
UML-based Qualification of COTS Components 

Franck Barbier

PauWare Research Group

BP 1155 

64013 Pau CEDEX, France
Franck.Barbier@PauWare.com 

Abstract. There is a dilemma between, on the one hand, easily and

straightforwardly acquiring and integrating external, prefabricated, cost-effective, 

plug & play components and, on the other hand, the strong need for assessing and 

possibly accepting these components so that their incorporation into in-house 

products is not the source of any damage. This paper supplies some technical leads 

based on the concomitant and coherent use of the Unified Modeling Language

(UML) and the programming mechanism of reflection. As an illustration, a concrete

approach developed with the Component+ project is described. This approach relies

on the Built-In Test (BIT) technology that aims to guide COTS component design

that facilitates qualification.

Keywords: Componentware, Quality analysis and evaluation, UML. 

1 Introduction: Reusing COTS Components 

The increasing availability of COTS components over the Internet makes the structuring

of an e-market now credible and realistic [1]; that is to say, the access to rich

sites/repositories of varied components with dedicated search engines, elaborate and

useful documentation that helps to foster the acquisition and integration of COTS software

in in-house products. Such experiments already exist (see for instance www.ecots.org) but 

deficiencies still remain in the sense that COTS components are only exposed through

descriptive and intrinsic attributes (OS compatibility, editor, general-purpose category as 

multimedia for instance…). Even if this information is important, there are, however, no

accurate and reliable data about the way by which such external entities may be

technically and rigorously incorporated into larger systems. As stressed by Szyperski et 

al.: “Components are for composition” [2]. This means that different properties have to be

known; for instance, how to setup an acquired component according to the deployment 

environment in which it is executed? Will this acquired component behave the same in

57



both collaboration pattern X and in collaboration pattern Y? More generally, how to

assess, under different reuse angles and perspectives, COTS components that in essence

keep potential reusers in a state of distrust. In this scope, qualification amounts to

checking COTS components in deployment environments instead of, in development 

environments only. This calls for special testing properties that may be used within a 

deferred phase by reusers in order to put into practice qualification. 

More generally, many factors slow down the rapid development of a COTS component 

marketplace. One of these factors is the well-known NIH (Not Invented Here) syndrome. 

In order to transform foreign components into trustworthy components, developers need

methods and tools that give them a high level of understanding. The need for such

comprehension may, however, be in conflict with the generally close nature of COTS

products. Too much derived knowledge may indeed be incompatible with vendors’

constraints, as for instance, the protection of intellectual rights or the respect of security

rules.

A paradox is thus clear and evident. In contrast to home-made software, COTS

components are encapsulated software units and, as such, hide many parts of their

implementation. Even if this is safe with regard to the principles of modularity, high

cohesion and low coupling, we expect to determine how these external entities may

behave in users’ deployment environments which are often very different from vendors’

development environments. The overall challenge of COTS components may thus be

simply and typically summarized as follows: Moving up from sorcery (Fig. 1) to applied

science by instrumenting and supporting the COTS component acquisition process, from

taking possession to intensive and recurrent reuse via in-depth evaluation. 

Fig. 1. COTS Component Integration: Sorcery?

In Fig. 1, the software architect, Merlin l’Enchanteur, tries with the assistance of his 

development team to evaluate the possible incorporation of a recently acquired COTS

component into his famous COTS-based product: “The Cooking-Pot”.

Trying to solve the problems above mentioned, section 2 of this paper discusses, in an

independent way, three technical directions: UML and executability in modeling and

58



reflection in programming. We show in this section that an interesting synergy between

these three elements is possible. Section 3 presents the BIT technology and a concrete 

environment for putting into practice this technology. Section 4 briefly describes a Web 

context in which components may be evaluated and thus qualified. This happens before

section 5 in which we conclude and provide perspectives.

2 Prerequisites for COTS Component Assessment 

Our leitmotiv is that COTS components must be designed for assessment. This 

responsibility falls to vendors in providing facilities that realistically permit, and, in the

best case, favor any late in-situ evaluation (i.e., that relative to the users’ operating

contexts). From an economical point of view, COTS component providers that organize

their supply based on such a principle should have a better market positioning and an

enhanced credibility. From a technical point of view, we here sketch the main software 

techniques that are necessary, but possibly not sufficient, for designing more

“autonomous” components.

2.1 The Unified Modeling Language v. 2.0

Since the UML is an agreed and widespread industrial standard and, taking into account 

the large and significant enhancements in the forthcoming
1
 ver. 2.0 [3-4] that are in

particular dedicated to component specification [5], we request from vendors the

availability of a more or less formal and detailed specification of their products. Built on a

XML DTD (a.k.a. XMI), any UML model may then be easily shared and exchanged

through the Internet. Moreover, commercial Web sites may directly benefit from this 

format to structure and maintain their component repositories.

At this time, few downloadable COTS components are documented by means of the

UML or, if some of them are documented, then one may wonder how UML models may

make an impact on the component purchasers’ assessment process. We have at one’s

disposal interesting results that establish, for instance, the way by which test material can

be derived from UML models in general and from UML State Machine Diagrams in

particular [6]. However, if only Class Diagrams and/or Component Diagrams are 

available, how is it possible to capitalize on these kinds of models when the evaluation is 

done at deployment time? To sum up, we look for an environment in which models 

“persist at runtime” so that reusers are able to compare specifications with their own

observations about component and assembly behaviors.

Following this line of reasoning, open source or binary COTS components built from

UML specifications must offer dedicated services in their provided interfaces that are 

1 Accepted but not yet fully formalized and stabilized at the time of writing.

59



specifically made for evaluation. We mean here that if a component state machine 

diagram, for instance, imposes that, after a R request occurring under a precise set of

conditions C, the component reaches the S state
2
, then the reuser must be equipped with

inherent tools to check such a formalized behavior in her/his own operating environment.

C corresponds to the component’s initial state(s) (before the arriving of R) and to local 

parameters, namely transition guards. Boolean values of these guards may thus vary if 

they refer to environment property values (e.g., connections to resources). Again, even if 

the component’s vendor guarantees such a behavior in her/his development context, no

proof exists about the fact that the said behavior will occur in the reuser’s deployment 

context. 

2.2 Executability

Pragmatism and efficiency that prevail in industry put testing before everything else in

search of a COTS component evaluation method [7]. Testing is unfortunately not the

panacea: “The dominant software testing theories and methods are based upon “white 

box” testing that assumes the program code or other detailed representation of the

software module to be available. (This is generally untrue of commercial, off-the-shelf 

(COTS) software and much legacy software.)” [8]. This viewpoint is confirmed in [9]. 

The author observes that testing COTS components in other contexts than those of

component builders, is crucial and mandatory. Moreover, the author raises the problem of

considerable (and thus expensive) testing efforts that are peculiar to COTS components.

Again, this results from the close nature of COTS software that is not prepared for testing.

In relation with the prior observation (Section 2.1) stating that UML is a good

candidate for component specification, we consider executability [10] as promising for

component and assembly behavior verification & validation. In UML, the absence of

formal bases prevents us from “checking” models. The expression “model checking” is 

here used as it is commonly understand in the area of mathematics-centered specification 

methods (e.g., Z, VDM, B). The difference between executing a model and checking a 

model is the fact that executable modeling languages emphasize animation or simulation

[11] through instances (or elements) instead of reasoning about abstractions, i.e., types (or

sets). The process of verification & validation is thus by definition incomplete. Such an 

approach is common in scenarios (a.k.a. UML Sequence Diagrams) in which the 

chronology of message exchanges is represented between instances playing special roles,

and thus does not apply for all of the instances of a type.

2 Multiple concurrent states are also acceptable. 

60



2.3 Reflection

Reflection is the ability in object-oriented programming languages to dynamically (at 

runtime) have information on objects. This notion is also comparable to that of metadata

in databases for instance. In Java, the java.lang.reflect sub-library offers all of the 

necessary predefined classes to obtain metadata on objects. It also presents a secure 

protocol to activate objects (invocation of methods) based on the computed meta-

information. The idea of a secure protocol relates to the fact that, for instance, private 

methods cannot be run. In contrast to C++ which has a limited reflection support (RTTI

standing for Run-Time Type Information), the C# programming language supports an

enhanced reflection API, as does Java. More generally, the strong relation between

distributed programming and components surely makes reflection a first-class 

programming trend for the future. In current practice, technological component models 

such as that of Enterprise JavaBeans are grounded on reflection. Furthermore, reflection

has also been proved mature and relevant for testing software components in general [7].

To sum up, reflection cannot be ignored in modern component-based development.

Reflection is in fact a powerful programming technique that can be used by COTS

component vendors to develop assessment-specific interfaces. Implementations of these 

interfaces can explore and deliver any internal data required by reusers to obtain an in-

depth understanding. Moreover, configuration actions should be possible to set up a given

component so that it may function in its target environment better. Indeed, metadata, in

particular, aims at making components aware of their surroundings.

3 Component+

This section concretely addresses the issues listed in previous sections in presenting the 

Component+ European project (IST-1999-20162, www.component-plus.org). The COTS

component facet of this project is more specifically discussed in [12]. Another important 

issue addressed in this project is contract testing [13]. In this paper, we single out the

concrete outcomes of this project, namely the Built-In Test technology and, more

precisely, a Java framework that supports this technology.

3.1 Built-In Test 

“Built-in test refers to code added to an application that checks the application at 

runtime.” [14]. By analogy to Built-In Self-Test that is peculiar to hardware components,

the idea behind BIT is to encapsulate and to keep test code
3
 in COTS components, and

3 Overheads caused by BIT is out the scope of this paper. Further details can be found from:

www.component-plus.org.

61



consequently equip them with a testing interface (Fig. 2) in order to have deployment-

oriented facilities for assessment. In Fig. 2, the Component+ approach views a component 

as having three kinds of provided interfaces: functional which is common, testing and

configuration.

Component X’s functional interface

Component X’s required interface

Component X’s testing interface

Component X’s configuration interface

«component»

Component X

Component X’s 

test code

Component X’s 

functional code

Fig. 2. Canonical structuring of an ordinary component (UML 2.0 formalism)

In the scope of COTS components, reusers have in principle (encapsulation 

preservation) no way for accessing, and thus for changing, the test code: it is written once 

and for all thanks to the reflection capabilities of Java. It is thus unique and the same for

all components. Customization occurs through, and only through, the possible

implementation (a predefined default implementation exists) of three services declared in

a Java interface called BIT_testability: 

public interface BIT_testability { 

void invariant() throws
Statechart_invariant_exception; 

void precondition(String action) throws 
Statechart_precondition_exception; 

void postcondition(String action) throws 
Statechart_postcondition_exception;

// different other things here 

} // BIT_testability 

In this code, the invariant() method for instance, is supposed to analyze any data

relating to the user’s operating environment and thus to return the acceptance or the 

rejection of a test case (Statechart_invariant_exception raising is used to indicate 

abnormal deployment conditions). Many other testing tools (test case objects, test scenario

objects and tester objects) are offered; these are presented in [12]. 

62



3.2 COTS Component Behavior Prediction Based on UML State Machine Diagrams

The availability of a UML-based behavioral specification (a statechart) for an individual 

component makes possible its deferred evaluation and high-level understanding under

“true” runtime conditions. More precisely, and in the spirit of COTS systems, vendors that

might produce such costly documentation, should have a significant return on investment.

For that, the Component+ Java framework includes an appropriate support for statechart 

implementation. Additional services of the BIT_testability interface (code below) allow to

monitor all of the inside of a component. For instance, the verbose() method supports a

complete diagnosis of possible failures that may occur between two run-to-completion 

cycles of the component’s statechart. 

public interface BIT_testability { 

// different other things here 

String current_state();

boolean in_state(String name); 

void to_state(String name) throws 
Statechart_functional_exception;

String verbose();

} // BIT_testability 

Again, a generally satisfactory default implementation exists for BIT_testability but 

most of the time, other interesting configuration operations may be added and

implemented, as, for instance, a “reset “action that puts a component in a given state after 

a failure (see code below).

3.3 Example

For illustration purposes, we reuse a case study named Railcar System [Erreur ! Source 

du renvoi introuvable.] (Fig. 3). We show a Railcar component statechart in Fig. 4. A

Railcar component instance communicates with Terminal component instances and a

Control center component instance in order to synchronize arrivals and departures with

passengers getting on and of.

63



Terminal

Clockwise

Counterclockwise

Fig. 3. Railcar System

Railcar

alert80 [passing through]/

^my next possible stop.crossing request(self)

Wait for alert80
entry/ ^cruiser.set Engaged20

Going through 

Arriving

Cruising
entry/ ^cruiser.set Engaged80 

terminal crossing(is clockwise)

Wait for entrance
entry/ ^cruiser.set Disengaged

Stopped on railway

Stopped at terminal
exit/ ^cruiser.set Engaged20 

terminal stopping(is clockwise)

go on [passing through] 

go on [stopping] 

go

alert80 [stopping]

candidate passengers(destinations)

stop

alert100(terminal,railcar,is clockwise)

new destination(another terminal)

Fig. 4. Statechart of a Railcar component (UML 2.0 formalism)

By means of the offered Java library, the implementation of the Railcar component that

conforms to an Enterprise JavaBean is as follows: 

public class RailcarBean implements 
SessionBean,BIT_testability { 

64



First, a default implementation of the to_state(String name) configuration method 

exists: 

public void to_state(String name) throws 
Statechart_functional_exception 

{state_machine().to_state(name);}

Next, a possible implementation of an additional reset() configuration method may

have the following look: 

public void reset () throws
Statechart_functional_exception 

{to_state(“Cruising”);} 

// other default implementations here 

Finally, an example of service in the functional interface (alert80() request in Fig. 4) is 

implemented as follows:

public void alert80() throws 
java.rmi.RemoteException,Statechart_exception { 

boolean stopping =
_destination_board.contains(_my_next_possible_stop.getHand
le());

boolean passing_through = ! stopping; 

_Railcar.fires(_Wait_for_alert80,_Wait_for_entrance,stoppi
ng); 

RailcarRemote[] args = new RailcarRemote[1]; 

args[0] = (RailcarRemote)this._ejb_context.getEJBObject(); 

The use of the Java reflection API (invocation of the crossing_request(RailcarRemote

railcarRemote) function) occurs as follows:

_Railcar.fires(_Wait_for_alert80,_Going_through,passing_th
rough,_my_next_possible_stop,"crossing_request",args,State
chart_monitor.Reentrance); 

The run_to_completion() method moves forward the statechart of a Railcar component: 

_Railcar.run_to_completion(); 

} // alert80() method

65



} // RailcarBean class 

4 Web-Based COTS Component Evaluation

Programming components so that they are equipped with self-management features 

(configuration and testing interfaces as well as implementations of these interfaces relying

on reflection and a UML State Machine Java engine) is not sufficient. One also needs a 

canonical environment in which evaluation may occur in a systematic and standardized

way. We here use a standard in the domain of network/software administration and

management which is called JMX (standing for Java Management eXtensions). This Java

product allows the viewing and manipulation of components as MBeans (i.e., Manageable 

Beans). In short, the advantages resulting from JMX are: 

� The clear distinction between the usual functional interface and the less common

testing and configuration interfaces. These last two may appear in Web browsers (Fig.

5). The functional interface may be activated via a network, a GUI, another thread or

simply another component instance as planned in the overall management application 

architecture; 

� The possibility of remote testing. In the spirit of a Web marketplace, one may thus 

imagine online testing facilities for potential COTS component buyers;

� The simulation of UML models (executability) whose feedbacks (observations and

results in deployment environments) may be contractually compared to the vendors’

original specifications; 

� The administration and monitoring of components that are aided by intrinsic

capabilities of JMX. Nevertheless, the organization of the inside of a component by

means of a statechart and, the controlled access/manipulation of this statechart,

generate enhanced administration and monitoring possibilities.

66



Fig. 5. JMX-based testing and configuration of a Railcar component instance

5 Conclusion

We propose in this paper a different, even innovative, assessment approach for COTS

components that is based on the UML 2.0 and the notion of executability. We on purpose

briefly describe a Java library named PauWare.Statecharts that instruments COTS

component evaluation by means of UML State Machine Diagrams. The reflection

programming mechanism is intensively used in this library which comes from the 

Component+ project. 

Apart from technical concerns, convincing COTS component vendors to adopt the

Component+ approach stumbles over the strong difficulty of elaborating specifications

(using UML or not using UML). Economically, vendors will probably agree about the

proposed approach whether they will be able to increase their business in comparison with

their competitors. To continue the paper’s discussion, one may notice that there are 

several industrial experiments (available from: www.component-plus.org) aimed at 

further validating the BIT technology.

Regarding the technical status of the Component+ Java framework, most of the current

investigations are concerned with component assemblies and, more precisely, how to test 

67



and dynamically (re)-configure a system of components. The concurrent use of a

component instance through both its testing interface and its functional interface is 

sometimes subject to side effects. The study of a test case object may for example show a 

“strange” (i.e., unexpected) result (Java exception, abnormal reached state…) while any

further analysis demonstrates that the crossing of normal and test requests is the source of

problems, leading in fact to the conclusion that the component behaves correctly. For a

system of components, the flow of input events is multiple. Even if observations are

possible, diagnostics and interpretations are more unsteady.

Concerning perspectives of our research work, all of the programming framework has 

been adapted for the administration of software components running and deployed in

wireless and mobile devices. First results show that our Java engine is suitable for these 

systems but new types of failures peculiar to these systems are now investigated. 

Acknowledgments

The work presented in this paper has been partially funded by the European Union within

the Component+ IST project (IST 1999-20162).

References 

1. Overhage, S., and Thomas, P.: CompoNex: A Marketplace for Trading Software Components in

Immature Markets, proceedings of Net.ObjectDays 2003, Erfurt, Germany, September 22-25,

(2003) 145-163 

2. Szyperski, C., Gruntz, D., and Murer, S.: Component Software – Beyond Object-Oriented

Programming, Second Edition, Addison-Wesley (2002)

3. Object Management Group, UML 2.0 Infrastructure Specification, OMG Adopted Specification 

ptc/03-09-15, September 2003 

4. Object Management Group, UML 2.0 Superstructure Specification, OMG Adopted Specification 

ptc/03-08-02, August 2003 

5. Bock, C.: UML 2 Composition Model, Journal of Object Technology, 3(10), (2004) 47-73 

6. Briand, L., Di Penta, M., and Labiche, Y.: Assessing and Improving State-Based Class Testing:

A Series of Experiments, IEEE Transactions on Software Engineering, 30(11), (2004) 770-793 

7. Polini, A.: Testing Component-Based Software Systems, Ph.D. dissertation, Pisa University,

November 2004 

8. National Coordination Office for Information Technology Research and Development, HIGH

CONFIDENCE SOFTWARE AND SYSTEMS RESEARCH NEEDS, January 2001 

9. Weyuker, E.: Testing Component-Based Software: A Cautionary Tale, IEEE Software, 15(5),

(1998) 54-59 

10.Mellor, S., and Balcer, S.: Executable UML – A Foundation for Model-Driven Architecture,

Addison-Wesley (2002)

11.Ermel, C., and Bardohl, R.: Scenario animation for visual behavior models: A generic approach,

Software and Systems Modeling, 3(2), (2004) 164-177

68



12.Barbier, F.: COTS Component Testing through Built-in Test in Testing Commercial-off-the-shelf 

Components and Systems, Beydeda & Gruhn (Eds), Springer, (2005) 55-70 

13.Atkinson, C., Groß, H.-G., and Barbier, F.: Component Integration through Built-in Contract

Testing in Component-Based Software Quality: Methods and Techniques, Cechich, Piattini &

Vallecillo (Eds.), Lecture Notes in Computer Science #2693, Springer, (2003) 159-183 

14.Binder, R.: Testing Object-Oriented Systems – Models, Patterns, and Tools, Addison-Wesley,

2000 

15.Harel, D., and Gery, E., 1997. Executable Object Modeling with Statecharts, IEEE Computer,

30(7), (1997) 31-42 

16.Kreger, H., Harold, W., and Williamson, L.: Java and JMX – Building Manageable Systems,

Addison Wesley, 2003 

69


