
Analysis of simplified variants of SHA-256∗

Krystian Matusiewicz1, Josef Pieprzyk1,
Norbert Pramstaller2, Christian Rechberger2, Vincent Rijmen2

{kmatus,josef}@ics.mq.edu.au,
{norbert.pramstaller,christian.rechberger,

vincent.rijmen}@iaik.tugraz.at,
1Centre for Advanced Computing, Algorithms and Cryptography,

Department of Computing, Macquarie University, NSW 2106 Australia
2Institute for Applied Information Processing and Communications (IAIK),

Graz University of Technology, Inffeldgasse 16a, A–8010 Graz

Abstract: In this paper we analyse the role of some of the building blocks of SHA-256.
We show that the disturbance-correction strategy is applicable to the SHA-256 archi-
tecture and we prove that functions Σ, σ are vital for the security of SHA-256 by
showing that for a variant without them it is possible to find collisions with complex-
ity 264 hash operations. As a step towards an analysis of the full function, we present
the results of our experiments on Hamming weights of expanded messages for differ-
ent variants of the message expansion and show that there exist low-weight expanded
messages for XOR-linearised variants.

C. Wolf, S. Lucks, P.-W. Yau (Eds.): WEWoRC 2005, LNI P-74, pp. 123–134, 2005.
c� Gesellschaft für Informatik e.V.

1 Introduction

Recent results on the practical cryptanalysis of many hash functions from the MD fam-
ily, including MD4, MD5 [WLF+05, WY05] as well as SHA-0 and SHA-1 [BCJ+05,
RO05, WYY05b, WYY05a], drew a considerable attention to the security of hash func-
tions and raised some questions about the security of the latest function in this family,
namely SHA-256. The first published independent analysis of the members of the SHA-2
family was done by Gilbert and Handschuh [GH03]. They showed that there exists a 9-step
local collision with probability 2−66. Later on, this result has been improved by Hawkes,
Paddon and Rose [HPR04]. They showed how to increase the probability to 2−39 using
modular differences.

In this paper we investigate the limits of applying the disturbance-correction strategy that
was introduced by Chabaud and Joux [CJ98] to cryptanalyse SHA-0. We demonstrate the

∗The work described in this paper has been supported in part by the ARC grants DP0451484 and DP0345366,
by the European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT, and by
the Austrian Science Fund (FWF) project P18138.

123



importance of the S-boxes applied in SHA-256. Throughout this paper we use different
linearisation models, namely a linearisation with respect to the XOR-operation (XOR-
linear) and a linearisation with respect to modular addition (ADD-linear). We start from
the analysis of an ADD-linear variant of SHA-256 and derive a differential characteristic
that produces collisions for that linear model. Next, we present a zero-output differential
characteristic with probability 2−64 for the hash function with the Boolean functions. This
proves that the application of the functions Σ0, Σ1, σ0, and σ1 is crucial for the security of
the original hash function, since they are replaced by the identity function in this analysis.
In parallel to this work, a different variant of SHA-256 was analysed by Yoshida and
Biryukov [YB05].

A better understanding of the impact of these functions on the whole design is the next step
in the analysis of SHA-256. While the influence of Σ0 and Σ1 on the probability of single
correction has been studied well by Hawkes et al. [HPR04], as far as we know, there has
been no analysis of the message expansion involving σ0 and σ1. In this paper we discuss
some properties of the message expansion and present our results of the search for low-
weight message differences for various (XOR-linear) variants of the message expansion.

2 Description of SHA-256

SHA-256 [Nat02] is an iterated cryptographic hash function based on a compression func-
tion that updates the state of eight 32-bit chaining variables A, . . . , H according to the
values of 16 32-bit words M0, . . . , M15 of the message. The compression function con-
sists of 64 identical steps presented in Figure 1. The step transformation employs bitwise
Boolean functions

Maj(A, B, C) = (A ∧B) ∨ (A ∧ C) ∨ (B ∧ C) ,

Ch(E, F, G) = (E ∧ F ) ∨ (¬E ∧G) ,

and two S-boxes

Σ0(x) = ROTR2(x)⊕ROTR13(x)⊕ROTR22(x) ,

Σ1(x) = ROTR6(x)⊕ROTR11(x)⊕ROTR25(x) ,

built from word rotations to the right (ROTR) and bitwise XORs denoted by ⊕. The i-th
step uses a fixed constant Ki and the i-th word Wi of the expanded message.

The message expansion works as follows. An input message is split into 512-bit message
blocks (after padding). A single message block will be denoted either as a row vector
m ∈ Z512

2 or as a vector M of 16 32-bit words Mt ∈ Z232 , with 0 ≤ i < 16. During the
message expansion, this input is expanded into a vector of 64 32-bit words Wi ∈ Z232 ,
which may be also seen as the 2048-bit expanded message row-vector w. The words Wi

are generated from the initial message M according to the following formula:

Wi =

�
Mi for 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i < N

(1)

124



Figure 1: One step of the SHA-256 compression function

⑦

✛

✛
✛
✛

✛❄

Σ0

Maj

✲
✲
✲

✲

✲

✲
❄

Σ1

Ch

❄
❄

❄✲ ✲

✛

❄

✛

Ki

Wi

Ai+1 Ei+1 Hi+1

Ai Bi Ci Di Ei Fi Gi Hi

If we set N = 64, we get standard SHA-256, taking a different value of N results in a
reduced (or extended) variant of it. The functions σ0(x) = ROTR7(x)⊕ROTR18(x)⊕
SHR3(x) and σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x) are S-boxes defined
using word rotations to the right (ROTR) and shifts to the right (SHR).

3 Computing collisions for an ADD-linear variant of SHA-256

In order to analyse the usefulness of a disturbance-correction strategy applied to the SHA-2
architecture, we investigate an ADD-linear variant of SHA-256, where S-boxes are re-
placed with the identity function,

σ0 = σ1 = Σ0 = Σ1 = id , (2)

and Boolean functions are replaced by the addition modulo 232,

Maj(x, y, z) = Ch(x, y, z) = x + y + z . (3)

Now the whole function consists only of linear operations with respect to the modular
addition. If we introduce a difference Δi = W �

i −Wi, we can cancel this disturbance by
introducing in the next 8 steps i + 1, . . . , i + 8 the following sequence of corrections

{−4Δi, 2Δi, 2Δi, 4Δi, 2Δi, Δi, 0, −Δi} . (4)

The whole process of correcting a single disturbance is presented in Table 1. In the first 4
steps we use corrections that keep differences from influencing register A and later from
step i + 4 we successively cancel differences in the register H .

The next step is to find a disturbance pattern Δ that follows the expansion process and
can give raise to a corrective pattern. We will use an argument similar to the one used
for finding disturbance patterns for SHA-1 [MP05, RO05, PRR05]. Let us introduce the
necessary notation first. For any vector s = [s0, . . . , sl], let us denote by Delaya(s) a

125



Table 1: Correcting a single disturbance Δi introduced in step i in an ADD-linearised variant of
SHA-256

step s ΔAs ΔBs ΔCs ΔDs ΔEs ΔFs ΔGs ΔHs ΔWs

i 0 0 0 0 0 0 0 0 Δi

i + 1 Δi 0 0 0 Δi 0 0 0 −4Δi

i + 2 0 Δi 0 0 −2Δi Δi 0 0 2Δi

i + 3 0 0 Δi 0 −Δi −2Δi Δi 0 2Δi

i + 4 0 0 0 Δi −Δi −Δi −2Δi Δi 4Δi

i + 5 0 0 0 0 Δi −Δi −Δi −2Δi 2Δi

i + 6 0 0 0 0 0 Δi −Δi −Δi Δi

i + 7 0 0 0 0 0 0 Δi −Δi 0
i + 8 0 0 0 0 0 0 0 Δi −Δi

i + 9 0 0 0 0 0 0 0 0

vector constructed by preceding elements of s by a zero elements, i.e.

Delaya(s) = [0, . . . , 0� �� �
a times

, s0, . . . , sl]

and by Delaya
n(s) the same vector truncated to only n first elements, i.e.

Delaya
n(s) = [0, . . . , 0� �� �

a times

, s0, . . . , sn−1−a] .

Based on this notation, we can state the following simple fact which will be used later on.

Lemma 3.1 Let W ∈ Z 64
232 . If Delaya(W ) is a result of the expansion using the recursive

formula (1) with N = 64 + a, then all the vectors Delayb
64(W ) for 0 ≤ b ≤ a are also

results of the expansion process (1).

PROOF. Each vector Delayb
64(W ) consists of elements of the vector Delaya(W ) with

indices a−b, a−b+1, . . . , a−b+63 and as a part of a sequence following the recurrence
relation, also follows the relation. �

The message expansion can be seen as an ADD-linear transformation E : Z 16
232 → Z 64

232 .
This means that E can be written as a 64× 16 matrix

E =

⎡⎢⎢⎣
I16

A
A2

A3

⎤⎥⎥⎦ , (5)

where I16 stands for the identity matrix and A denotes a matrix of the linear transformation
producing 16 new words out of 16 old ones according to the recurrence relation (1).

The following theorem fully characterises disturbance patterns for an ADD-linear variant
of SHA-256.

126



Theorem 3.2 Let ΔM = M � − M be a message difference. The expanded difference
Δ = E(ΔM ) is a valid disturbance vector for an ADD–linear variant of SHA-256 if the
following conditions are satisfied:

0 = A3[8 :: 16] ·ΔM , (6)

0 = A−1[8 :: 16] ·ΔM , (7)

where M [a :: b] means a matrix consisting of rows of the matrix M from the a-th row to
the b-th row inclusive.

PROOF. The fundamental observation is that each single word Δi of the disturbance vector
has to be corrected by adding to the next 8 words the following differences defined by
Equation (4),

{−4Δi, 2Δi, 2Δi, 4Δi, 2Δi, Δi, 0, −Δi} .

This shows that the last non-zero disturbance word may appear in position 55, because we
need eight steps 56, . . . , 63 to correct it. Thus, the last 8 words of the expanded difference
E ·ΔM have to be zero. Since E is defined by (5), this condition can be written as (6).

Now, let us consider the following linear combination of Δ and its delayed versions

C = Δ− 4 Delay1
64(Δ) + 2 Delay2

64(Δ) + 2 Delay3
64(Δ)

+ 4 Delay4
64(Δ) + 2 Delay5

64(Δ) + Delay6
64(Δ)−Delay8

64(Δ) . (8)

It is easy to see that each disturbance word Δi in C is corrected by its appropriate multi-
plicities appearing in the next eight positions and coming from the delayed vectors. Since
the message expansion is linear, C is the result of the expansion if and only if all the de-
layed and truncated vectors Delayb

64(Δ), 0 ≤ b ≤ 8 are results of the expansion process.
Lemma 3.1 assures that it is true if Delay8(Δ) = [0, 0, 0, 0, 0, 0, 0, 0, Δ0, . . . , Δ63]T is
the result of the (extended, N = 68) expansion process. We can achieve this by taking the
first 16 words and expanding them forward according to Equation (1), but also by taking
any 16 consecutive words and expanding partly forward and partly backward. In our case
we select elements 8–23 for the expansion. If we index elements of Delay8(Δ) starting
from -8 and split the vector into two parts: one having negative and the other one having
non-negative indices, we can express this requirement equivalently by the following two
conditions:

[·, ·, ·, ·, ·, ·, ·, ·, 0, 0, 0, 0, 0, 0, 0, 0]T = A−1 ·ΔM and Δ = E ·ΔM .

Only the first condition, namely A−1ΔM has to end with 8 zeros, has to be satisfied, since
Δ is already the result of an expansion. This condition can be written simply in the form
of Equation (7) what completes the proof. As long as Equations (6) and (7) are satisfied, Δ
is a valid disturbance pattern and C is a complete differential characteristic corresponding
to it. �

After obtaining explicit forms of the matrices A3 and A−1 (this is possible since A is a
bijection) we solve the system of equations given by (6) and (7) over Z232 and get the

127



following result:

ΔM = [0x10000000,0xa0000000,0xc0000000,0xa0000000,

0xe0000000,0x20000000,0x40000000,0x40000000,

0x80000000,0xd0000000,0x10000000,0x60000000,

0x50000000,0x40000000,0x70000000,0x30000000]T .

(9)

This shows that the solution space is just one-dimensional. Any multiple of ΔM is also a
solution, but since all components of the vector (9) have only up to four most significant
binary digits different from zero (so they are all of the form ai · 228 (mod 232) where
ai ∈ {0, . . . , 15}, 0 ≤ i < 16), there are only 16 distinct disturbance patterns. Using any
of them results in a collision for ADD-linearised SHA-256.

4 Incorporating Boolean functions

Now let us consider a variant of SHA-256 still without S-Boxes, but with both Boolean
functions Maj and Ch in place. If we multiply the basic pattern (9) by 8 (so shift it left
by 3 bit positions), we get a disturbance pattern Δ∗ = E(8ΔM ) that has non-zero bits at
the most significant bits only. The most significant bits of Δ∗ are as follows

10000000011010111011100110100110
0000011100101111 1011100000000000 .

(10)

Δ∗ is a disturbance pattern that not only follows the message expansion but also allows us
to treat it as a binary pattern with a relatively low weight of 27.

We can approximate both Boolean functions with probability at least 1/2 assuming that
the function produces an output difference each time the input difference is non-zero. This
approximation is shown in Table 2.

Table 2: Probabilities of non-zero output differences for the Boolean functions Ch and Maj

input difference Ch function Maj function
(δx, δy, δz) conditions prob conditions prob

(1,0,0) y + z = 1 1/2 y + z = 1 1/2
(0,1,0) x = 1 1/2 x + z = 1 1/2
(0,0,1) x = 0 1/2 x + y = 1 1/2
(1,1,0) x + y + z = 0 1/2 x + y = 0 1/2
(1,0,1) x + y = 0 1/2 x + z = 0 1/2
(0,1,1) – 1 y + z = 0 1/2
(1,1,1) y + z = 0 1/2 – 1

128



If we use this approximation and trace how a single bit disturbance Δ∗
i introduced in step

i propagates through the next 8 steps, we get the following sequence of corrections:

{0, 0, Δi, Δi, 0, 0, 0, Δi} , (11)

which we need in steps i + 1, . . . , i + 8 in order to cancel the initial disturbance Δi. The
whole process is very similar to the one used to obtain the sequence of corrections (as
given in (4)).

A complete differential is obtained in the same way as in the previous case, by adding
delayed disturbance patterns multiplied by corresponding coefficients of Equation (11),
i.e. {0,0,1,1,0,0,0,1}.

This time however, correction process is probabilistic as each active Boolean function
almost always (except for input differences (0, 1, 1) for Ch and (1, 1, 1) for Maj) intro-
duces a factor of 1/2. A detailed analysis of these probabilities is presented in Table 3.
After multiplication of all factors, we obtain a probability for a successful correction equal
to 2−84. Further optimisation are also possible as we can choose messages in such a way
that conditions for successful correction will be always satisfied for the first 16 steps, what
could increase the probability to around 2−64. This shows that the use of substitution
boxes σ0, σ1 and Σ0, Σ1 is essential for the security of SHA-256 and also demonstrates
that mixing only modular additions with Boolean functions is not enough for constructing
a secure hash function.

Table 3: Negative exponents e of the probabilities introduced in step s by Boolean functions Maj
and Ch. Columns Maj and Ch show input differences to Boolean functions and 2−e gives proba-
bilities introduced by each step.

s Maj Ch e s Maj Ch e s Maj Ch e s Maj Ch e
0 000 000 0 16 110 010 2 32 011 100 2 48 111 110 1
1 100 100 2 17 111 101 1 33 001 010 2 49 111 011 0
2 010 010 2 18 011 010 2 34 000 001 1 50 011 101 2
3 001 101 2 19 101 001 2 35 000 100 1 51 101 010 2
4 000 110 1 20 110 100 2 36 000 010 1 52 110 101 2
5 000 111 1 21 111 110 1 37 000 001 1 53 111 110 1
6 000 011 0 22 011 011 1 38 100 100 2 54 011 011 1
7 000 001 1 23 001 101 2 39 110 110 2 55 001 101 2
8 000 000 0 24 100 110 2 40 111 011 0 56 000 010 1
9 000 000 0 25 110 011 1 41 011 001 2 57 000 101 1
10 100 100 2 26 011 101 2 42 001 100 2 58 000 010 1
11 110 110 2 27 101 110 2 43 100 110 2 59 000 001 1
12 011 111 2 28 010 011 1 44 010 111 2 60 000 000 0
13 101 111 2 29 001 001 2 45 101 011 1 61 000 000 0
14 010 011 1 30 100 000 1 46 110 001 2 62 000 000 0
15 101 101 2 31 110 000 1 47 111 100 1 63 000 000 0

129



5 The role of S-Boxes

The substitution boxes Σ0 and Σ1 constitute the essential part of the hash function and ful-
fil two tasks: they add bit diffusion and destroy the ADD-linearity of the function. There
are modular differentials for Σ0 and Σ1 that hold for one bit input difference e with prob-
ability 2−3 (necessary for S-boxes used in steps i + 1, i + 5) and with probability around
2−10 for input difference equal to Σ0(e) (used for Σ1 in step i + 2). Using the approach
of modular differences it is possible to obtain a corrective pattern for the complete round
structure with probability around 2−42. A better result of 2−39 was obtained by Hawkes
et al. [HPR04] by explicit computation of modular differences for Σ0 and Σ1, rather than
approximating them with a constant differential.

The S-boxes σ0 and σ1 play a similar role: they provide nonlinearity and better diffusion
for the message expansion. These two properties of the message expansion constitute the
foundation of the security of the full SHA-256, as in order to apply corrective patterns in
a straightforward way, one would need at least 37 expanded words equal to zero (since at
most three corrective patterns can be applied). Although this seems to be unlikely, further
research is needed in this direction.

In the rest of this section, we concentrate on the message expansion and list some interest-
ing properties of it:

• σ0 and σ1 have both the property to increase the Hamming weight of low-weight
inputs. This increase is upper bounded by a factor of 3. The average increase of
Hamming weight for low-weight inputs is even higher if three rotations are used
instead of two rotations and one bit-shift. However, a reason for this bit-shift is
given by the next observation.

• In contrast to all other members of the MD4-family including SHA-1, rotating ex-
panded message words to get new expanded message words is not possible anymore
(even in the XOR-linearised case). This is due to the bit-shift being used in σ0 and
σ1.

6 Finding low-weight codewords in the code describing the XOR-
linearised SHA-256 message expansion

In the first attempt to get an idea about the effect of all the changes between the SHA-1
message expansion and the SHA-256 message expansion, we consider single bit differ-
ences. Table 4 illustrates this comparison. We consider variants reduced to 40 steps as
well as full variants (80 steps for SHA-1 variants and 64 steps for SHA-256 variants).

By the modified SHA-1 message expansion we refer to a variant where every XOR is
replaced by an addition modulo 232. By the modified SHA-256 message expansion, we
refer to a variant where every addition is replaced by an XOR. We observe that both the
introduction of modular additions and the replacement of a single bit-shift by a structure

130



Table 4: Comparison of the number of affected bits for a single bit difference in various message
expansions. In variants using modular addition, we used the all-zero vector as a starting point.

orig. SHA-1 mod. SHA-1 mod. SHA-256 orig. SHA-256
min (40 steps) 18 18 110 137
max (40 steps) 30 41 297 307

min (full) 107 247 467 507
max (full) 174 354 694 709

using σ0 and σ1 heavily increases the number of affected bits in the expanded message.

When talking about the SHA-1 message expansion, it was already observed in the works
[MP05, RO05] that weights much smaller than 107 (as given in Table 4) can be found.
The minimum weight found for the message expansion of SHA-1 is 44. A more recent
treatment of low-weight disturbance patterns in SHA-1 can be found in [JP05].

Due to the nonlinear behaviour of the modular addition, no linear code can describe the
SHA-256 message expansion. However, if the modular addition is replaced by XOR, a
linear code over Z2 can be constructed. If we consider SHA-256 with N steps, this code
can be represented by a 512× 32N generator matrix G.

Due to the XOR-linearisation, every possible difference of two expanded words is also a
valid word in this code. Therefore, probabilistic algorithms from coding theory [Leo88,
Ste89, CC98] can be used to find low-weight differences for the XOR-linearised SHA-256
message expansion. Some results of this codeword search are depicted in Figure 2. All
minimum weights found for variants of the message expansion up to the full 64 steps
are shown in the figure. Until the 42-step variant, our algorithms found reasonable low
weights. This is depicted by the solid line. Considering the 40-step variant, the weight of
26 is low compared to a minimal weight of 110 for single-bit differences given in Table 4.
The 40-step expanded message is given in Table 5.

For variants with more than 42 steps, the running time of our algorithms is currently too
high to return reasonable low weights. The sudden jump after step 42 is not an intrinsic
property of the SHA-256 message expansion, but rather the result of the limited running
time of our algorithms.

To show that there indeed are low-weight words for N > 42, we proceed as follows. After
obtaining a low-weight word for 42 steps we use the expansion process to extend it to the
full length word. Weights obtained in this way are depicted by the dashed line. A 42-step
word of weight 35 is used there as a starting point. Expanding it to 64 steps gives us a
weight of 356. This is considerable lower than 467, which is the minimal weight given for
a single bit difference in Table 4. However, there is room for improvements.

In contrast to the words found for the SHA-1 message expansion, there are no zero-
bands [RO05] any more. Note that the given expanded message is not necessarily a valid
difference in case of the real message expansion since we approximate the modular ad-
dition by the bitwise XOR operation. Also note that the given vector cannot directly

131



0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

number of steps

H
am

m
in

g 
w

ei
gh

t o
f e

xp
an

de
d 

m
es

sa
ge

Lowest weight found by probabilistic algorithm
Hamming weight of expanded best 42-step word

Figure 2: Hamming weights of low-weight words found for step-reduced variants of the XOR-
linearised SHA-256 message expansion.

be used as a collision-producing disturbance pattern as described by Chabaud and Joux
in their original attack on SHA-0 [CJ98]. The reason is that there are truncated local
collisions [CJ98] generated by non-zero words in the backward expansion. These local
collisions start before step 0 and would cause additional difficulties for constructing a
collision-producing differential characteristic. However, we expect to find input words for
reduced variants of the message expansion that can be used to build a collision-producing
difference.

A number of conditions on chaining variables need to be satisfied in order to ensure that the
concatenation of local collisions (which hold with a probability between 2−39 and 2−42)
results in a collision of the output of the compression function. If we do not assume any
pre-fulfilled conditions, the maximal weight we allow for a perturbation pattern is 3 (since
2−39·4 < 2−128). Considering the weights in Figure 2, this would mean a maximum of 24
steps.

7 Conclusions

In this paper we presented methods for finding collisions for two simplified variants of
SHA-256, one fully linearised with respect to the modular addition and the other one with
all the S-Boxes replaced by the identity function. These results show that the presence of
S-Boxes is essential for the security of SHA-256. We studied properties of the message

132



Table 5: Low-weight expanded message for the XOR-linearised 40-step message expansion of
SHA-256

00000001 00040088 00000000 00000000
00000000 00000001 00000000 00000000
00000000 15522028 00000000 00000000
00000000 000A0400 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00004050 00000000
00000000 00000000 00000000 00000000
00000000 00040088 00000001 00000000
00000000 00000001 00000000 00000000
00000001 00000000 00000000 00000000

expansion and presented expanded messages with low Hamming weights for the XOR-
linearised message expansion of SHA-256. The general ideas of all these results apply
also to other members of the SHA-2 family.

References

[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Ronald Cramer, edi-
tor, Advances in Cryptology – EUROCRYPT’05, volume 3494, pages 36–57. Springer,
2005.

[CC98] Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-weight
words in a linear code: application to McEliece’s cryptosystem and to narrow-sense
BCH codes of length 511. IEEE Transactions on Information Theory, 44(1):367–378,
1998.

[CJ98] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, Advances in Cryptology - CRYPTO’98, volume 1462 of LNCS, pages
56–71. Springer, 1998.

[GH03] Henri Gilbert and Helena Handschuh. Security Analysis of SHA-256 and Sisters. In
Mitsuru Matsui and Robert Zuccherato, editors, Selected Areas in Cryptography, 10th
Annual International Workshop, SAC 2003, Ottawa, Canada, August 14-15, 2003, Re-
vised Papers, volume 3006 of Lecture Notes in Computer Science, pages 175–193.
Springer, 2003.

[HPR04] Philip Hawkes, Michael Paddon, and Gregory G. Rose. On Corrective Patterns for the
SHA-2 Family. Cryptology ePrint Archive, Report 2004/207, August 2004. http:
//eprint.iacr.org/.

[JP05] Charanjit S. Jutla and Anindya C. Patthak. A Matching Lower Bound on the Minimum
Weight of SHA-1 Expansion Code. Cryptology ePrint Archive, Report 2005/266, 2005.
http://eprint.iacr.org/.

[Leo88] Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–1359,
1988.

133



[MP05] Krystian Matusiewicz and Josef Pieprzyk. Finding Good Differential Patterns for
Attacks on SHA-1. In Proc. International Workshop on Coding and Cryptography,
WCC’2005, LNCS, 2005. To appear.

[Nat02] National Institute of Standards and Technology. Secure Hash Standard (SHS).
FIPS 180-2, August 2002.

[PRR05] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting Coding
Theory for Collision Attacks on SHA-1. In Nigel P. Smart, editor, Cryptography and
Coding, 10th IMA International Conference, Cirencester, UK, December 19-21, 2005,
Proceedings, volume 3796 of LNCS, pages 78–95. Springer, 2005.

[RO05] Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes, editor,
Topics in Cryptology – CT-RSA 2005, volume 3376 of LNCS, pages 58–71. Springer,
Feb 2005.

[Ste89] Jacques Stern. A method for finding codewords of small weight. In G. Cohen and
J. Wolfmann, editors, Coding Theory and Applications, 3rd International Colloquium,
volume 388 of Lecture Notes in Computer Science, pages 106–113. Springer, 1989.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis
of the Hash Functions MD4 and RIPEMD. In Ronald Cramer, editor, Advances in
Cryptology – EUROCRYPT’05, volume 3494 of LNCS, pages 1–18. Springer, 2005.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT’05, volume 3494 of
LNCS, pages 19–35. Springer, 2005.

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-
1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, volume 3621 of
LNCS, pages 17–36. Springer, 2005.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search Attacks
on SHA-0. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, volume
3621 of LNCS, pages 1–16. Springer, 2005.

[YB05] Hirotaka Yoshida and Alex Biryukov. Analysis of a SHA-256 variant. In Bart Preneel
and Stafford Tavares, editors, Selected Areas in Cryptography, 12th Annual Interna-
tional Workshop, SAC 2005, Kingston, Ontario, Canada, August 11-12, 2005, Proceed-
ings to appear, LNCS. Springer, 2005.

134


