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Abstract: Current approaches in modeling dynamic biological systems often lack
comprehensibility, especially for users without mathematical background. We pro-
pose a new approach to overcome such limitations by combining the graphical repre-
sentation provided by the use of Petri nets with the modeling of dynamics by powerful
yet intuitive fuzzy logic based systems. The mathematical functions and formulations
typically used to describe or quantify dynamic changes of systems are replaced by
if-then rules, which are both easy to read and formulate. Precise values of kinetic
constants or concentrations are substituted by more natural fuzzy representations of
entities. We will show that our new approach allows a semi-quantitative modeling of
biological systems like signal transduction pathways or metabolic processes while not
being limited to those cases.

1 Introduction

To gain insight into a biological system, computational models are built based on current
knowledge and hypotheses. The behavior of these models is investigated under differ-
ent constraints and compared to experimental observations, known facts or other data to
verify or falsify the current model. Many of the currently availabe approaches for mod-
eling biological systems are based on ordinary differential equations (ODEs), Bayesian
or boolean networks, different types of Petri nets (PNs), combinations thereof as well as
other, less common techniques like signal-flow diagrams and system dynamics models.
See [GFG+06, MPLD04, OSV+05] for some reviews concerning computational model-
ing. ODE based modeling of dynamic changes in systems is probably the most widespread
method. Entities of the modeled system (proteins, metabolites, etc.) are described by
state variables which typically correspond to the concentrations or amounts of those en-
tities at a given time. The change of these variables over time is hereby described by
a set of differential equations which involve not only the state variables but also sev-
eral kinetic constants. ODE based modeling was applied for example for the analysis
of yeast cell cycle [CCNG+00], E. coli carbohydrate uptake [KBG07], dynamics of yeast
pheromone pathway [KK04] or the modeling of the EGF receptor induced MAP kinase
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cascade [SEJGM02]. Some widely used graph-based approaches to systems biology mod-
eling are based on Petri nets (see [Cha07] for a recent review and [Mur89] for an extensive
introduction to Petri net theory). Generally, Petri nets are graphical representations of
(biological) entities like proteins, genes and metabolites as well as (biological) processes
like enzymatic reactions, transport, degradation, etc.. There are several different types of
Petri net modeling techniques in use, ranging from the basic type (see [RLM96]) to more
involved and extended types like hybrid functional Petri nets (HFPN; [MTA+03]). HF-
PNs extend the definition of basic Petri nets by introducing additional arc types (inhibitory
and test arcs), a more sophisticated definition of tokens and the use of arbitrary functions
instead of fixed arc-weights. These functions are typically similar to ODEs, incorporating
concentrations of neighboring places and pre-defined kinetic constants. See [GKV01] for
an executable Petri net model of glycolysis and citric acid cycle, [LZLP06] for a colored
Petri net model of the EGF receptor induced MAP kinase cascade or [LGN+07] for a
timed Petri net model of the apoptosis pathway.
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Figure 1: A Petri net representation of a small biological system. Places (filled circles) visualize
arbitrary system entities or properties like proteins, metabolites, etc.. In our framework, their current
states are described using weighted fuzzy sets replacing the commonly used tokens. Transitions
(grey squares) visualize arbitrary (biological) processes like enzymatic reactions, transport, etc..
Arcs visualize dependencies of places and transitions (test arcs, dashed arrows) or define which
and how places are affected whenever a transition fires (input and output arcs, solid arrows). In
our framework, these effects are defined using fuzzy logic systems instead of the commonly used
weights or other mathematical functions.

In this article, we introduce and motivate a new modeling approach (termed PNFL, Petri
Nets with Fuzzy Logic) which provides a powerful and intuitive tool for investigating
biological processes and systems. PNFL provides an environment where hypotheses in
biological systems can be formulated, visualized and simulated in a quite intuitive and
natural way and overcomes limitations of ODE-based modeling by:

1. Replacing mathematical formulations of dynamics by natural language based rule sys-
tems to facilitate comprehensibility.

2. Omitting use, definition and estimation of exact parameter values through a fuzzier,
thus natural, definition of typically qualitative knowledge about entities and processes.
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3. Allowing for incorporation of entities and their concentrations as well as other, arbi-
trary properties of entities or systems by a uniform framework based on fuzzy logic.

4. Using Petri nets as graphical frameworks for development and simulation of user-
defined systems to provide a clear visualization and distinction of entities and pro-
cesses.

The main innovation of our PNFL approach is the use of elements from fuzzy logic theory
to describe biological systems: Fuzzy sets describe arbitrary entities or properties of a
system; Fuzzy logic systems define the dynamics of biological processes and dependencies
between entities. Petri nets are used as a scaffold for the fuzzy logic based definitions of
biological entities and processes (figure 1).

2 Fuzzy Logic Based Modeling

The real world has an approximate and inexact nature and sets of objects in this world
are usually characterized by inexact boundaries. For example, defining the “set of highly
concentrated metabolites” as “the set of metabolites present at a level of more than 1 ∗ 106

molecules per mol” is unsatisfactory as this strict border is probably artificial. It is difficult
to argue, that a metabolite present at 1.01∗106 molecules per mol is “highly concentrated”
while it would not be “highly concentrated” at 0.99 ∗ 106 molecules per mol. In order
to capture the inexact nature of our surrounding world, Lotfi A. Zadeh introduced the
notion of fuzzy sets and extended the two-valued {0,1} logic to the interval [0,1], allowing
a gradual transition from falsehood to truth [Zad65, Zad96]. Fuzzy sets also allow the
representation of imprecise, subjective knowledge and linguistic information. Elements
are not seen as being either part of a set or not but instead they are defined as being
similar to elements described by a set. The similarity is quantified by assigning a value
between 0 (dissimilar) to 1 (equal). A fuzzy set, defined over a universe of discourse U ,
is characterized by its membership function FS : U → [0, 1]. The membership function
defines the similarity of an item to the fuzzy set. The universe of discourse U contains all
elements that could possibly be part of the set, e.g. a set describing “high concentrations”
may be defined over [0,∞] (all possible concentrations). For an extensive introduction to
fuzzy logic see [Men95, Lee90a, Lee90b].

As different fuzzy sets may describe elements of the same (biological) concept, for ex-
ample the concept “concentration of a protein P”, we subsume fuzzy sets to fuzzy con-
cepts, which correspond to the real-world concepts. Fuzzy concepts are defined as tuples
< FS1, ..., FSn >, where all fuzzy sets FSi are defined over the same universe of dis-
course. The fuzzy sets combined to a fuzzy concept usually have differently shaped mem-
bership functions as they describe different aspects of the underlying (biological) concept.
An exemplary fuzzy concept concentration may include fuzzy sets low, medium, high and
saturated, each describing a different “level” of concentration (figure 2).
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3 On the Use of Fuzzy Values and Fuzzy Logic Systems in Petri Nets

Fuzzy values are used to describe the current state of an entity with respect to a fuzzy
concept. An arbitrary number of different fuzzy values can be used to describe each entity.
All fuzzy values describing a single entity form a set of fuzzy tokens on the respective place
in the Petri net model of the system. The set of fuzzy tokens represents those properties
(concepts) an entity could possibly exhibit while the current weight assignment reflects
the properties an entity currently exhibits. Fuzzy logic systems define the dynamics of a
system. One or several of them serve as inscriptions of arcs. Whenever a transition fires,
fuzzy tokens of adjacent places are consumed and a new set of fuzzy tokens is created by
the FLS’s of incident arcs. We distinguish three types of arcs which correspond to input,
output and test arcs as defined for hybrid functional Petri Nets ([MTA+03]). Input and
output arcs consume and produce tokens whenever the incident transition fires while test
arcs do not affect tokens. Test arcs symbolize a functional dependency of processes and
entities, they allow the usage of fuzzy tokens of incident places as premises of fuzzy logic
systems without consuming them.

4 Results and Conclusion

The adaption of fuzzy sets for representing states and properties and fuzzy logic based
reasoning for describing processes can be used to model biological systems. Fuzzy sets
capture the typically inexact, qualitative knowledge about biological entities and are well
suited to represent limited knowledge, inexact measurements as well as error prone data.
Due to the fact that they can stand for arbitrary properties, it is possible to uniformly rep-
resent all types of external and internal factors influencing a system. Fuzzy sets can be de-
signed freely by a user according to his needs. Fuzzy logic systems allow the formulation
of biological processes using simple yet powerful rule systems, which can be formulated
using natural language. Therefore, hypotheses concerning the behavior of entities or in-
fluences between entities can be translated directly into executable systems (application 1,
figures 4 and 5). The representation using Petri nets clearly visualizes entities, processes
and dependencies within a biological system. A Petri net and fuzzy logic based system can
easily be outlined in a pen-and-paper style by creating drafts of entities and their depen-
dencies and describing the desired properties and effects of dependencies and influences
in natural language.

The extension of fuzzy sets, fuzzy concepts and fuzzy values to represent arbitrary (non-
quantifiable) properties or states of entities is straightforward. In fact, no changes of the
definitions of these terms are necessary. Properties which are not per se quantifiable, like
the current state of a cell in the cellcycle, may be described similar to concentrations using
several fuzzy sets. Such fuzzy sets, for example belonging to the fuzzy concept cellcycle
state, are then weighted to define the current state of an entity and represented as a fuzzy
value. Although the described entity (the “cell cyle state”) has no inherent reference to
a real value, the universe of discourse of these fuzzy sets can still be defined as arbitrary
range within the set of real numbers for the sake of uniformity. Modeling the state of a
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system and its properties by the same framework as used for quantifiable entities is one of
the main advantages of our fuzzy logic based approach. A uniform representation of quan-
tifiable entities and other, more abstract properties is possible while dynamical changes of
those parts of a system can be performed using the same technique, namely fuzzy logic
systems. Their rule-based description allows modeling of complex behavior and is more
powerful than a simple description of dependencies as activating or inhibiting, as it is
common in boolean networks.
It is possible to model the behavior of entities by an explicit formulation of the underlying
biological processes, for example an oscillation of a protein level by modeling a negative
feedback loop delayed by transport via the core membrane. At the other hand one could
force entities to behave in a particular way by defining their behavior with appropriate rules
and without explicitly modeling real biological processes. This is for example very useful
when a certain behavior of entities can be observered experimentally but not yet explained
adequately by a model, while at the same time the modeling of the observed behavior is
crucial as it affects other parts of the system. Additionally, replacing the extensive elabo-
ration of biological processes by simpler systems mimicking their behavior also allows a
hierarchical modeling (application 2, figures 6 and 7).

The described approach (PNFL) is currently improved and extended, including a GUI
suited for model building, defining fuzzy sets, formulation of FLS rule sets and visu-
alizing simulation runs and results. The implementation will also support concurrent
simulations of biological systems in several cells. A prototype system was successfully
applied during different developmental stages to several small test systems, like an in-
silico network ([ZDGS01, ZGSD03]), typical network motifs (e.g. feed-forward loops,
switches) and several oscillator models (Higgins-Sel’kov, minimal mitotic, coupled os-
cillators; [KHK+05]). As a larger application a model of the EGF signal transduction
pathway as defined in [LZLP06] was evaluated by replacing mass action kinetics by fuzzy
logic systems.
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