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Abstract: Cost-based optimizers in relational databases make use of data statistics to
estimate intermediate result cardinalities. Those cardinalities are needed to estimate
access plan costs in order to choose the cheapest plan for executing a query. Since
statistics are usually collected on single attributes only, the optimizer can not directly
estimate result cardinalities of conjunctive predicates over multiple attributes. To avoid
having to fall back to assuming statistical independence, modern relational database
systems offer the possibility to additionally collect joint statistics over multiple at-
tributes. These statistics allow a direct cardinality estimate for conjunctive predicates.

A widely used approach is collecting the number of distinct value combinations
as a joint statistic. This can be used for a uniformity based estimate, which assumes
each value combination to occur equally often. Although this estimate is likely an
improvement, it is still inaccurate, since “real world” data is unlikely to be uniform.

This paper proposes a new approach of estimating the result cardinality of conjunc-
tive predicates over multiple attributes of a relation. The proposed method combines
knowledge from single-column histograms using a conditional probability based “uni-
form correlation” approach. Initial evaluation shows that this method yields better
results for estimating predicates on highly correlated attributes than the classic unifor-
mity based approach.

1 Introduction

Modern relational database systems make use of cost-based optimizers to generate the
most efficient access plan for a given SQL query. A cost-based optimizer generates a set
of possible plans for a given query and estimates the execution cost for each of those plans.
The plan with the lowest estimated cost is chosen for execution.

In order to estimate plan costs, the optimizer has to know the cardinalities of intermediate
operations contained in the plan. The cost of a relational operation depends on how large
the input relations are, therefore these cardinalities are necessary to give an accurate cost
estimate. Cost-based optimizers usually use data statistics - e.g. data histograms - to
estimate those cardinalities.

Data statistics are usually collected for single attributes only. This allows the optimizer
to estimate how many tuples of a relation fulfill a condition for a single attribute. Since
the available statistics normally do not contain information about dependency patterns be-
tween attributes of a relation, the optimizer has to assume statistical independence between
filtered attributes when multiple conjunctive attribute conditions have to be considered. In
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the case of a filter that queries multiple attributes that share some kind of dependency,
the independence assumption can lead to drastically underestimated result cardinalities.
Especially in the case of complex SQL queries, those underestimated cardinalities will
propagate through the cost estimation - effectively resulting in drastically underestimated
plan costs. This error might bias the optimizer into choosing a non-optimal plan for exe-
cution.

In order to avoid incorrect independence assumptions during query optimization, modern
cost-based optimizers make use of multi-dimensional statistics. Since those statistics are
joint over multiple attributes, they inherently include information about potential depen-
dency patterns. Since multi-dimensional histograms are expensive to build and maintain,
most database systems use simpler methods. This usually involves collecting the num-
ber of distinct combined values of a set of attributes and assuming each of those distinct
combinations is equally likely to occur.

Although this simple uniformity assumption leads to better estimations, it also introduces
new errors. In reality, the distinct value combinations will almost never occur equally
likely. Since joint data statistics are currently not combined with available single-attribute
distribution knowledge, the optimizer is basically “giving away” available information on
how the combined attributes are distributed. We tackle this problem by proposing a novel
approach to achieve better estimates by including available single-predicate knowledge
into the cardinality estimate.

2 Related Work

The concept of cost-based optimizers in relational database systems was introduced in
system R by IBM. [SAC+79] describes the optimizer of system R and introduces concepts
such as selectivity estimation and the independence assumption for multiple attributes.
[PSC84] further investigates the selectivity estimation methods presented by system R.
Although system R is already 30 years old, the introduced concepts are still valid today. A
more modern look at query optimization can be found in [Cha98], which summarizes the
major research topics in this field during the last 30 years.

While those three papers give a more high-level overview about the concepts of rela-
tional query optimization, there are also several papers dealing with actual methods of
performing estimations. [Ioa03] gives an overview over previous and current work in
the field of selectivity estimation using single-attribute data histograms. For constructing
multi-dimensional histograms, [MPS99] compares multiple algorithms for partitioning a
two-dimensional histogram into buckets and shows that finding the optimal partitioning is
essentially NP-hard. Due to this, practical multi-dimensional histogram techniques are us-
ing either heuristics or query feedback to perform the partitioning. Examples of practical
multi-dimensional histograms include [TGIK02] and [SHM+06]. An overview comparing
different types of multi-dimensional histograms can be found in [PI97]. [GTK01] presents
a slightly different approach for the multi-dimensional estimation, which uses probabilistic
models (e.g. Bayesian Networks) to compute a selectivity estimate.
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[MHK+07] shows how to improve estimation quality by using the maximum entropy prin-
ciple to consistently combine estimates from available multi-dimensional statistics. In
contrast to this, our approach introduces a novel and improved way of computing a direct
cardinality estimate from one statistics set. These improved estimates could then e.g. be
used as input for a maximum entropy based estimator, which should effectively improve
cardinality estimates even in cases where no fitting set of statistics is available.

3 Problem & Terminology

A conjunctive filter θ consisting of n single predicates is defined as:

θ =
n∧

i=1

θi (1)

For this paper, we assume that each single predicate θi is an equality predicate of the form
ai = vi, which can be evaluated as:

θi(t) =

{
true, if t(ai) = vi

false, else
(2)

Hereby t is a tuple of relation R, ai denotes an attribute name of relation R and vi is a
constant value. The expression t(ai) denotes the value of attribute ai in tuple t. We will
assume that all attributes are from the same relation R and that no attribute is queried
twice by θ. This constraint is needed, since a conjunct of two different filters on the same
attribute is unsatisfiable and would lead to incorrect estimations.

When no multi-dimensional statistics are available, the optimizer will estimate the car-
dinality of a conjunctive filter θ by assuming statistical independence between the single
attributes. Using this, the cardinality of θ is estimated as:

|σθ (R)| ≈ 1
|R|n−1

n∏
i=1

|σθi (R)| (3)

Hereby σθ denotes the relational selection, which returns the set of tuples from relation R
that fulfill filter θ.

Let us consider a relation describing cars as tuples with attributes make and model. From
data histograms, the optimizer knows that 500 cars are manufactured by “Opel” and that
100 cars are of model “Astra”. Assuming 10.000 tuples within the database, the indepen-
dence assumption tells us there are 5 cars of model “Astra” produced by “Opel”. This is
obviously wrong, since only “Opel” produces the “Astra”: the strong correlation between
attributes make and model leads to an underestimated result cardinality.

One way to avoid underestimated cardinalites due to incorrect independence assumptions
is by applying a uniformity based estimation. Hereby, the optimizer assumes that all ex-
isting value combinations occur equally likely:

|σθ (R)| ≈ |R| 1
ϑθ

(4)
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In this equation ϑθ denotes the number of distinct value combinations in the attribute set
queried by filter θ. Using the uniformity based approach, let us reconsider the car example.
If we assume there are 125 different value combinations, a uniformity approach would
estimate the cardinality for each combination as 80 tuples. This estimate is obviously
better than the independence based estimate of 5 tuples.

Although it generally leads to better estimates - especially in case of incorrect indepen-
dence assumptions - the uniformity approach introduces a new estimation error source. If,
for example, we choose to find all cars of model “F430” that were produced by “Ferrari”,
the uniformity approach would still result in an estimate of 80 tuples. This is presum-
ably incorrect, since cars by Ferrari are likely to occur much less frequently than cars by
Opel. The problem of the uniformity approach is that each combination is treated equally
- although they might occur with different frequencies. By including single predicate
knowledge from data statistics into the estimate we should be able to improve this. For
example: if we know that Opel occurs much more often than Ferrari within the relation,
we should be able to use this knowledge to adjust estimates accordingly.

4 Solution

The relational selection operator can be expressed in form of a probabilistic experiment:
We take a random tuple out of relation R and check whether it fulfills filter θ. The proba-
bility that the random tuple fulfills the filter condition is:

P (θ (t)) =
|σθ(R)|
|R| (5)

Through rearranging equation 5, we are able to express the cardinality of filter θ as:

|σθ (R)| = P (θ (t)) |R| (6)

We are thus able to give a cardinality estimate through estimating the filter probability.
In the context of relational operations, the “probability” of a filter is called selectivity. In
short: the selectivity tells us the fraction of tuples in a relation, that fulfil the filter.

Using the probability based approach, we are able to incorporate single-attribute knowl-
edge into the selectivity estimate. We can do this by rewriting the joint probabilty through
using conditional probabilities. The conditional probability P (A|B) denotes the proba-
bility that event A will happen under the condition that event B has already occured. The
joint probability is then the product of P (A|B) and P (B).

If we translate the definition of conditional probabilites to estimating the selectivity for a
conjunctive pair of predicates θ1 and θ2 we get:

P (θ1 (t) ∧ θ2 (t)) = P (θ2 (t) |θ1 (t))P (θ1 (t)) (7)
= P (θ1 (t) |θ2 (t))P (θ2 (t))

From now on, we will refer to the conditional probabilites in equation 7 as conditional
selectivities. Since the two single predicate selectivities P (θ1 (t)) and P (θ2 (t)) can be
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retrieved from data statistics we are able to estimate the joint selectivity through estimating
these conditional selectivities. A very simple way of doing this, is to assume a uniform
correlation between the two queried attributes. This means we assume the conditional
selectivites to be constant over the complete data range:

P (θ1 (t) ∧ θ2 (t)) ≈ γθ1P (θ1 (t)) (8)
≈ γθ2P (θ2 (t))

Equation 7 shows two alternatives for estimating the joint selectivity: one for each part of
the filter. The approximation introduced in 8 results in estimation errors of different size
for the two alternatives. Since we can’t really predict which of the two ways results in the
smaller error, we use the average of both alternatives as the final estimate:

P (θ1 (t) ∧ θ2 (t)) ≈ γθ1P (θ1 (t)) + γθ2P (θ2 (t))
2

(9)

The conditional selectivity constants γθ1 and γθ2 tell us how many values of the other
attribute are - in general - paired with one attribute value. We are able to uniformly estimate
those constants as:

γθi
=

ϑθi

ϑθ
(10)

Hereby ϑθi denotes the number of distinct values in the attribute queried by predicate
θi. By combining equations 6, 9 and 10 we get the final conditional probability based
cardinality estimation as:

|σθ (R)| ≈ |R|
2

(
ϑθ1

ϑθ
P (θ1 (t)) +

ϑθ2

ϑθ
P (θ2 (t))

)
(11)

Using the same approach as for predicate pairs, we can generalize formula 11 to conjuncts
of n predicates. The resulting estimation formula is:

∣∣σ∧n
i=1 θi

(R)
∣∣ ≈ |R|

n

n∑
i=1

ϑθi

ϑθ
P (θi(t)) (12)

Let us reconsider the car example from chapter 3 using the conditional selectivity based
approach. We will assume there are in total 115 distinct models and 25 distinct makes in
the database, this allows us to estimate the two conditional selectivity constants for make
and model as:

γmake =
25
125

= 0.2 γmodel =
115
125

= 0.92

If we assume there are 15 cars of make Ferrari and two cars of model F430, we are able
to use equation 11 for the cardinality estimation. Equation 11 gives us 96 Astra cars from
Opel and 2.42 F430 cars from Ferrari. Those estimates are nearly perfect (we would
expect 100 and 2) and show the potential of the conditional selectivity method compared
to the uniformity approach.
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5 Evaluation

For evaluation, we want to identify the expected general behaviour of the conditional se-
lectivity based estimator compared to the two classic ones (independence and uniformity).
The quality of an estimator is dependent on how correct the underlying assumption is for
a given relation. For the classic estimators we can give rather accurate predictions:

• The independence assumption based estimator will obviously result in very bad es-
timations for distributions with high correlation between the attributes.

• In case of the uniformity approach, the estimation error is mainly influenced by the
variance of the frequencies within the distribution. A highly varianced frequency
distribution should thus result in high errors when using uniformity based estima-
tion.

Evaluating the conditional selectivity method is a bit more complicated, since the used
assumption of “uniform correlation” is not as tangible as the other assumptions. However,
we can give some general thoughts on the expected behaviour. We expect the conditional
selectivity method to work best in case of highly correlated distributions. In these cases,
the attributes are very uniformly correlated - in the sense that each value of an attribute has
almost exactly one partner in the other attribute(s). For weakly correlated distributions we
expect the conditional selectivity method to behave nearly like the classic independence
assumption based estimator, since the conditional selectivity estimator approximates the
independence estimator in those cases1.

Figure 1 shows how the estimation error of the three possible estimators (independence,
uniformity, conditional selectivity) develops with regard to the correlation factor. For cre-
ating the figure, we implemented the conditional selectivity approach into the query op-
timizer of IBM Informix Dynamic Server and measured the total error for simple select
statements on a relation consisting of two attributes. The relation was filled with artificial
numerical data with specified variance and correlation, having a skewed frequency dis-
tribution to simulate “real-world” data. For figure 1 we created multiple data sets with a

1In lowly correlated distributions, the single attributes are nearly statistically independent. This means the
number of distinct attribute value combinations approaches the product of the number of distinct attribute values:

ϑθ ≈
∏
j

ϑθj
(13)

If we insert equation 13 into the conditional selectivity estimation formula 12 we get:∣∣∣σ∧n
i=1 θi

(R)

∣∣∣ ≈ |R|
n

n∑
i=1

P (θi(t))

n∏
j (=i

1

ϑθj

(14)

We can now apply a simple uniformity based approximation:∣∣∣σ∧n
i=1 θi

(R)

∣∣∣ ≈ |R|
n

n∑
i=1

P (θi(t))

n∏
j (=i

P (θj(t)) ≈ |R|
n∏

i=1

P (θi(t)) (15)

Comparing the right-hand side of equation 15 to the definition of independence assumption based estimation in
3 shows that they are equivalent.
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constant variance and increasing correlation factors2.

Figure 1: Theoretical comparison of estimators

There are three notable conclusions from figure 1:

1. The independence assumption leads to very high errors in case of high (and medium)
correlation factors. The other two estimators lead to drastically better results!

2. The uniformity based estimation leads to a rather constant estimation error, which is
not surprising since all data sets we used had roughly the same frequency variance.

3. The conditional selectivity based estimation seems to create roughly the same esti-
mation errors as the uniformity based estimation. However - as we expected - the
error decreases drastically for very highly correlated attributes.

6 Experiments

In order to confirm the statements from the evaluation chapter, this section presents exper-
iments conducted using the conditional selectivity method. We compare the cardinality
estimation quality of the conditional selectivity and the uniformity approach, using the
implementation in IBM Informix Dynamic Server. The experiments were performed on
attribute pairs of existing “real-world” customer data. Each attribute pair was queried
multiple times using simple conjunctive select queries. To compare the estimation quality,
each workload was run twice: once using the classic uniformity estimator and once using
the conditional selectivity estimator. Table 1 shows statistical properties of the used groups
and whether the estimation improved or deterioated: values larger than one represent an
improvment by using the conditional selectivity estimator.

2The used correlation factor is the φ2 factor from [IMH+04], which ranges between 0.0 - meaning indepen-
dence - and 1.0 - meaning complete dependency.
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Nr. #rows #distinct variance φ2 improvement
1 10001 193 264.019 0.992588 - (inf)
2 14260 39 297.967 0.894439 1.753
3 12096 280 105.311 0.631532 1.506
4 12096 40 669.102 0.536271 0.828
5 10001 691 58.3671 0.201792 1.288
6 8872 1832 3.97732 0.00521 2.165

Table 1: Evaluated attribute pairs

To further illustrate the results, figure 2 shows scatter plots presenting the change in esti-
mation errors for all six groups. Each dot of the plot represents one query, the x-coordinate
being the estimation error using the uniformity approach, the y-coordinate the error using
the conditional selectivity approach. Therefore each dot between the two lines represents
a query for which the conditional selectivity approach resulted in an improved estimate.

Looking at the plot for group one, it shows all3 points lying on the x-axis. This means
the conditional selectivity approach resulted in - as expected - perfect estimates for the
group with the highest correlation. The plots for groups two and three show most points
in between the two lines: For these groups, the conditional selectivity approach results in
a reasonable improvement. The same is true for groups five and six. The only group for
which the classic uniformity approach worked (slightly) better was group four, which is
mid-correlated and has a rather high variance.

The experimental results are basically consistent with the considerations from the previous
chapter: The conditional selectivity based approach seems to result in better estimates for
lowly and especially for highly correlated groups. For mid-correlated groups, the two
estimators seem to be equally good, with a slight advantage for the uniformity approach.

7 Conclusion & Future Work

Summarizing the results, we can say that the conditional selectivity approach offers nearly
perfect estimations for highly correlated attributes - without the need for the expensive
construction and maintenance of a multidimensional histogram. Although the estimation
quality decreases for lower correlated attributes, the method still seems to at least match
the uniformity approach in most cases. Thus, the conditional selectivity based approach
provides a clear advantage for highly correlated attributes, while it seemingly doesn’t have
a serious disadvantage on mildly correlated ones: The method looks very promising and
should be studied further in the future.

There are two interesting topics future studies could concentrate on: the first topic is find-
ing heuristics for determining cases in which the uniformity approach works better than
the conditional selectivity approach. These heuristics could be used by an “intelligent op-

3Since many queries led to the same estimation errors, it appears there are only two points in the plot.
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(a) group 1 (b) group 2

(c) group 3 (d) group 4

(e) group 5 (f) group 6

Figure 2: Comparing uniformity and conditional selectivity based estimation
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timizer” to automatically determine the best possible estimator for a given relation. The
second topic focuses on optimizing the conditional selectivity factors. There is probably a
better way of choosing those factors than the proposed approach, which should lead to a
better estimation quality for the conditional selectivity approach.
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