrue or false) between two
key words, ¢.g., depending on the length of the path separating them in the hiceracchy.

In its simplest form a query (s a list of atrribute guery terms {AQ1's), which arc ANDed.
An AQT consists of an artribute and a list of ORed key phrases. Fach AQ'T is assigned a
walght and cut-ofT point, used for weighted boolean retreval:

e Cuery ::= ADL | AQT AND Cuery
¢ NOT ::= Allribute Waighl CulCLI LolZXey>hrases
® | oikeylPhrasas ::= Keylhrass | Keyvlhrase OR LolKeylhraszas

An AQT is a four-tuple {Attribute, Weight, CutOf f, Lof Key Phrases) which re-
tricves the components € such that Abbribate(C) N Lof KeyPhrases £ @, The query
denoted by the wple {AQTY, AQT., ..., AQT), returns the interseetion of the sets of com-
ponents relricved by cach individual AQT.

With weighted boolean retricval, components are assigned numerical seores that measure
the extent to which they satisfy the query. instead of being either “in” or “out™ l.et (} be a
query with terms (AQYY, AT .., AQTL ). The score of a component € 15 computed as
follows:

Zf_| 5 (”;hf; w Sr:arrf f_lf,)_f ‘i: (:‘]
> f_ | Weight;

where Seore{ AQT,. C)is 1.0 Lof KeyPhrases (0 Attritute;, () £ @, and 0 otherwise.

(1) Seore(Q), Yy =

3.3 A comparison

A number of studies have shown that free-text indexing and retrieval suffers from the difter-
¢nces in the terms the authors and scarchers might usce to refer 1o the sume concepts [BMBS].
In principle, this leads to lower recall (false negatives) and recall (false positives). With con-
trolled vocabulanes, both the indexer and the scarcher will use the same vocabulary. How-
ever, controlled voeabulary indexing is labor intensive and controlled vocabulary retrieval
requires the searchers to familianze themselves with the vocabulary. Hence, some authors
have argued that difference in performances does not justify the cost |Sal&6, FPO4|.

In ClassServer, we have implemented [ully automatic [ree-lext search and {ully manual
controlled voeabulary indexing and retricval. Because the vocabulary is hicrarchieal, the
purcly Boolean retrieval could be exiended (o take into account the hicrarchical relationships
between teems of the vocabulary |Os192]. We also provided a browsing tool that allows users
to navigate through the vocabulary and find a coneept of interest.

Because of the cost involved in controlled vocabulary indexing and retrieval, we adopied
a lwo-lavered approach. On the one hund, we provide scarchers with teols o explore and
navigate hierarchical vocabularies. On the other hand, we automate as much of the con-
trolled vocabulary indexing as possible, which means we developed methods to help:

¢ identify the important concepts within a domain of discourse,
¢ organize them in a hierarchy, and
e index documents with the resultiing vocabulary.

The last step 1s independent of the first two and may thercfore be used with any vocabulary
whether it is fully manually built or semi-automatice.

*Besides the eost of reading the documents one by one and manually assioning indes terms 1o themn, there is
the cost of huilding and maintaining that vocabulary,

79



4 Automatic vocabulary constructing and indexing

The available documentation seemed to be the right place to search for important concepts:
although there was a risk of getting a partial view of the underlying domain, and of depend-
ing too much on the termimelegy used by the documenter, 1L was clear that no meaningful
concepts will be missed. The first siep consists of determinmng the right lexical unit that
corresponds lo key concepls and then extracting all such units [rom the text.

4.1 ldentifving the important concepts within 4 domain

Full text indexing uses the occurrences of words in doecument collections as indicators of
the word’s usefulness ag content descriplor. The key problem with such an approach is
that words are often taken out of context and arc not constrained in any manner. Further, we
argue that in computer science, as in any relatively new field, most of the important concepts
are desenbaed by noun phrases, asin “Soflware Engincening”™ “Bubble Sorl”.cte.

Automatic approach

In order to extract those higher level lexical units, to which we, abusively, refer as noun
phrases, we used Xevox Part Of Speech Tagger (XPost) [Cut92], a tool that taps the words of
a natural language text by thedr respective syntactic (Mpart of speech™) calegories. For exam-
ple, it assigns to “T'he common memory pool™ the tag sequence article adjective
noun noun (denoted by “at jj nn nn™). Analysis in XPost relies on: 1} a “tag table”,
mapping lokens to sets of tags, and 2) a probabilistic (Markovian) model of plausible tag
sequences {induced at a4 prehiminary step uging unsupervised leaming techniques). Thus,
XPost is initially run on a training sample so that the lag sequences [or interesling noun
phrases could be identificd. After deseribing the set of identified sequences by a (conserva-
tive} set ol regular expression, XPost is run on the elfective document corpus with its output
piped Lo g tool for recognizing those expressions. The Tollowing lable shows the regular
expressions in an awk-like format:

EREFLX (0 [ W3O WENY (NN | NNS [ NE  NFS) | (3N | NNS  NE | NFS;
damample "Snmall System", or "systom", but not "gmalln
BRAIC = DREFIX {JJ NN | ¥¥& | N2 | NEF3  VBRG | VLN~

i Zxanmple "Rrent bDagzed ayotenz”
H_OFPY _ BASTIC IN 2AEIL

daample "Momory managoment oI owoernT basod gystoms!
XOoray = BASIC IN AT BASIC

i Fxample "astorage reguirvementa of an event baged avoten”

In case a sentence matched several expressions, the longest running expression is taken,
The resulting list may then be filtered based on frequency of occurrences in document col-
lection.

Results

When applicd to the OFC library, the extraction process identified 2,616 unique “noun
phrases”, with overall occurrences ranging from 163 (for the word “function™) to 1, with
1,763 phrases occurning just once, mcluding phrases such as “command line options™ or
"Conversion operator to a standard pointer”. Phrages ocecurring too often are poor dis-
criminators whercas those occurring rarely may not be important. Therelore, we discarded
8 "phrases”™ of oeccurrence higher than 100, ¢.g., OTC (267 times), "lunction™ (163) and

80



"String” (134}, and a large sct of phrases that oceurred less than five times. For the exper-
iment we used the remaining 229 phrases including some C1 - identifiers that could have
heen removed manually. However, sinee the identification of such terms could not be casily
automated, we left them in,

In & dilferent experiment setting, we apphed our algonthm to the GenBank (Genelic
Sequence DataBank) |Bil86]. Overall, the experiments showed that while the higrarchy
may nol be “user-friendly™ or make as much sense as a manually-built ong, it can perlorm
usctul retrieval tasks cqually well [MRET].

4.2 Constructing a hierarchy

A hierarchically ordered domain vocabulary may prove useful in various ways. For instance,
il helps Plibrardans™ locate the most appropriate term o describe a component, and 7re-
users” find the closest term to use in a query. Hierarchical relations may also be used to
extend boolean retrieval methods o account for "close™ matches (see |Os192]), Construcling
a thesaurus of domain concepls involves lirst identifying those concepls and then organizing
them into a hierarchy.

Algorithm

Given a set of terms ' = {/1 f2,.... 4y }. @ set of documents £ = {d|.dy,....d, } with
manually assigned indices fdw() = {15, 4, ...}, we argued that [MRRT]:

H; Terms that elten co-occur in document idices are related,
H The more frequently occurring a term., the moere general its conceptual scope, and

Hg II two terms co-occur olien in document indices, whereby one of them has a more
general scope than the other, than there is a good chance that the relationship between
them is a generalization-like relationship.

The II hypothesis is based on fact that documents tend to exhibit conceprual cohesion
and logic, and because index terms reflect the important concepts within a document, they
tend to be related. 7Ty is based on observations made about terms occwrring in both free-
format natural language [Jon80| and 1ndexes [ WCR3].

In [MRE7]. we sugpested an algorithm based on 77y to IT; which, given a sct of index
terms £y, {2, ... {,, With their co-occurrence rates, generates a rooted acyclic graph.

1: Rank the index terms by decreasing order of frequency

2: Build the co-occurrence matrix 34 {(i** row = ¢** most frequent term)
3: Normalize the elements A (%, ) (divide by /3 (¢, f) x M (4. 7))

4: Choose terms ¢, through {; to include in the first level of the hierarchy
5

6

2

s forifrom {41 tom do
v — max({M{ 1), M{EL—1D))
Create a link between ¢ and all ¢; such that A4 (7, j} = ».

Algorithm 1: Building a hierarchy out of a set of concepts,

The choice of the first level nodes 1s quite arbitrary although, ultimately, it has a very
little tmpact on the overall hierarchy,

81




Results

We used subsections in {iles (an average ol 10 subscetions per {ile) as documents, and for
cach document, instead of counting the eo-occwrrence of two phrases as 1, as would be
expeeted with index terms, we take the minimum of the oceurrences of the two phrases as
their [requency of co-occurrence within that document.

The first run of the algorithm generated a hierarchy with 291 relations between 291
phrases, including the dummy root node. A couple ol excerpts from the hicrarchy are shown
below

2.2.1.1.2.1 LENGTE

2.2.1.1.2.1.1 LENGTH 2F THE STREING
0.2.1.1.2.1.2 TRPATITY

LA A TV ELT CARRDTTY OF THAR STRTNG
c.2.1.1.2.1.53 RBENGE

DL201.1.2.03.02 3

2.2.1.1.2.2.2.1 CCNVERSION
0L201.1.203.0201 .01 S008Iy
2.2.1.1.2.2.2.1.2 ZONVEREICN OQP=Z=RATCR

Notice the “term™ B, which is a C—+ identifier. It was tagped as noun beeause it oceurred
in the text where a subject/objeel was expected and with a frequency high enough 1o make
it into the vocabulary. As menuoned carlier, such terms were left in the vocabulary to
get an idea about what an unfiltered hierarchy would look like, 'T'he relationship between
CONVERESION and SOBJECT is an interesting one, SOBJECT is the name of the class rep-
resenting strings which supports several conversion operations, Although general conver-
ston wouldn't necessarily associale with sinngs, in the context of this library, the association
is important and uscful.

Since no relerence hicrarchy was available, the result could be evaluated only gualita-
tively. Lo this purposc, the result hicrarchy was presented to six subjects who were asked
e mark, for each node, whether the node represented a valid concept from the domain of
discourse, and in case it did, 1o label the nede’s relationship o its parent as one old a) has
broader-term, b)Y velated, 1o indicate any other relationship, and ¢) warelated (used when
there was no apparent relationship). For instance, the relationship between LENGTH OF
THE STEING and LENGTH in the above schema is Aas-broader-term, whercas RANGE
and LENGTH arc only refafed. The evaluation ol the six subjects are summarized in Table |
below. The second line shows the resulis obtained by re-deniving the hicrarchy afier the
removal of all the invalid terms (26 of them, including C++ identifiers).

Hierarchy invalid terms | has-broader-term | related | unrelated
With invalid rerms 9 20 37 34
Without mvalid terms ( 27 39 34
Links removed 26 8 19 28
Larks added ( 17 13 18

Table I: Evaluating the individual links created by the statistical algorithm {all Ggures in %),
These resulis are disappointing compared to the GenBank experiment [MRE7], even alter

we remove manually the invalid terms from the input. There are many reasons for this,
which arc ¢xplained clsewhere. We performed an additional number of tests o refine the

82



hicrarehy or explain the quality of the results, but they proved inconelusive. Forthe purpeoses
ol the retrieval experiment (see the nexi section). the automatically sencrated hicrarchy was
used as a flat sct of terms, and even then, it didn't prove usctul.

4.3  Automuatic indexing with controlled vocabulary

Traditionally. indexing documents with a controlled vocabulary is carried out manually.

Algorithm

We atrempted to automare it, lest we lose some (but not ¢ff) of the advantages of controlled-
vocabulary indexing. Thus, a document o was assigned a lerm # = w111 contains
(most of) its component words, consceutively { 7wy, s, ), orin elose proximity
(7oA i pretee iy, Lk Inowr implementation, we reduced the words of both the terms
of the vocabulary and the words of the documents to their word stem by removing suffixes
and word endings. Also. we used two tunable parameters for indexing: 1) groximity, and 2)
particd mateh threvhold, 1.c., the ratio of the number of words Tound in & document Lo the
total number of words of o term. The proximity parameter indicates how many words apart
should words appear to be considered as parts of the same noun phrase (term},

Results

In order to separate the vocabulary control [rom the performance of automatic indexing
per se, we indexed the in-line documentation ot classes with the ApplicationDomain
vocabulary, which was built manually. In particular, we used a threshold of 2/3 and a prox-
imity of 5, i.e. a term was assigned to a document when at least 2/3 of the words of the term
occurred 1n the textual panrt of the attribute, with ne two words more than 5 words apart.
We wanted to get an idea about "how often™ terminology issues miss some important term
assighments, and about the appropriateness of the indexing parameters {threshold and max-
imum word distance). Our evaluation takes into account what is in the vocabulary, and what
is in the text, and the question was, given the same limited vocabulary and limited texrual
desenption, would a human being have done it any dilferently. We studied 80 textual de-
seriptions varying in size from a single sentence such as "Do not define an implementation
for this”, to hall a page ol text. The results are summarized 1n the table below.

exact | related | extraneous missing missing
terms {diffcrent) words
Number of terms 42 3 6 I 24
% among assigned 82 6 12
Coverage 52 4 14 30

Here the extrancous terms are teems that shouldn’t have been assigned {lalse-positive).
Examples include the indexer mistaking the verb ”[this method| sers” for the word "Sets”
(as in collections). Other examples of extraneous terms include a case where the indexer
assigned the term “Copying Strings” to the sentence "This elass does not make copics of
the character strings 11 is given..”. The missing termy are terms that a human indexer would
have assigned. and fall into two categorics: a} 4 syvaoapm lor the actual word(s) was used
instead of the actual words, or b) the concept docs not appear verhatin, but is implicit.

In summary, only 6% ol the assigned terms were wrong, which should only minimally
alfect retrieval precision. The indexer seems 10 have missed g significant number of terms,
44%, bur minor refinements could have reduced this figure. Besides, the effect of these

83



"false-negative” term assignments on retrieval recall would be hard to estimate, as the re-
tricvability ol a component depends on the whole set of index s,

5 Retricval experiments

The documentation of the OSE library consisted of 13 H'I'MI. files, one of which giving an
overview of the library, and the remaining 12 desenbang specilic subsets of the library, The
13 files contained a total of 37,777 words (244 Kbytes). The experimental data set consisted
ol about 200 ¢lasses and 2000 methods [rom the GSE library, used in 11 dilferent querics.

Both full-text and controlled vocabulary indexing and retricval were examined. Compo-
nents were classificd with two atiribules: ApplicaticonDomain and Description.
2pplicationDomain was indexed manually wilth a manually-built vocabulary, whereas
Description, was indexed automatically with the automatically generated vocabulary
(see Scecetion 4.1) considered as a lal set (Tor reasons reported in Scction 4.2).

Seven subjeets, all of them experieneed C—+ programmers, participated in the experi-
ment, although only the dala [rom 5 subjects was usable. The subjects were given a ques-
tionnaire which included the statements of the queries, and blank spaces to enter the answer
as a list of component names, much like an exam book. For each of the initial 77 (sub-
Jecl,guery) pairs, we randomly assigned a scarch method (keyword-based versus plain text).
For each (subject.query,search method} triplet, the subject could issue as many search state-
ments as s'he wishes using the designated search, with no limitation on the time or on the
number of scarch stalements.

Query IFull-text retrieval Keyword retrieval
Subjects | "o Recall | % Precision || Subjects | % Recall | % Precision

1 3 100 88.666 2 30 50

2 4 50 10 ] 50 1000

3 1 1040 100 4 1040 106

4 1 100 30 4 30 100

5 4 25 12,3 1 U {

6 3 33.333 33.333 2 12.5 25

7 2 [§5] 75 3 66333 50

8 2 3 73 3 30 83,333

5 3 53.333 16 2 30 78

1 3 78333 80333 ] RE 1000

[ Average | (26) | 6349 | 74.47 [ 23 [ 4241 ] 68.33 |

Table 2: Summary of retrieval results.

Table 2 shows recall and precision for the |1 queries. Initially, with the initial 7 sub-
jects, for each query, we selected 3 subjects at random to perform the query using full-text
retricval, and 4 subjectls o perform keyword retrnieval, or viee versa. Later on, the results
ol two subjects proved globally uscless and one query, the 11th, was dropped off since the
three keyword-based answers were all rejected {or various reasons.

Intuitively, it appears that plain-text retricval yiclded significantly better recall and some-
whatl betier precision for the 10 queries (with a few exceptions). In order 1o validale these
two results statistically, we performed a number of ANOVA tests, to cheek whether recall
and precision were random variables, bur the random hypothesis was rejected in borh cases.

In surmmary, our experinmients showed that: 1) those aspects of the pre-processing mvolved
in controlled voeabulary methods that we automated were of poor enough quality that they

84



were not used (the Description attribute), and 2) the fully automatic free text search
performed better than the [ully manual controlled-vocabulary based indexing and retrieval
of components.

6 Discussion

Becuause the above results are somewhal counter-intuitive, we continue 1o analyze them, and
e think of ways of improving the pre-processing involved in the controlled vocabulary-
based methods. We hypothesize that multi-fuceted classification and retrieval of reusable
components to be at the wrong level of formality for the typical workflow of developers us-
ing a library of reugable components. We identify two very distinet scarch stages, The first
stage is fairly exploratory, as developers do not yet know which form the solution to their
problem will take, and a free-formar search technigue such as plain-text search is appropri-
ale. Multi-faceted scarch may be too ngid and constraining lor this carly scarch step. This
is even more so, considering that one might be searching components in several sites, each
wilh 1ls own representation conventions. The second scarch stage aims at selecling, among
an initial set of potentially useful components, ones that will cffeetively solve the problem
at hand. At this sccond stage. we need a lar more detailed deseription of components and
their inter-relationships than that provided by multi-Taceted classification. To the extent that
multi-faceted component retrieval retrieves a different set of compaonents from plain text re-
trieval [FPY4], the 1ssue shouldn®™ be using one or the other, but using them Aoth. Qur work
on reducing the pre-processing costs of multi-faceted component retrieval 15 a step in the
right dircction. We intend to explore ways of reducing the cost of formulating mulu-laceted
queries and of ensuring that they are used cffectively. One such stratepy consists of using
case-based regsoning to generate queries based on those components returned by plain-text
scarch that developers deemed relevant (on-going project).

References

[ACMES] ACM. An introduction (o the er classification system. ACM Compuaing Reviews, pages
45-57, January (983,

| 318G AL T Bilotsky, €. Burks, 1. W, Fickett, W, B, Goad, T. 1. Lewitter, W, P. Rindong,

¢ D0 Swindell, and © Tung, The GenBank Genetic Sequence Databuank. Nueleic Acids

Research, 1414, 1986,

[TAMBE] 0. Blair and M. E. Maron, An cvaluation of y. Cosunnnications of the ACM, 28(3)1:289
290, 1085,
[Cu2] D. Culting, J. Kupiec, J. Pedersen, and 1% Sibun. A Practical Pact-ol=Speech Tagger. In

Proceedings of the Applied Nanwral Tanguaee Processing Conference, 1992,
[DumB4] G. Dumpleton. O8F - €01 Library User Guide. Dumplelon Software Consudting Py
Lid.. Parramatia, 2124, New South Wales, Australia, 1994,

[FEYY4] W, B. Frakes and R. Bacza-Yates. [nformation Reirieval: Duia Structures and Afgo-
Fithmrs. Premtice-Hall, 1994

BRE] | W B, Frakes and T. Pole. An empirical study of representation methods for reusable
softwarc componcents. JEEE Transactions on Sofiware Engincering, pages =23, Aupust
1994,

[Hal93] I ) Hall. Generalized behavior-based retrieval. In froceedings of the Fifleenth fnter-

netional Conference on Software Engineermyg Baltimore, Muarplund, pages 371-380,
May 1993,

&5



[JomK0]

[MNMMY4]

[MNMMY5]

[ MRRT]

| Mil94]

|0s192]

[P190]

[PDF8T]
| Salg6|
[SM83]

|[WOSS)

| £ W03

[ZWO5]

K. 8. Jones. A statistical interpretation of term specificity and ity application i retrieval.
In B, C. Griffith, editor, Key Papers in Information Science, pages 305 315 Knowledge
Industry Publications, Tnc, White Plains (NY), [980.

AL Ml RO MiliL and R Mittermeir. Storing and retrieving soflware components: A
refinement-hased approach. In Proceedings of the Siteenth Tnternational Conference
on Software Engineering, Sorrermo. flaly, May 1994,

H. Mili. F. Mili, and A, Mili. Reusing sollware: Issues and research directions. fREFR
fransactions on Soflware agineering, 21{61528 362, 1995,

T Miland R. Rada. Building a Knowledse Base for Information Retrieval. In fro-
ceedings of the Third dnnual Expert Systemy in Government Conference, pages 12—-18.
ILET. Press, October 1987,

I Mili R Rada, W. Wang, K. Strickland. . BoldyrelT, 1. Olsen, J. Wi, ). Tleger,
W, Scherr, and P Elzer. Practitioner and SoftClass: A Comparative Study. Journal of
Sustems and Sofivare, 27, May 1994,

1 Ostertag, I Hendler, R Pricto-[3az, and C. Braun. Computing similarity in 4 reuse
library system: An al-based approach. ACM Transactions on Sofivare Engincering and
Merhodotosy, 1(3):205 228, 1992,

R. Pricto-Diaz.  Integrating domain analysis and reuse i the soltware developrment
process. [n Proceedings of the Third Anmvad Workshop on Methods and Tools for Reuse,
Syracuse (NY), June 1990 CASE Center, Syracuse Universily.

L. Prieto-Dias and I Freeman. Classifyving software (or reusability, [TERE Soffware,
pages 616, January 1987,

G, Salton, Another ook at Automartic Text-Retrieval Systems, Commusications of the
ACM, 2071648656, 1986,

G Salton and M. MeGlill. fatroduction to Modern information Retrioval, MeGraw-Hill,
New York, T9K3,

3. 11 Weinberg and 1o A Cunminghum. The Relationship belween Term Specilicity
in McSH and Online Postings in MEDLINE.  Bulletin Medice! Lilwary Association,
T3(4p365 372, 1085,

A M. Zuremski and 1ML Wing, Signature matching: A key o reuse. Sofhware fagi-
reering Notes, 1R(5) 182—190, 1993,

A. M. Zaremski and 1. M. Wing. Specification matching: A key to reuse. Sofinure
Frgineering Nores. 21{5), 1995,

86



