
Detlef Hühnlein et al. (Eds.): Open Identity Summit 2015,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2015 117

Automatic Recognition, Processing and Attacking of

Single Sign-On Protocols with Burp Suite

Christian Mainka1 Vladislav Mladenov2 Tim Guenther3 Jörg Schwenk4

Abstract: SAML, Mozilla BrowserID, OpenID, OpenID Connect, Facebook Connect, Microsoft
Account, OAuth — today’s web applications are supporting a large set of Single Sign-On (SSO)
solutions. Some of them have common properties and behavior, others are completely different.
This paper will give an overview of modern SSO protocols. We classify them into two groups and
show how to distinguish them from each other. We provide EsPReSSO, an open source Burpsuite
plugin that identifies SSO protocols automatically in a browser’s HTTP traffic and helps penetration
testers and security auditors to manipulate SSO flows easily.

1 Introduction

Using username/password combinations to authenticate on websites is still dominating the

Internet. From the security point of view the management of plethora login credentials is

not a trivial task and carries many risks – users tend to use weak and easy to remember

passwords or reuse passwords between different sites. Even if password managers are

used, attacks are still applicable [Si14, Li14].

SSO systems simplify login procedures by using an Identity Provider (IdP) to issue au-

thentication tokens which can be consumed by Service Providers (SPs). Thus, instead of

managing multiple username/password combinations for each website, a user just needs

an account at an IdP which can then be used to log in on an SP.

The importance of SSO has become more important in the recent years, since large com-

panies like Facebook, Google, Microsoft and Salesforce offer different SSO services. For

instance, Facebook’s SSO service Facebook Connect allows its users to connect their

Facebook account with various applications. More than 7 million applications use this

protocol[We]. Additionally, a non-academic overview [Ja13] claims that 87% of U.S. cus-

tomers are aware of SSO and more than half have tried it.

Today, there are several different SSO protocols. The most widespread are Kerberos,

SAML, OAuth, OpenID, and OpenID Connect. Kerberos is provided in Microsoft’s prod-

ucts like Active Directory Federation Service (ADFS) but rarely used in web applications.

1 Horst Görtz Institute, Ruhr-University Bochum, Germany, christian.mainka@rub.de

The research was supported by the German Ministry of research and Education (BMBF) as part of the VERTRAG

research project.
2 Horst Görtz Institute, Ruhr-University Bochum, Germany, vladislav.mladenov@rub.de

The author was supported by the SkIDentity project of the German Federal Ministry of Economics and Tech-

nology (BMWi,FKZ: 01MD11030).
3 Horst Görtz Institute, Ruhr-University Bochum, Germany, tim.guenther@rub.de
4 Horst Görtz Institute, Ruhr-University Bochum, Germany, joerg.schwenk@rub.de



118 Christian Mainka et al.

SAML is a flexible and well standardized protocol offering extensive interoperability fea-

tures commonly used in enterprise solutions, governmental services and large companies.

OAuth, OpenID and OpenID Connect are less complex than SAML and easy to deploy.

Thus, these protocols are mostly used for delegated authentication and authorization for

websites and mobile devices. In recent years, companies have created and pushed their

own SSO protocols: Facebook designed Facebook Connect on top of the OAuth specifi-

cation. With Microsoft Account, Microsoft also offers an SSO protocol which is based on

OAuth. Only Mozilla developed their SSO protocol Mozilla BrowserID from scratch.

Fig. 1: Modern websites offer multiple login possibilities.

In summary, SSO is com-

monly used in all ar-

eas – desktop and web

applications, mobile de-

vices, government insti-

tutions and enterprise en-

vironments. In this fo-

cus we mainly concen-

trate on web applications.

Figure 1 depicts a com-

mon example of what is called social login on a website. The user can either login using its

username and password, or use one of his existing accounts (Microsoft, Facebook, Google,

. . . ). The hidden part of the social login is the underlying protocol: The user does not see

(because it is not necessary) which exact SSO protocol is used. However, this information

is important when it comes to security audits: a security auditor (pentester) needs to know

which protocol is used so that he can evaluate its security.

A plethora design flaws and implementation errors in Kerberos [Sl01, Sh02], SAML [Ma14,

So12], OpenID [WCW12, TT07, SHB12], OAuth [Eg13, YZ14], OpenID Connect [MM15c,

MM15b, MM15a], Mozilla BrowserID [FKS14], and Facebook Connect [ZE14] led to

critical vulnerabilities.

There exist different approaches to analyze SSO: (1) Via formal analysis the according

protocol can be depicted, different threat scenarios can be automatically evaluated and

protocol design flaws plus risks can be discovered. Unfortunately, implementation flaws

cannot be detected via formal analysis. (2) Many researches concentrate on the analysis

of existing implementations. The authors tend to introduce a novel tool, which provides

an automated way to provide the security analysis. Unfortunately, such tools are limited

to only one SSO protocol or one attacker model. An additional limitation is the extensi-

bility in order to support more attack vectors and the false positive or false negative rates

according the discovered flaws.

The limitations mentioned above are relevant for researchers elaborating novel attacks

and security penetration testers, evaluating different services. Such analysis requires: (1)

Recognition of protocols and relevant messages, (2) automated decoding of messages and

security relevant parameters, (3) a flexible approach enabling the manual manipulation

of different messages and parameters within the authentication protocol and (4) a set of

existing attack vectors, which can be used for attacks.



Automatic Recognition, Processing and Attacking of Single Sign-On Protocols 119

To cover these limitations, we created a tool EsPReSSO5 which is able to (1) detect and

highlight SSO messages in the browser’s traffic flow (i.e. the SSO token in the HTTP

parameters) (2) determine the used SSO protocol. It currently supports all major SSO

protocols that are used in modern web applications. (3) Additionally, EsPReSSO detects

supported SSO protocols by just loading a website, e.g. a login page. (4) After the recog-

nition of the SSO protocol EsPReSSO facilitates the manipulation of the related messages

and automatically decodes and encodes them.

The main challenge tackled by EsPReSSO is the distinction between the different SSO

protocols. This task requires an in-depth analysis of all protocols and detailed knowledge

of the differences between them. For example, OpenID Connect and Facebook Connect

are both based on OAuth and similar. Thus, a simple verification if an OAuth parame-

ter is transmitted will not be able to distinguish between these protocols. Our paper will

therefore give a detailed overview of recent SSO protocols and how they can be identified.

Contributions. The main contributions of this paper are the following:

• We provide an overview of seven modern SSO protocols. We classify them into

OAuth family and other protocols and show, that the general protocol can be divided

into a few generic steps among all those SSO protocols.

• We have created EsPReSSO, an easy to use open source Burpsuite plugin that au-

tomatically identifies SSO protocol messages and classifies them, so that security

audits of modern web applications can benefit from it.

2 Foundations

2.1 Single Sign-On

SSO is a concept to login a user on an SP without storing any credentials on the SP. SSO

therefore uses an IdP as a trusted third party. The IdP creates an SSO token, sends it back

to the user, who passes it to the SP.

A generic description of SSO protocols is depicted in Figure 2. We will give more details

on the concrete protocols in section 3. Figure 2 illustrates an abstract and generic proto-

col flow for modern SSO protocols like OpenID, OpenID Connect, SAML and Facebook

Connect.

(1.) The user starts a login request using his user agent (UA) on the SP, for example by

submitting his email address (Mozilla BrowserID) or his identifier URL (OpenID, OpenID

Connect). (2.) Some SSO protocols then contact the IdP directly (server to server commu-

nication). This phase can be used to establish key material which is later used to sign and

verify the messages or to determine the endpoint interfaces of the IdP, which will be used.

Such an endpoint is for instance the login page at the IdP for the user. (3.) The SP re-

sponds to the first message with a token request. This message is then forwarded to the

5 https://github.com/RUB-NDS/BurpSSOExtension



120 Christian Mainka et al.

User UA SP IdP

(1.) Login request

(2.) Information Gathering

(3.) Token Request

(4.) Authentication

(5.) Token Response

(6.) Token Verification

(7.) success?

Fig. 2: Generic protocol flow for SSO protocols.

SP by the user (to be more precise, by his UA.). (4.) The user then authenticates to his

IdP, typically by entering his username/password combination. Some protocols and IdPs

require further user interaction in order to authorize the access to user’s data like email

address, nickname, birthday or gender. This step is often transparent for the User if he is

already authenticated on the IdP. (5.) Next, the IdP sends the token response. This message

contains all information that is necessary for the SP to identify the user. The message is

forwarded to the IdP. (6.) The SP can then optionally contact the IdP again to verify the

token response. Depending on the protocol, this is not necessarily (e.g. in SAML), because

the token response contains a signature that can be verified.

2.2 Burpsuite

Burpsuite (Burp) is a penetration test tool by Portswigger6. It is available in a free and a

commercial professional version. Burp acts as an intercepting proxy. This way, Burp can

be configured on any UA as a proxy to log, intercept, display and modify HTTP traffic. The

most commonly used UAs for Burp is a web browser, but it is also possible to configure

it for any other application (e.g. Thunderbird, Skype, . . . ). In this paper, we use the free

version of Burp. Features of the professional version are not necessary for our research.

Burp is often used by security auditors, researchers and penetration testers for the analysis

of different systems. The core functionality of Burp is to intercept and display HTTP

messages in a structured manner. Thus, a tester gets a quick overview of the target system,

all transmitted messages and parameters. In addition, Burp provides a GUI allowing the

full control over all messages - drop, forward, repeat, modify, send later, etc.. Thus, a tester

can design different attack scenarios and execute them manually via Burp. The results of

the attacks can be seen directly in the UA and analyzed by the tester.

6 http://portswigger.net/



Automatic Recognition, Processing and Attacking of Single Sign-On Protocols 121

Simple parameter manipulations are supported by Burp and can be executed manually.

However, more complex scenarios like decoding, manipulating and signing messages can-

not be started in automated manner. In addition, manually analyzing each HTTP message

can be time consuming and is often not necessary. In order to facilitate more complex

scenarios Burp offers extension points, which allow writing custom features for it. Burp

extensions can monitor and analyze any HTTP message that is passed through its proxy.

Extensions can modify them and create new UI elements to display them.

3 SSO Protocols

This section will give a short overview of existing SSO protocols used in the web and

introduces the necessary details used in EsPReSSO to identify them.

3.1 Protocol Classification

EsPReSSO is able to distinguish between seven different SSO protocols. We therefore

classified them into two categories as shown in Table 1: (1.) SSO protocols belonging to

the OAuth-Family and (2.) other protocols.

OAuth-Family Other

Decentralized Monolithic Decentralized Monolithic

OAuth Facebook Connect OpenID Mozilla BrowserID

OpenID Connect Microsoft Account SAML

Tab. 1: Overview on existing SSO protocols used in the web and their classification.

The OAuth-Family consists of four different protocols. (1.) OAuth itself [RF] and (2.) OpenID

Connect, which is an extension of the original OAuth protocol [Th14]. Both protocols can

be used decentralized. By decentralized, we mean, that the protocol is independent of a

specific provider. (3.) Facebook Connect [Mo08] and (4.) Microsoft Account [Mi08] in

contrast are monolithic, because they relay on the Facebook resp. Microsoft servers. Other

protocols are (1.) OpenID [sp07] and (2.) SAML [Or05], which are both decentralized,

and Mozilla BrowserID, which is monolithic7.

3.2 OAuth-Family Protocol Description

The following sections will give a quick overview of protocols of the OAuth family. We do

not provide details on how the protocol works, but rather concentrate on the aspects that

are necessary to distinguish them from each other. Our results are summarized in Table 2

on Page 124.

7 Mozilla BrowserID allows one to setup one’s IdP (Primary IdP-feature), but even in this use-case, the protocol

contacts the Mozilla server at login.persona.org first.



122 Christian Mainka et al.

3.2.1 OAuth

OAuth is an authorization framework that allows delegating access on specific resources

to a third party. OAuth itself is not an SSO protocol [Sal14], but since previous research

has shown, that developers tend to falsely use it for SSO [Ch14], we decided to add OAuth

to the list of supported SSO protocols by EsPReSSO. Taking Figure 2, OAuth follows this

protocol flow:

(1.) The user sends his login request to the SP.8 (2.) The OAuth protocol does not use the

information gathering phase, because all information on the IdP9 is configured once be-

forehand. (3.) According to the specification [RF] within the token request the following

parameters are required:response_type and client_id. The parameter response_type deter-

mines the flow that is going to be used. The most common flows are code and token. Other

flows can be found in the specification [RF]. The parameter client_id is a unique string

identifying the SP. Further optional parameters, which can be used to identify an OAuth

token request are: scope for requesting permissions (e.g. the address-book or the calendar),

state and redirect_uri. (4.) Then, the user has to authenticate to the IdP and authorize

the requested permissions (scope) to the SP. (5.) The IdP generates the token response. If

the code flow is used, the token response contains a code parameter. For the token flow, it

contains a access_token parameter. (6.) The SP uses the received code or access_token to

retrieve information about the user from the IdP and to authenticate him.

3.2.2 OpenID Connect

OpenID Connect is a decentralized SSO protocol by adding an authentication layer to

OAuth [Th14]. The general flow is almost identical to OAuth as described in the previ-

ous section. Thus, the distinction between OpenID Connect and OAuth is not trivial and

requires fine granular comparison.

According the specification a OpenID Connect token request must contain the following

parameter: scope, client_id, response_type, redirect_uri. Unfortunately, the parameters

are commonly used in OAuth too. Thus, the distinction on this level is not possible. How-

ever, in OpenID Connect the token request must contain the value openid in the scope pa-

rameter. Additionally, the token request can contain the parameter nonce, which is required

within the token flow. Based on these characteristics the token request can be recognized.

The recognition of OpenID Connect token responses is more complicated and requires

more detailed distinction. Within the token flow an additional parameter id_token will be

sent by the IdP to the SP. The id_token is used only in OpenID Connect and provides

information about the authenticated user. Thus, the identification of the token response is

simple.

8 In the context of OAuth, the user is commonly referred to as the Resource Owner and the SP as the Client. To

simplify the description and to unify all SSO protocol, we strictly use user/SP naming.
9 Again, we use the term IdP instead of the OAuth term Authorization Server. We also use the term IdP for the

Resource Server.



Automatic Recognition, Processing and Attacking of Single Sign-On Protocols 123

The OpenID Connect token response within the code flow is identical to the OAuth flow.

The only way to provide the distinction is to check the according token request sent before

and bind both messages. This binding can be done by using parameters like client_id,

state and redirect_uri, which are sent in the token request and token response.

3.2.3 Facebook Connect

Facebook Connect is a monolithic SSO protocol. It is based on OAuth and uses the same

protocol flow as described in subsubsection 3.2.1.

The token request within the Facebook Connect protocol can be recognized by the follow-

ing characteristics:

• The scope parameter can contain the value signed_request.

• In addition to the required OAuth parameters within a token request, the following

parameters are sent: domain, origin, sdk, app_id.

Identical to OpenID Connect, the recognition of the token response is not trivial. Within

the token flow, the parameter signed_request can be used. The value of this parameter is a

JSON Web Token (JWT) containing information about the authenticated user. Similar to

OpenID Connect the binding between the token request and token response via parameters

like client_id, state, redirect_uri can be used.

Since Facebook Connect is monolithic, calling the public known SSO endpoints of Face-

book’s API can be used to identify the flow, for instance https://graph.facebook.

com.

3.2.4 Microsoft Account

Microsoft Account is monolithic SSO protocol. It is based on OAuth and uses the same

protocol flow as described in subsubsection 3.2.1. Microsoft Account token request can

be easily detected by observing the scope parameter, which contains one of the following

values: wl.basic, wl.offline_access, wl.signin.

Identical to OpenID Connect, the recognition of the token response is not trivial. Within the

token flow, the parameter authentication_token can be used. The value of this parameter

is a JWT containing information about the authenticated user. Similar to OpenID Connect

the binding between the token request and token response via parameters like client_id,

state, redirect_uri can be used.

Since Microsoft Account is monolithic, calling the public known SSO endpoints of Mi-

crosoft can be used to identify the flow, for instance https://login.live.com/oauth20_

authorize.srf.



124 Christian Mainka et al.

Protocol Message Type Recognition

OAuth Token Request Parameter: response_type

Token Response Parameter: code OR access_token

OpenID Connect Token Request Parameter: scope contains openid, nonce

Token Response Parameter: id_token

Facebook Connect Token Request Parameter: domain, origin, sdk, app_id, scope

contains signed_request

Token Response Parameter: signed_request, domain, origin, sdk,

app_id

URL http://static.ak.facebook.com/connect/xd_

arbiter

https://graph.facebook.com

Microsoft Account Token Request Parameter: scope contains wl.basic,

wl.offline_access or wl.signin

Token Response Parameter: authentication_token

URL https://login.live.com/oauth20_authorize.

srf

https://apis.live.net

https://www.contoso.com/callback.htm

Tab. 2: OAuth-Family message recognition and distinction

3.3 Other SSO Protocols

In the following sections, we describe SSO protocols that are not based on OAuth. We

again focus on the properties which are important to identify the protocol rather than giving

a complete protocol description.

3.3.1 SAML

SAML is a decentralized SSO protocol that uses XML to describe the security token.

In the SAML protocol flow, there is commonly no interaction between the SP and the

IdP 10, so Steps (2.) and (6.) in Figure 2 are skipped. The protocol flow is as follows:

(1.) The user submits his login request to the SP. (3.) The SP generates the token request

which contains a parameter SAMLRequest. The value of the parameter is basically XML

and contains information on the to be used IdP (e.g. its URL). It is compressed using the

deflate algorithm [De96] (optional), then encoded using Base64 [Jo06] followed by an

URL-encoding [BLFM05]. (6.) The IdP generates the token response. This is again XML

that is encoded using Base64 and optionally using URL-encoding. The result is stored in

a parameter named SAMLResponse.

10 An exception to this is the SAML Artifact Binding [Or05, Section 4.1.3]



Automatic Recognition, Processing and Attacking of Single Sign-On Protocols 125

3.3.2 OpenID

OpenID is a decentralized SSO protocol, but in contrast to, for example, SAML, it is

open for dynamically using an IdP without any pre-configuration. By this means, anyone

owning an OpenID can submit his identifier, which is an URL, to an SP in Step (1.) as

shown in Figure 2. The SP will then discover the IdP in Step (2.) . He browses the URL

and retrieves in this way the URL of the IdP. (3.) Next, the SP generates the token request

and sends it back to the user. OpenID messages are easy to distinguish from other SSO

protocols, since relevant all parameters start with openid.*. Message (3.) can be identified

by the parameter openid.mode=checkid_setup. Authentication to the IdP is provided as usual

in Step (4.) . The IdP then generates the token response in Step (5.) . This message can be

identified due to the presence of a signature with parameter openid.sig. (6.) The SP can

optionally send the token response to the IdP and sets openid.mode=check_authentication

or he can choose to verify the signature on its own.

3.3.3 Mozilla BrowserID

Mozilla BrowserID is a monolithic SSO protocol developed by Mozilla and using Mozilla’s

server as an IdP during the authentication process. Interestingly, in Mozilla BrowserID

using arbitrary IdPs is possible. However, Mozilla’s SSO API is always called within the

protocol flow.

The recognition of Mozilla BrowserID is possible by the detection of the HTTP parameter

assertion containing information about the authenticated user within a JWT and a cookie

named browserid_state. In addition, a JSON message containing key material can be used

for the detection. The following parameters occurs within the message: pubkey, p, q, g,

algorithm, duration and email.

4 EsPReSSO

This section provides a closer look on the design our Burp extension EsPReSSO.

4.1 Idea and Motivation

The Burp Extension for Processing and Recognition of Single Sign-On Protocols (EsPRe-

SSO), simplifies the analysis of SSO protocol flows. During our manual analysis of SSO,

we often meet the problem to do the same repetitive work over and over again to determine

the used protocol. To speed up the identification and to help inexperienced penetration

testers, we decided to develop EsPReSSO.

Its simple idea is to have an automatic scanning utility that passively inspects a browser’s

traffic by scanning HTTP parameters and keywords. In the background the analyzing al-

gorithm processes checks on the messages. If specific keywords and parameter-value pairs



126 Christian Mainka et al.

occur, the request/response is highlighted and marked as the recognized protocol. Addi-

tional we recognize SSO login possibilities by searching HTTP body responses, to track

entry points for further research.

4.2 Design

Fig. 3: Setup of the scanner.

EsPReSSO’s core functionality is its scanning engine and the presentation of the results.

One of our design goals is to stick as close as possible to Burp’s user experience. By this

means, we used existing structures like the logging mechanisms, the proxy history and its

entries.

4.2.1 Scanner

The scanner carries out the detection of the SSO protocols according the described charac-

teristics in section 3. Initially, the scanner uses Burp’s interfaces and automatically receives

all incoming traffic. Consequentially, it analyzes every loaded website for SSO login pos-

sibilities. Simultaneously, it scans the HTTP parameter and detects a SSO authentication

process and the according SSO protocol.



Automatic Recognition, Processing and Attacking of Single Sign-On Protocols 127

The first submodule checks for the possibility to login with a specific SSO module, for

example OpenID or Facebook Connect. This is implemented by searching the HTTP re-

sponse messages through regular expressions for specific key words.

The second submodule inspects the HTTP traffic for specific properties that identify SSO

protocols. It therefore searches successively for characteristics that are unique in each SSO

protocol (cf. section 3). Please note the order of the given SSO modules, because distin-

guishing between protocols which partly base on the same protocol is difficult. OAuth is

part of the protocols OpenID Connect, Microsoft Account and Facebook Connect, there-

fore we check these protocols first.

In addition, the scanner collects all collected information about the recognized SSO pro-

tocols, which allows the analysis afterwards.

4.2.2 Visualizer

Once SSO relevant parameters are detected, they have to be visualized. The Visualizer car-

ries out this task by handling and filtering the collected data, converting the informations

in human readable format (e.g. Base64-decoding or inflating) and calling different Burp

APIs to display the results.

In detail, the Visualizer includes the following features:

Burp History Burp provides a history tab containing all intercepted messages. Thus, se-

curity auditors get an overview of the entire communication and can statically ana-

lyze the intercepted data. The Visualizer facilitates the evaluation process by high-

lighting the SSO relevant messages and by providing additional information about

the recognized protocol.

SSO History A new Burp history window displays recognized protocols with additional

data, for example, the used token and the protocol name. In comparison to the SSO

History window, only SSO relevant messages will be displayed. The Visualizer pro-

vides more information about the messages, for example, the relation to other mes-

sages and the decoded content.

Follow SSO Flow By right clicking on a SSO History item a new tab is dynamically

attached to the view with the complete protocol flow of the entry.11 Token requests

and responses will be assigned to each other, which facilitates the analysis of the

entire protocol.

JSON Tab By analyzing the MIME-type of the HTTP messages, the Visualizer detects

JSON messages and displays them. This feature is often used in OAuth to transmit

data to the SP.

JWT Tab Protocols that are known to make use of JSON Web Tokens (JWT) get auto-

matically a new tab to view the decoded JWT.

SAMLResponse/Request Tab Extra tab that displays the fully decoded and deflated SAML

Request/Response messages.

11 This feature is inspired by Wireshark’s follow TCP stream feature



128 Christian Mainka et al.

All new tabs come with syntax highlighting12.

4.2.3 Manipulator

Security auditors often have to manipulate HTTP messages in order to simulate differ-

ent attacks. Thus, in addition to the visualization of the protocols, EsPReSSO offers the

possibility to modify the content of the messages.

In order to process the manipulations, the Manipulator offers the following features:

• Editable area containing all relevant parameters and enabling the modifications.

• Modifications will be detected and the old content will be replaced. The flexible

architecture of EsPReSSO allows the manual or semi-automatic execution of modi-

fications by choosing an attack vector from a predefined set of attacks.

• Data, which is transformed in a human readable format, will be transformed back to

the original format. For instance, SAML tokens will be automatically decoded and

— if necessary — deflated.

5 Related Work

SSO Security Tools. In 2013, Bai et al. [Ba13] have proposed AuthScan, a framework to

extract the authentication protocol specifications automatically from implementations. The

authors concentrated on Man-in-the-Middle (MitM) attacks, Replay attacks and Guessable

tokens. More complex attacks like token manipulations were not considered. In the same

year, Wang et al. [Xi13] developed a tool named InteGuard detecting the invariance in the

communication between the client and SP to prevent logical flaws in the latter one. Another

tool similar to InteGuard is BLOCK [LX11]. Both tools can detect and mitigate attacks,

but cannot be used for penetration testing of existing implementations and manipulating

the traffic. Zhou et al. [YZ14] published on USENIX’14 a fully automated tool named

SSOScan for analyzing the security of OAuth implementations and described five attacks,

which can be automatically tested by the tool. Further SSO protocols are not considered.

In 2014, Mainka et al. [MM15d] published a fully automated tool acting as a malicious IdP

for analyzing the security of OpenID implementations and described two novel attacks.

SSO extensions. In 2015 an extension called “SAMLyze” was published at Black Hat [Ba15].

Its goal is to pentest SAML SPs fast and easy against XXE, DTDs and to perform auto-

matically a variety of SAML validations. In 2015 another extension analyzing SAML SPs

was published [Bi15]. It contains two core functionalities: Manipulating SAML Messages

and manage X.509 certificates.

However, both extensions concentrate on SAML but to not consider further SSO protocols.

12 We use RSyntaxTextArea: http://sourceforge.net/projects/rsyntaxtextarea/



Automatic Recognition, Processing and Attacking of Single Sign-On Protocols 129

6 Conclusion and Future Work

EsPReSSO is the initial approach to create a tool capable to analyze different SSO proto-

cols according their characteristics, to display all relevant parameters in a human readable

format, and to manipulate the intercepted data in order to simulate different attacks. Thus,

EsPReSSO facilitates the security analysis of SSO protocols.

EsPReSSO contains three different modules: Scanner, Visualizer and Manipulator. Each of

these components can be easily extended. Thus, the detection of further protocols, further

features regarding the depiction of the messages and manipulation possibilities can be

added.

To the best of our knowledge, EsPReSSO is the first tool capable to detect, display and

modify multiple different SSO protocols at the same time.

In future, EsPReSSO’s functionality will be tested on a large set of websites and if needed

modifications approving the detection will be implemented. Another issue is the enlarge-

ment of the available attacking set by considering attacks like XML Signature Wrapping

(XSW) or attacks on JWTs.

References

[Ba13] Bai, Guangdong; Lei, Jike; Meng, Guozhu; Venkatraman, Sai Sathyanarayan; Saxena,
Prateek; Sun, Jun; Liu, Yang; Dong, Jin Song: AUTHSCAN: Automatic extraction of
web authentication protocols from implementations. NDSS, February, 2013.

[Ba15] Barber, Jon: , SAMLyze, August 2015.

[Bi15] Bischofberger, Roland: , SAMLRaider, Juli 2015.

[BLFM05] Berners-Lee, T.; Fielding, R.; Masinter, L.: , Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986 (INTERNET STANDARD), January 2005. Updated by
RFCs 6874, 7320.

[Ch14] Chen, Eric; Pei, Yutong; Chen, Shuo; Tian, Yuan; Kotcher, Robert; Tague, Patrick:
OAuth Demystied for Mobile Application Developers. In: Proceedings of the ACM
Conference on Computer and Communications Security (CCS). ACM – Association
for Computing Machinery, November 2014.

[De96] Deutsch, P.: , DEFLATE Compressed Data Format Specification version 1.3. RFC 1951
(Informational), May 1996.

[Eg13] Egor Homakov: , How we hacked Facebook with OAuth2 and Chrome bugs, Februrary
2013.

[FKS14] Fett, Daniel; Kusters, Ralf; Schmitz, Guido: An expressive model for the Web infras-
tructure: Definition and application to the Browser ID SSO system. In: Security and
Privacy (SP), 2014 IEEE Symposium on. IEEE, pp. 673–688, 2014.

[Ja13] Janrain: , 2013 Consumer Research: The Value of Social Login, 2013.

[Jo06] Josefsson, S.: , The Base16, Base32, and Base64 Data Encodings. RFC 4648 (Proposed
Standard), October 2006.



130 Christian Mainka et al.

[Li14] Li, Zhiwei; He, Warren; Akhawe, Devdatta; Song, Dawn: The emperor’s new password
manager: Security analysis of web-based password managers. In: 23rd USENIX Secu-
rity Symposium (USENIX Security 14). 2014.

[LX11] Li, Xiaowei; Xue, Yuan: BLOCK: A Black-box Approach for Detection of State Viola-
tion Attacks Towards Web Applications. In: Proceedings of the 27th Annual Computer
Security Applications Conference. ACSAC ’11, ACM, New York, NY, USA, 2011.

[Ma14] Mainka, Christian; Mladenov, Vladislav; Feldmann, Florian; Krautwald, Julian;
Schwenk, Jörg: Your Software at my Service: Security Analysis of SaaS Single Sign-
On Solutions in the Cloud. In: Proceedings of the 6th edition of the ACM Workshop on
Cloud Computing Security, CCSW ’14, Scottsdale, Arizona, USA, November 7, 2014.
pp. 93–104, 2014.

[Mi08] Microsoft: , One account for all things Microsoft, May 2008.

[MM15a] Mainka, Christian; Mladenov, Vladislav: , Connect2id Acknowledgement, 2015.

[MM15b] Mainka, Christian; Mladenov, Vladislav: , CVE-2015-0959, 2015.

[MM15c] Mainka, Christian; Mladenov, Vladislav: , CVE-2015-0960, 2015.

[MM15d] Mainka, Christian; Mladenov, Vladislav: , Do not trust me: Using malicious IdPs for
analyzing and attacking Single Sign-On (Full Version with Attachments), 2015. [online]
http://bit.ly/maliciousIdPs_fullversion.

[Mo08] Morin, Dave: , Announcing Facebook Connect, May 2008.

[Or05] Organization for the Advancement of Structured Information Standards: . Security As-
sertion Markup Language (SAML) v2.0, 2005.

[RF] RFC6749, IETF: , The OAuth 2.0 Authorization Framework.

[Sal14] Salesforce.com, inc. Inside OpenID Connect on Force.com, 2014.

[Sh02] Shiflett, Chris: , Passport Hacking Revisited, 2002.

[SHB12] Sun, San-Tsai; Hawkey, Kirstie; Beznosov, Konstantin: Systematically breaking and fix-
ing OpenID security: Formal analysis, semi-automated empirical evaluation, and prac-
tical countermeasures. Computers & Security, 31(4), 2012.

[Si14] Silver, David; Jana, Suman; Chen, Eric; Jackson, Collin; Boneh, Dan: Password man-
agers: Attacks and defenses. In: Proceedings of the 23rd Usenix Security Symposium.
2014.

[Sl01] Slemko, Marc: , Microsoft Passport to Trouble, 2001.

[So12] Somorovsky, Juraj; Mayer, Andreas; Schwenk, Jörg; Kampmann, Marco; Jensen,
Meiko: On Breaking SAML: Be Whoever You Want to Be. In: Presented as part of
the 21st USENIX Security Symposium (USENIX Security 12). USENIX, Bellevue,
WA, pp. 397–412, 2012.

[sp07] specs@openid.net: , OpenID Authentication 2.0 – Final, December 2007.

[Th14] The OpenID Foundation (OIDF): , OpenID Connect Core 1.0, February 2014.

[TT07] Tsyrklevich, Eugene; Tsyrklevich, Vlad: , Single Sign-On for the Internet: A Security
Story, July and August 2007.



Automatic Recognition, Processing and Attacking of Single Sign-On Protocols 131

[WCW12] Wang, Rui; Chen, Shuo; Wang, XiaoFeng: Signing Me onto Your Accounts through
Facebook and Google: A Traffic-Guided Security Study of Commercially Deployed
Single-Sign-On Web Services. In: Proceedings of the 2012 IEEE Symposium on Secu-
rity and Privacy. SP ’12, IEEE Computer Society, Washington, DC, USA, 2012.

[We] Websites using Facebook Connect. visited on 2015-05-25.

[Xi13] Xing, Luyi; Chen, Yangyi; Wang, X; Chen, Shuo: InteGuard: Toward Automatic Protec-
tion of Third-Party Web Service Integrations. In: Proceedings of 20th Annual Network
& Distributed System Security Symposium. 2013.

[YZ14] Yuchen Zhou, David Evans: Automated Testing of Web Applications for Single Sign-
On Vulnerabilities. In: 23rd USENIX Security Symposium (USENIX Security 14).
USENIX Association, San Diego, CA, August 2014.

[ZE14] Zhou, Yuchen; Evans, David: SSOScan: Automated Testing of Web Applications for
Single Sign-On Vulnerabilities. 23rd USENIX Security Symposium, 2014.


