
177

BPMN 2.0 Serialization - Standard Compliance Issues and

Evaluation of Modeling Tools

Matthias Geiger, Guido Wirtz

Distributed Systems Group

University of Bamberg

An der Weberei 5

D-96047 Bamberg, Germany

{ matthias.geiger ¦ guido.wirtz }@uni-bamberg.de

Abstract: Business Process Model and Notation (BPMN) 2.0 process models are

used more and more, both in practice as in academia. Although academic research

mainly focuses on sophisticated semantic checks and extensions there still exist

problems in the basic usage of BPMN. This paper investigates issues in BPMN

model serializations which arise as a result of the complexity and inconsistency of

the standard document. We present a set of serialization constraints as a starting

point for sophisticated compliance checks on serialized BPMN models. Furthermore,

these constraints are used to perform an evaluation of current modeling tools. This

evaluation reveals that the creation of standard compliant models is still a non-trivial

endeavor.

1 Introduction and Motivation

The Business Process Model and Notation (BPMN) [OMG11a] is an international

standard for process modeling developed and maintained by the Object Management

Group (OMG). It is widely accepted in practice and in academia, as demonstrated by

various BPMN process modeling tools, engines for executing BPMN processes and also

in various academic papers, see for instance [CT09,DDO08,LVD09,WG08], BPMN is a

topic of research. The first versions of BPMN [BPM04,OMG08,OMG09] focus on the

standardization of a set of graphical shapes for process modeling - this was also denoted

by the former meaning of the acronym: Business Process Modeling Notation. For that

reason, the main scope of BPMN was conceptual modeling of business processes for

documentation and visualization purposes.

With version 2.0 [OMG11a] the standard has been enhanced by an (informal) definition

of execution semantics to provide executability on compliant BPMN engines. By adding

executability for process models, the complexity of the standard (and also of the resulting

models) naturally is increased: Especially, aspects such as data handling which have not

been covered in the graphical models of former versions have to be defined now.

A problematic aspect of the former BPMN versions is that no serialization format has

been standardized. This led to a plethora of different serialization formats which hampers

model exchange between tools and engines: Modeling tools used their own proprietary

file formats, but also mappings and transformations to other standards had been used.

Especially, for processes which should be executable, a mapping to the Web Services



178

Business Process Execution Language (WS-BPEL) [OAS07] was intended as the

serialization format for executable service-based process models and has been considered

and evaluated in various academic papers [RM06,KMWL09,WDGW08,ODtHvdA08]. A

mapping to WS-BPEL is still part of the BPMN standard document [OMG11a,Sec.14],

but executable BPMN models based on the official WS-BPEL-mapping have some

portability issues [LW13].

However, it is not necessary any longer to use WS-BPEL to define executable processes

as the implementation of official serialization formats is the second important extension

in [OMG11a]. There are two XML-based formats proposed in [OMG11a, Sec. 15]: XML

Metadata Interchange (XMI) [OMG11b] and a serialization based on XML Schema

Definitions (XSDs) [W3C04b,W3C04a]. For both formats the OMG provides normative

schema definitions
6
. Especially the XSD-based serialization is referred to throughout the

whole standard document and is already used in various modeling tools and engines.

Both standardized serialization formats have a serious issue: They do not ensure the

correctness of serialized BPMN models. In [OMG11a] various requirements and

constraints are defined which have to be respected in well-formed, standard compliant

models. These constraints range from graphical rules (such as the appearance of shapes)

to rules for execution semantics. But there do also exist hundreds of constraints which are

relevant for correct model serialization. Using the standardized serialization formats most

of the structural constraints can be verified by performing checks such as a schema

validation. But a lot of other rules cannot be checked in this way. This implies that just

using the standardized formats does not guarantee that the model is BPMN compliant.

The problem is exacerbated as [OMG11a] provides no list of all constraints which well-

formed models have to respect. Instead, rules and constraints are spread all over the

standard document in tables, figures, XML schema excerpts and the running text. As we

sketched in previous work [GW13], besides vendor policy this is a main issues which

hinders model exchange between different tools. To be able to determine whether a

BPMN model is correct by means of standard compliance, it is important to know which

rules models have to adhere.

The paper at hand provides two main contributions: First, we present an extensive list of

constraints relevant for correct serialization stated in [OMG11a]. These rules are

independent from the concrete underlying serialization mechanism. Therefore, they can

be used to validate the standard compliance of models in the standardized as well as in

proprietary formats. Furthermore, we assess which constraints are already covered by the

XSD based serialization format and highlight some issues and inconsistencies. Second,

we evaluate the serialization mechanism of several modeling tools. The evaluation

consists of checks whether the standardized serialization format is supported and of an

evaluation of the generated models’ standard compliance. The focus of our analysis is the

assessment of whether the tools implement checking mechanisms for the constraints we

revealed.

The remainder of the paper is organized as follows: In the next section, the approach of

extracting the constraints from [OMG11a] and the resulting set of BPMN serialization

constraints is presented. The subsequent section evaluates how model serialization is

6 see: http://www.omg.org/spec/BPMN/2.0/



179

implemented in state-of-the-art modeling tools. Related work is summarized and assessed

in section 4 Finally, section 5 concludes the work and gives an outlook on future work.

2 BPMN Serialization Constraints

Before presenting our approach and results, we have to clarify the scope and limitations

of our work: We strictly focus on the serialization of BPMN process models. We provide

an overview of constraints stated in [OMG11a] regarding the serialization of BPMN

process models. Although bound to serialization, we do not limit the standard screening to

the normative XML-based serialization formats. Therefore, the set of rules is technology

independent and can be used to analyze all types of BPMN serialization formats.

The following aspects are not covered in this work: Requirements regarding the visual

appearance of BPMN shapes are out of scope. The serialization of BPMN diagrams using

the BPMN Diagram Interchange format [OMG11a, Sec. 12] is left out as well. Moreover,

we exclude all aspects regarding the execution of BPMN process models on compliant

engines. First and foremost this involves all advanced execution semantics aspects but

also all constraints affecting instance attributes and variables.

Due to the limitations of space, it is not possible to present all constraints here. A detailed

description of our work and all extracted 611 rules can be found in a technical report

[Gei13].

2.1 Constraint Categorization and Extraction Approach

The constraints stated in [Fehler! Verweisquelle konnte nicht gefunden werden.] can

be divided and categorized in four major categories which are described hereafter.

Basic Attribute/Sub Element Cardinality (CARD): The most essential constraints

define the general structure of BPMN models. The standard comprises a description of

all possible elements, no matter whether they are depicted graphically or not, their

attributes and their relations. In particular, for each attribute and model association, it

is of interest whether the attribute is mandatory or whether some minimum or

maximum occurrence constraints apply.

Basic Value Restrictions and Default Values (VAL): This addresses value restrictions,

such as an enumeration of allowed values, and the definition of default values.

Basic Reference Constraints (REF): Another important aspect is the usage of references

in [OMG11a]. BPMN allows to reuse and to refer to specific elements. The main

source for references in concrete model instances is the definition of control and

message flows. Each control flow link is realized as a SequenceFlow element which

has to reference a source and a target element. The same applies to the definition of

MessageFlows. In such cases an element can be referenced by other elements through

a unique identifier and reference attributes. But reuse through referencing is also

possible for a lot of other elements. An example is the definition of a Message which

is referenced by a SendTask and a corresponding ReceiveTask using their messageRef

attribute [OMG11a, p.159-162].

Two aspects are important for each reference: First, the reference must be resolvable

that is, the referenced item must exist in the same model or must be imported from



180

another model or artifact. Second, in most cases only specific elements are allowed to

be referenced. In the previous example, only Messages are valid elements. If the

messageRef attribute references another element (e.g., an Operation), this would

violate the model constraints in [OMG11a].

Extended Constraints (EXT): All other rules revealed in [OMG11a] are categorized as

extended constraints. Typical rules for this category are constraints which apply only

under certain preconditions. A frequently used precondition is that constraints only

apply, if the process is defined as executable. Besides, restrictions which cannot be

expressed by the basic cardinality, value and reference constraints, such as

interdependence between model elements, are also listed as extended constraints.

The approach of determining rules basically consists of an in-depth analysis of the

standard document. The identification and extraction of rules for the former three

categories CARD, VAL and REF is rather straightforward: The standard document

[OMG11a] provides tables listing all attributes and relations for (almost) each BPMN

element. These tables provide (among other information) all aspects which are relevant to

extract constraint definitions: attribute names, type definitions, value and cardinality

restrictions.

More crucial is the definition of extended rules. Only some aspects may be derived from

the previously mentioned tables. However, the majority of the extended constraints are

spread over the standard’s running text. In this cases not only the whole document is

relevant, but also some interpretation is needed to identify requirements. Moreover, some

other rules are not mentioned explicitly, nonetheless they are important. An example is

that at least one messageEventDefinition must be present, if a StartEvent is target of a

MessageFlow definition.

2.2 Results

In total we identified more than 600 different constraints. Figure 1 shows an overview of

the distribution to the different categories. For a complete overview please refer to

[Gei13]. However, the main findings and peculiarities are described in this section.

The standard [OMG11a] defines 311 different attributes and associations (CARD) for 108

BPMN elements. For each attribute the attribute name, the datatype and the required

cardinality has been extracted. In combination with the defined inheritance structure these

rules already allow the creation of structural correct BPMN models. It is problematic that

the tables are not always well aligned with the UML class diagrams which are also

included in [OMG11a]. Both, class diagrams and tables, contain information about the

minimum and maximum occurrence of the relations between BPMN model elements and

in some cases the information is inconsistent. For example, the operationRef attribute of a

SendTask is marked as optional in the class diagram ([0..1]) but the corresponding

table states that the attribute is mandatory [OMG11a] p.160-161].



181

Figure 1: Number of extracted constraints by category

The 41 extracted value restrictions (VAL) can be divided in two groups: The first group

covers default values for basic datatypes such as boolean and string. The second group

comprises enumerations of allowed values. An example for this is the definition of

allowed values for the attribute gatewayDirection for BPMN Gateways. This attribute

indicates whether the gateway splits or merges the control flow and only the values

Unspecified, Converging, Diverging and Mixed are valid [OMG11a, p.91].

As mentioned before, flow definitions (Sequence and Message Flow) are one important

example for reference usage (REF). But the standard comprises 107 different associations

between elements which are implemented as references. In order to determine the

reference correctness for each reference definition the allowed datatypes have been

determined.

Finally, 152 extended constraints (EXT) have been identified in the standard document.

The complexity of the extended constraints varies. Examples for simple rules are

constraints which only apply if the process is defined as “executable” that is, the attribute

isExecutable of a process definition is set to true. But also more complex rules affecting

various elements have been identified.

Generally, it is hard to prove that our list of constraints is complete and free of errors.

Especially in cases where interpretation is needed or rules are stated only implicit, it is

essential to ensure the quality and correctness of our extracted rules. However, we

ensured the quality by internal discussions in our group and comparing our results with a

less extensive set of BPMN constraints provided by Silver [Sil11]. And also the

interpretations and according solutions implemented in different modeling tools have

been considered. Moreover, we published all constraints and a technical report [Gei13] on

our web page
7

and are looking forward for feedback from the community for an ongoing

process of improvement for the constraint set.

2.3 XSD-based Standard Serialization

As mentioned in section 1 the standard is closely linked to the normative XSDs and also

more and more modeling tools support the import or export in the XSD-based

serialization format. Therefore, it is of particular interest which standard constraints are

7 http://www.uni-bamberg.de/pi/bpmn-constraints



182

already covered when using this format and whether a schema validation is able to reveal

violations.

The structural aspects defined in the cardinality constraints are directly mappable to XML

schema definitions. So, it is no surprise that most of these constraints are correctly

implemented in the normative XSDs. Exceptions are some aspects which are not directly

viable using XSDs, such as multiple inheritance, or deviations which depend on modeling

decisions. An example is the implementation of mandatory attributes with default values.

Using XML schema definitions, it is sufficient to define a default value and leave out the

definition that an attribute is mandatory, as the default value always applies when no

other value is defined (and therefore a value is always available). Another modeling

decision is the omission of bi-directional references on XML level. An example is the

attribute boundaryEventRefs for Activities. This attribute is omitted as each

BoundaryEventDefinition references the activity to which it is attached by the attribute

attachedToRef. Thus, it is still clearly defined which BoundaryEventDefinition is attached

to which Activity. There also exist several clear violations of CARD constraints: The most

frequent violation is that attributes are defined as mandatory in the standard document but

the XSD marks them as optional. This is the case for 24 constraints. But, four other

cardinality requirements are enforced incorrectly in the normative XSD.

Default values can be easily defined in schema definitions as well as value enumerations

based on basic datatypes such as strings. But, four out of the 41 VAL constraints are

implemented faultily, as required default values are not implemented. Two more

inconsistencies exist affecting the attributes of the elements Transaction and

BoundaryEvent. There, default values are defined in the XSD which are not stated in

[OMG11a].

To implement references, BPMN proposes two different mechanisms [OMG11a, p.476-

477]: If an element must be defined in the same file, the reference is realized using an

xs:IDREF [W3C04b]. If references potentially cross file borders the reference attribute’s

datatype is set to xs:QName [W3C04b]. A schema validation can be used to determine

whether an xs:IDREF is resolvable [W3C04a]. Missing element definitions for xs:QName

references cannot be detected. Moreover, in both cases the reference type violations are

undetectable using a basic schema validation and therefore there is no support for any of

the 107 reference constraints (REF).

As with the extraction, the XSD-based implementation of extended constraints (EXT) is

hard. The observance of most rules can not be enforced by schema definitions. Out of the

152 extended constraints only seven are directly implemented in XSDs. Examples are

constraints regarding the mutual exclusion of attributes (implemented as sub-elements)

using the xs:choice [W3C04a] operator.

To conclude, the XSD-based serialization format introduced in [OMG11a] is a good

starting point to define standard compliant BPMN process models. Especially the basic

model structure and value restrictions are well covered: About 91% of the CARD and

90% of the VAL constraints are enforced by the XSDs. However, due to the missing

reference checking support and only nominal (5%) support for the extended rules, the

total constraint implementation is limited to about 54% of all 611 revealed constraints.

Figure 2 shows the rule coverage in a graphical form.



183

Figure 2: XSD-based serialization: constraint implementation coverage (percentage chart)

Regarding those numbers, it is evident that the usage of XML schema validation alone is

not sufficient to enforce the correctness of models. Tool developers and end users who

use such models need to perform more sophisticated checks to ensure that the model at

hand is in fact standard compliant.

3 Evaluation of Existing Modeling Tools

Today, most BPMN modeling tools provide structural and semantic checks to some

degree which enhance the abilities of XML schema validations. We compared and

analyzed six BPMN editors regarding their ability to produce BPMN compliant models

and their support to enforce the rules presented in section 2.

3.1 Analyzed tools

The analysis of BPMN editors comprises six different process modeling tools namely:

BizAgi Process modeler
8
, camunda Fox modeler

9
, eclipse BPMN2 modeler

10
, itp-

commerce Process Modeler 6 for Visio
11

, Signavio Process Modeler
12

and Yaoqiang

BPMN Editor
13

. All tools are dedicated for BPMN process modeling. Several tools are

freely available as freeware or open source software, but we also evaluate two

commercial editors (Signavio and itp-commerce).

Table 1 shows an overview of the tested modeling tools. Besides the vendor and the

editor name, the actual version under test is stated. Furthermore, it is indicated whether

8 http://www.bizagi.com/download/
9 http://www.camunda.org/design/modeler.html
10 http://www.eclipse.org/bpmn2-modeler/
11 http://www.itp-commerce.com/
12 http://www.signavio.com
13 http://sourceforge.net/projects/bpmn/



184

the tool is commercial (comm.), freely available (freeware) or published as open source

(OS). The base platform is depicted in the subsequent row. Some editors are implemented

as a standalone tool, three editors are implemented as plugins for eclipse or Microsoft

Visio and one editor is cloud-based and usable through a standard web browser.

Moreover, for each modeling tool the default serialization format and the ability to import

or export in the standardized XSD-based format is expressed.

Table 1: Overview of evaluated BPMN process modeling tools

Vendor/

Developer

BizAgi camunda eclipse itp-

commerce

Shi

Yaoqiang

Signavio

Tool name Process

modeler

Fox

modeler

BPMN2

modeler

Process

Modeler 6

for Visio

Yaoqiang

BPMN

editor

Process

Modeler

Version 2.4.0.8 2.0.12 0.2.6 6.3438 2.1.36 7.0.0

License freeware OS OS comm. OS comm.

Platform standalone eclipse eclipse MS Visio standalone cloud-

based

Default

Serialization

Format

prop. BPMN

XSD

BPMN

XSD

MS Visio BPMN

XSD

unknown

Import/Exp

ort support

−/− +/+ +/+ (+)/+ +/+ +/+

(XSD-based

serialization)

3.2 Evaluation Method

To assess the six different modeling tools we perform a three-step approach: First, we

evaluate the supported BPMN conformance level and validation features of the tools

under test. Depending on the determined supported conformance class, we check the

modeling abilities and the serialization correctness in an second step. Finally, some

advanced features and extended constraints are checked. Each step is described in more

detail in the following paragraphs.

Supported conformance level and validation features: [OMG11a, Sec.2] introduces se-

veral conformance levels which define different levels of BPMN support. Especially

the conformance level Process Modeling Conformance is relevant for the evaluation

at hand. This level is refined to four sub-classes: Descriptive, Analytic, Common

Executable and Full Process Modeling Conformance [OMG11a, p.2]. Depending on

the level a modeling tool must support a specific set of BPMN elements and

attributes [OMG11a, p.2-7]. In order to assess the modeling abilities of the tested

modelers it is important to know which conformance class is supported by each tool.

As the tools do not indicate which level they support, the level has to be determined

by analyzing the palette of supported elements and their attributes. Furthermore, for

each editor it is checked whether validation features are implemented. If validation

techniques are used, we check whether the validation has to be performed manually,

whether it is started automatically when the model is saved or exported, or whether

the editor supports real-time validation during modeling.



185

Modeling abilities and serialization correctness: Depending on the supported

conformance classes the editor specific modeling abilities are assessed in the next

step. To achieve this, for each conformance level example processes are modeled

with each editor. The resulting models are checked, whether a) it was possible to

recreate the model, b) the model passes an XML schema validation and c) the model

violates some other constraints.

The example models for the descriptive and analytic sub-classes are gathered from

the BPMN 2.0 by example document provided by the OMG [OMG10]: We evaluate

the ability of the editors to recreate the “Small Examples introducing Core

Concepts” [OMG10, Sec.5]. In order to evaluate the modeling abilities for the

common executable and full conformance sub-classes we use process models

created in a student project containing advanced features regarding Web Services

usage and data handling.

Evaluation of advanced features and extended constraint validation: We select seve-

ral well known correctness aspects from our list of extended constraints
14

and check

whether they are correctly implemented in the modeling tools.

 In [OMG11a, p.54] it is stated that “[i]mporting Xml Schema 1.0, WSDL

2.0 and BPMN 2.0 types MUST be supported”. We assess whether the tools

support this requirement.

 BPMN allows the reuse of elements and processes defined in other files.

So, it is evaluated whether tools are able to reference elements across file-

borders.

 EXT.028/031: SequenceFlows must not cross the borders of pools;

MessageFlows must cross pool borders.

 EXT.096/104: For StartEvents no incoming SequenceFlow, for EndEvents

no outgoing SequenceFlow is allowed.

 EXT.100: For sub-processes only “none” StartEvents are allowed.

 EXT.016-019: The attribute gatewayDirection of Gateways defines

whether the gateway is splitting (attribute value “diverging”) or joining

(“converging”) the control flow. If a gateway has multiple incoming and

outgoing sequence flows, the attribute must have the value “mixed” or

“unspecified” (attribute mandatory for common executable and full

conformance only)

 EXT.057: An Event Sub-Process must not have any incoming or outgoing

SequenceFlows.

3.3 Evaluation Results

In the following, the main findings are described and Table 2 gives an overview of our

evaluation results. In the table “+” denotes that the feature/constraint under test is fully

supported, “−” is used if a feature is not supported and partial support is indicated by

“(+)”.

14 See [Gei13] for a detailed description of the constraints.



186

Table 2: Overview: Evaluation results

Vendor/

Developer

BizAgi camunda eclipse itp-

commerce

Shi Yaoqiang Signavio

Tool name Process

modeler

Fox modeler BPMN2

modeler

Process

Modeler 6

for Visio

Yaoqiang

BPMN editor

Process

Modeler

Supported conformance level and validation features

Supported

conformance
class

(analytic) (analytic) (full) analytic (full) analytic

Model

validation

manual while

opening

model

opening/

saving

real-time/

manual

real-time manual/

saving

Modeling abilites and serialization correctness

Descriptive

creation + + (+) + (+) +
schema valid n/a + + + + +

Analytic

creation (+) + + + + +

schema valid n/a + + + + +

C. Executable

creation n/a n/a + n/a + n/a

schema valid n/a n/a + n/a + n/a

Full
creation n/a n/a (+) n/a + n/a

schema valid n/a n/a + n/a + n/a

Evaluation of advanced features and extended constraint validation

WSDL/XSD/

BPMN import

− − + (+), only

BPMN

+ −

Cross-file

references

− − + + + −

EXT.028/031 + + + + + +

EXT.096/104 + − + + + +

EXT.100 − − − + + −

EXT.016-019 n/a n/a + + (+) (+)

EXT.057 + − n/a + + +

Regarding the conformance classes all tools support at least the analytic sub-class.

However, some elements and minor aspects are missing for most tools. So technically the

editors do not fully support the conformance classes. For example, the BizAgi editor is

not able to model CallActivities which are mandatory for the descriptive conformance

class. Generally the BizAgi Process modeler is a particular case. It is not able to serialize

the model in the standardized XML format. Thus, it is hard to determine the supported

conformance class and it is not possible to perform schema validation of the serialized

models.

Some kind of model validation is implemented in each modeling tool, but only the itp-

commerce and the Yaoqiang editor support real-time checks during modeling. In all other

tools the validation has to be started manually or the validation is only performed when

saving or opening a file.

It is mostly possible to recreate the example models from [OMG10] in the different tools,

but some minor issues exist: Eclipse and Yaoqiang are not able to bind a TextAssociation

to SequenceFlows which is allowed by [OMG11a], resulting in only partial support ((+))



187

for the descriptive sub-class. The BizAgi editor fails to provide support for modeling

Message elements as required by the analytic conformance sub-class. Modeling processes

for the common executable and full conformance class was only performed for eclipse

and Yaoqiang and both editors provide good support for this conformance classes, but

eclipse is not able to model event sub-processes.

Import and usage of WSDL, XSD and BPMN files in a BPMN model is supported by

eclipse and the Yaoqiang editor. Itp-commerce provides support for BPMN imports only.

Thus, only these three editors can handle cross-file references for sub-processes and other

BPMN elements. It is to note, that Signavio supports referencing in the cloud-based

application, but when the model is serialized the referenced elements are either left out or

included in the model, instead of referencing the called element.

The constraints EXT.028 and EXT.031 stating sequence and message flow connection

rules are well implemented in all of the six tools. Either, the editors do not allow invalid

connections or invalid connections are marked during a validation. The SequenceFlow

restrictions for start and end events are also covered in all tools, except for the camunda

modeler which does not check the adherence to this rules. Rule EXT.100 regarding

allowed StartEvent type for sub-process is checked by itp-commerce and Yaoqiang. The

gatewayDirection constraints (EXT.016-019) cannot be assessed for BizAgi and camunda

as the attribute is not existent in the models and their serialization. Yaoqiang and Signavio

cannot handle “mixed” gateways, but eclipse and itp-commerce implement all rules

correctly. EXT.057 is implemented correctly in most tools. Camunda does not implement

the constraint check and eclipse is not able to model event sub-processes.

All in all, the itp-commerce editor has implemented most of the rules checked in our

evaluation. A drawback is that the editor is limited regarding modeling executable

processes and does not support the usage of WSDL and XSD imports.

4 Related Work

Previous research on the correctness of BPMN mainly focuses on establishing formal

semantics for BPMN and providing support for semantic validation, verification and

correctness checks for BPMN models (see for instance [DDO08, LVD09, WG08, GD12]

without claiming to be complete). We also evaluate the “correctness” of BPMN models,

but our work targets another level of abstraction: Correctness in this work refers to

standard compliance, especially regarding model serialization.

Nowadays, various extensions for specific domains, such as cloud application

management [KBBL12], and aspects such as security [BHLR12] and social BPM

[BFV12] are developed. In contrast to this, our work is limited to the standard [OMG11a],

domain-independent and (regarding the set of constraints) technology-independent.

An approach related closely to BPMN serialization is [CT09]. The authors develop a

simplified meta model and an XML-based serialization format for BPMN 1.1 [OMG08].

For this serialization format they provide a mechanism to check references and also

complex constraints can be checked using XPath expressions. Unfortunately, the

approach is not applicable for BPMN 2.0 process models, as the proposed serialization

format is not standard compatible any more.



188

Besides academic work, a set of BPMN constraints, which comprises 39 rules, is

provided by Silver in [Sil11]. Our constraint set is far more extensive for two reasons:

First, we do not exclude all cardinality, value and reference constraints which are already

covered by the normative XSDs. Second, we do not limit our approach to the “Analytic

Process Modeling Conformance subclass” as Silver does. And recently (since January

2013) also the OMG recognized model serialization and interchange between tools as an

important issue. They initiated the BPMN Model Interchange Working Group (BPMN

MIWG)
15

with the goal to provide support for modeling tool developers and to identify

issues in the standard which inhibit interchange of models between tools. Planned outputs

are test cases, feature tests, a set of BPMN 2.0 issues and interchange guidelines
16

. The

group is still working in an initial project phase and no official outcomes have been

released yet.

5 Conclusion and Outlook

In our work we have presented an extensive and technology-independent set of BPMN

serialization constraints. This list is a basis for tool developers as well as for end users

who want to check the standard compliance of serialized BPMN models. All in all, we

have identified 611 different rules in [OMG11a] and have categorized them in four

different categories. An analysis of the standardized XSD-based serialization format of

BPMN shows that only 54% of all rules are enforcable by schema validation. Especially,

extended constraints cannot be checked by such a validation. Therefore, the correctness of

models and their serialization depends on the ability of the modeling tools to enforce the

observance off all constraints.

Our evaluation shows that state-of-the-art modeling editors already implement the

revealed constraints partly. The evaluated tools are able to generate and serialize standard

compliant models with a basic feature set. However, the internal validation mechanisms

of the tool versions tested (see Table 1) still do not cover all revealed constraints which

have to be respected in correct BPMN models. Moreover, the evaluation also shows that

the serialization of models is an important first step, but also the diagram serialization is

still an issue. Thus, we plan to broaden the scope of our rule set to cover BPMN Diagram

Interchange (BPMN DI) constraints as well.

Due to the extensive set of rules, a manual review of the standard compliance of concrete

models is not feasible. In order to provide tool independent conformance checks of

BPMN models we plan to implement a validation suite which checks all serialization

rules automatically. We have implemented automatic checks of all reference rules and are

now extending the validation tool to check extended constraints.

References

[BFV12] Marco Brambilla, Piero Fraternali, and Carmen Vaca. BPMN and Design Patterns for

Engineering Social BPM Solutions. In Business Process Management Workshops,

15 http://www.omgwiki.org/bpmn-miwg/doku.php
16 see: http://www.omgwiki.org/bpmn-miwg/doku.php#outputs



189

volume 99 of Lecture Notes in Business Information Processing, pages 219–230. Springer

Berlin Heidelberg, 2012.

[BHLR12] Achim D. Brucker, Isabelle Hang, Gero L¨uckemeyer, and Raj Ruparel. SecureBPMN:

modeling and enforcing access control requirements in business processes. In Proceedings

of the 17th ACM symposium on Access Control Models and Technologies, SACMAT

’12, pages 123–126. ACM, 2012.

[BPM04] BPMI (Business Process Management Initiative). Business Process Modeling Notation

(BPMN) Version 1.0, May 2004.

[CT09] Michele Chinosi and Alberto Trombetta. Modeling and validating BPMN diagrams. In

Commerce and Enterprise Computing, 2009. CEC’09. IEEE Conference on, pages 353–

360. IEEE, 2009.

[DDO08] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis of

business process models in BPMN. Information and Software Technology, 50(12):1281 –

1294, 2008.

[GD12] Pieter Van Gorp and Remco M. Dijkman. A visual token-based formalization of BPMN

2.0 based on in-place transformations. Information and Software Technology, 2012.

[Gei13] Matthias Geiger. BPMN 2.0 Process Model Serialization Constraints. Bamberger Beiträge

zur Wirtschaftsinformatik und Angewandten Informatik, no. 92, Otto-Friedrich-

Universität Bamberg, May 2013.

[GW13] Matthias Geiger and Guido Wirtz. Detecting Interoperability and Correctness Issues in

BPMN 2.0 Process Models. In Proceedings of the 5th Central-European Workshop on

Services and their Composition (ZEUS), Rostock, Germany, CEUR Workshop

Proceedings, pages 39–42. CEUR-WS.org, Feb 2013.

[KBBL12] Oliver Kopp, Tobias Binz, Uwe Breitenb¨ucher, and Frank Leymann. BPMN4TOSCA:

A Domain-Specific Language to Model Management Plans for Composite Applications.

In Business Process Model and Notation, volume 125 of Lecture Notes in Business

Information Processing, pages 38–52. Springer Berlin Heidelberg, 2012.

[KMWL09] Oliver Kopp, Daniel Martin, DanielWutke, and Frank Leymann. The Difference

Between Graph-Based and Block-Structured Business Process Modelling Languages.

Enterprise Modelling and Information Systems Architectures, 4(1):3–13, 2009.

[LVD09] Niels Lohmann, Eric Verbeek, and Remco Dijkman. PetriNet Transformations for

BusinessProcesses ASurvey. In Transactions on Petri Nets and Other Models of

Concurrency II, volume 5460 of Lecture Notes in Computer Science, pages 46–63.

Springer Berlin Heidelberg, 2009.

[LW13] J¨org Lenhard and Guido Wirtz. Detecting Portability Issues in Model-Driven BPEL

Mappings. In Proceedings of the 25th International Conference on Software Engineering

and Knowledge Engineering (SEKE’2013), Boston, USA, June 2013.

[OAS07] OASIS. Web Services Business Process Execution Language, April 2007. v2.0.

[ODtHvdA08] Chun Ouyang, Marlon Dumas, Arthur H.M. ter Hofstede, and Wil M.P. van der

Aalst. Pattern-based translation of BPMN process models to BPEL web services.

International Journal of Web Services Research (IJWSR), 5(1):42–62, 2008.

[OMG08] OMG (Object Management Group). Business Process Modeling Notation (BPMN)

Version 1.1, January 2008.

[OMG09] OMG (Object Management Group). Business Process Modeling Notation (BPMN)

Version 1.2, January 2009.

[OMG10] OMG (Object Management Group). BPMN 2.0 by Example, June 2010.

[OMG11a] OMG (Object Management Group). Business Process Model and Notation (BPMN)

Version 2.0, January 2011.

[OMG11b] OMG (Object Management Group). OMG MOF 2 XMI Mapping Specification Version

2.4.1, August 2011.

[RM06] Jan C. Recker and Jan Mendling. On the translation between BPMN and BPEL:

Conceptual mismatch between process modeling languages. In 18th International



190

Conference on Advanced Information Systems Engineering. Proceedings of Workshops

and Doctoral Consortium, pages 521–532. Namur University Press, 2006.

[Sil11] Bruce Silver. BPMN method and style. Cody-Cassidy Press, Aptos, CA, USA, 2nd edition,

2011.

[W3C04a] W3C. XML Schema Part 1: Structures Second Edition, October 2004.

[W3C04b] W3C. XML Schema Part 2: Datatypes Second Edition, October 2004.

[WDGW08] Matthias Weidlich, Gero Decker, Alexander Grosskopf, and Mathias Weske. BPEL to

BPMN: TheMyth of a Straight-ForwardMapping. In On the Move to Meaningful Internet

Systems: OTM 2008, volume 5331 of Lecture Notes in Computer Science, pages 265–

282. Springer Berlin Heidelberg, 2008.

[WG08] PeterY.H. Wong and Jeremy Gibbons. A Process Semantics for BPMN. In Formal

Methods and Software Engineering, volume 5256 of Lecture Notes in Computer Science,

pages 355–374. Springer Berlin Heidelberg, 2008.


