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How Random is a Classifier given its Area under Curve?

Chris Zeinstra', Raymond Veldhuis!, Luuk Spreeuwers1

Abstract: When the performance of a classifier is empirically evaluated, the Area Under Curve
(AUC) is commonly used as a one dimensional performance measure. In general, the focus is on
good performance (AUC towards 1). In this paper, we study the other side of the performance spec-
trum (AUC towards 0.50) as we are interested to which extend a classifier is random given its AUC.
We present the exact probability distribution of the AUC of a truely random classifier, given a fi-
nite number of distinct genuine and imposter scores. It quantifies the “randomness” of the measured
AUC. The distribution involves the restricted partition function, a well studied function in number
theory. Although other work exists that considers confidence bounds on the AUC, the novelty is that
we do not assume any underlying parametric or non-parametric model or specify an error rate. Also,
in cases in which a limited number of scores is available, for example in forensic case work, the ex-
act distribution can deviate from these models. For completeness, we also present an approximation
using a normal distribution and confidence bounds on the AUC.
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1 Introduction

The trade off between the False Match Rate (FMR) and True Match Rate (TMR) of a
classifier while varying the decision threshold is commonly reported in a receiver oper-
ating characteristic (ROC) curve [Fa06]. There exist several one dimensional classifier
performance measures that can be derived from its ROC curve, for example, the Equal
Error Rate and the Area under Curve [HMS82]. In this study, we consider the Area Under
Curve (AUC) measure. An ideal classifier has AUC=1, whereas a random classifier has
AUC=0.50. The AUC is equal to the probability that a randomly chosen genuine score is
larger than a randomly chosen imposter score [HTO1]. Also, the AUC can be interpreted as
the Wilcoxon-Mann-Whitney statistic [MW47] when ordering the genuine and imposter
scores produced by the classifier [HM82], [MGO02].

In any empirical performance evaluation, only a finite number of genuine and imposter
scores is available. Under the assumption that genuine and imposter scores are drawn
from unknown probability densities, ultimately the AUC is also a random variable, having
a probability distribution on its own. If we could replicate the experiment having the exact
same number of genuine and imposter scores, we most likely would have obtained a differ-
ent ROC curve and AUC. In particular, this implies that the performance evaluation might
yield an AUC value that is not identified as being produced by a random classifier. This
could occur in the case of a subject anchored approach to evidence evaluation in which the
available number of scores is limited, see [Me06] for a general framework.
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The probability distribution of the AUC of a random classifier is easily derived for trivial
cases. More precisely, we assume that (a) this classifier draws genuine and imposter scores
randomly from the same probability distribution and (b) the drawn scores are distinct. The
last condition is a necessary technicality; if we for example assume that scores come from
a continuous interval, this condition is typically met. Suppose we construct a ROC curve
based on 1 genuine score g and n imposter scores iy, k = 1,...,n. We have n+ 1 possible
orderings of the scores:

g<i <. ..<ph <t <h<..<ip<g. (D

Since g and i;, come from the same distribution, each sequence in (1) has equal probability
ﬁ. Ifl(I=1,...,n+1)is the position of g in any sequence in (1), then its AUC is equal
to % Hence, each possible AUC has equal probability. The one-to-one mapping in this
trivial 1 genuine/n imposter case between sequences and the AUC does not hold in general.
For example, both i1, g1,82,i> and g1,i1,i2, g2 yield AUC=0.50, and the situation becomes
rapidly complex when m and n attain values found in practice.

The contribution of this paper is the exact probability distribution of the AUC of the ran-
dom classifier for any finite number of genuine and imposter scores. Also, we present an
approximation. This work can be used in the situation when we want to determine the
probability that a random classifier produces the measured AUC; this is of interest when
the measured AUC is low or the total number of scores is limited.

The remainder of this article is structured as follows. In Section 2, we present related
work. Since the general approach involves the restricted partition function, we present
its definition in Section 3. In Section 4, we present two theorems regarding respectively
the probability distribution of the AUC and an approximation. Section 5 presents some
examples of the exact and an application of the approximation. In Section 6, we discuss
the two theorems. Finally, in Section 7 we present our conclusion.

2 Related Work

As indicated before, this work fits in a larger framework that studies whether two AUC’s
are significantly different by constructing confidence intervals. This is not only of impor-
tance in decision theory, but also for clinical medicine and psychology studies in which
treatments are compared. We present some of these studies here.

For example, the work of [CMO04] analytically derives exact and estimated confidence
intervals based on a statistical and combinatorical analysis, using a fixed error rate and
the number of genuine and imposter scores. Our work only uses the number of genuine
and imposter scores, assuming that they are drawn from the same probability distribution.
Another approach is the use of parametric models to construct confidence intervals. For
example score distributions have been modeled as normal [HSZ09], binormal [MHS98],
exponential [To77], and Gamma [PA95], from which expressions for the confidence inter-
vals can be derived. Their main issue is the influence of the parametric assumption on the
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estimation of confidence intervals. To cater for that situation, several non-parametric meth-
ods have been explored, including Wilcoxon-Mann-Whitney and De-Long non-parametric
interval [DDCP88]. The work of [QHO8] compares nine non-parametric approaches in dif-
ferent simulation scenarios (moderate to good AUC and different combinations of genuine
and imposter scores). They found that their own empirical likelihood approach [QZ06]
has a good coverage in different scenarios. Several studies have shown that methods can
be negatively influenced by the number of considered scores. For example, [OL98] found
that asymptotic methods are less accurate in this situation; the study of [Hal0] shows how
estimates for the AUC can differ significantly from the true value.

In summary, these studies emphasise on one hand the restriction of our work (random clas-
sifier) and on the other hand its uniqueness (exact distribution, depending on the number
of genuine and imposter scores).

3 Partition functions

The partition function is an essential function in number theory, a branch of mathematics
that studies properties of integers [An98]. A partition of a positive integer k is a decom-
position of k as a sum of positive integers. The partition function p counts the number of
different partitions of a positive integer, disregarding any permutations in the order of the
terms. For example p(5) =7, since

5=5=4+4+1=34+2=3+1+1=242+1=2+1+1+1=1+1+1+1+1. (2)

It is customary to order the terms in a partition from the largest to the lowest value. This
can be written more formally as k; +...+k, =k, and k| > kp > - - - k,. Also, by convention,
the domain of p is extended by including p(0) =1 and p(k) = 0 for k < 0.

There exist different “restricted” versions of the partition function. In particular, one can
limit the number and value of the terms of a partition. Let p(n,m;k) be the number of
partitions of k which have at most m terms, each having maximum value n. In the sequel,
we refer to this function as “the” restricted partition function. For example, p(4,2;5) = 2,
since the maximum value is 4 and the maximum number of terms is 2:

S=4+1=342. 3)

The restricted partition function has a generating function:

Y. pln,m;k)gt = (’"”) , @)
m q

k=0

in which

(m—|—n) _ 7= (1—¢/) 5)
q rl(

m 1=g))[Tj=(1-¢/)
is the Gaussian binomial coefficient [An74]. It generalises the binomial coefficient as for
limy ~, (5) reverts to the standard binomial coefficient (k,“). As an example, we expand
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p(4,2:k) fork=0,---,8:
8 (6) - o Lall_2) (1-¢°)(1-¢%)
¢ Tl

p(n,m;k)q" = A _ = . ()
k;() 2 =g (1-¢/)  (1=q)(1-¢?)

It is straightforward to verify that (6) is equal to 1 + g +2¢> +2¢° +3¢* +2¢° +24° +
g’ +¢%. In particular, we observe that p(4,2;5) = 2 (the factor of ¢°), a result that was
also demonstrated by (3).

4 Exact and Approximative Distribution

We have the following theorem on the distribution of AUC.

Theorem 1. Given m genuine and n imposter scores, all distinct, the possible values for
AUC are

k

Moreover, if the genuine and imposter scores are drawn from the same score distribution,
then the probability distribution of the AUC is given by

k ok
P (AUC = %> =l ((r,i’jfl) ) @®)

n

where p(n,m;k) is the restricted version of the partition function.

Proof. Having m genuine and n imposter scores, this divides the TMR (resp. FMR) space
into m+ 1 (resp. n+ 1) points with distance % (resp. %). Since we have distinct scores,
whenever the threshold increases and passes a score, the corresponding operating point
in ROC space will either move to the left with a step size % or down with a step size %
Hence, the AUC can be seen as a sum of blocks of equal area of ﬁ, showing that (7)

holds.

Given the set of ROC curves for which the number of blocks under the curve is k, we
can assign to each ROC curve a sequence ki,k», ..., k. where k; is the number of blocks
between TMR = 0 and TMR = % until k., being the number of blocks between TMR =
% and TMR = ... By construction, (a) k| +...+k, = k, (b) the size of k; is restricted to
n, (c) ris limited to m, and (d) k; > kp > -- -k,

The reverse relation also holds: given a sequence ki, ks, ..., k, with properties (a)-(d), we
can construct the corresponding ROC curve uniquely as follows. Place k; blocks to the
right between TMR = 0 and TMR = %, until &, blocks to the right between TMR = %
and TMR = .

The properties (a)-(d) of a sequence ki,k», ...,k make it a restricted partition of k. Since
there is a one-to-one correspondence between a ROC curve and a restricted partition, we
conclude that the number of ROC curves with AUC = % is equal to p(n,m;k).
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Given that the total number of ROC curves is ("*"), all being equiprobable due to the
same score distribution assumption, we conclude that (8) holds. O

We can also approximate (8) with the normal distribution.

Theorem 2. Given m genuine and n imposter scores, the distribution of the AUC has an
asymptotic normal distribution if m — oo and n — oo, in particular

1
Tim p(AUC >x) = 1~ ((xz)m”> . ©)

O,
n—soo mn

Here @ is the cumulative standard normal distribution and

mn(m+n+1
Proof. According to Theorem 4 of [Ta86], we have, using our notation
k— 1L
nmp< 2m"gr>:c1>(r), 11
m—yeo Gﬂlrl
n—soo
with k related to AUC as AUC = % Using this relation in (11) we observe that
AUC -1
lim p <(2)m” < r) —d(1), (12)
m—reo O-ﬂlrl
n—soo

10mn
mn

defining x = % + and reversing the inequality in (12) we conclude that (9) holds. [

5 Examples

In this section, we provide three examples of the exact distribution and one application
that uses the approximation.

5.1 The 1 genuine/n imposter case

. . 1—g)--(1— n+1 _n+l
Itis straightforward to show that p(n, 1;k) = (1(7q)7»)»(1(7q”q)(17)q) =1 - — =Lio ¢*. Hence,
p(n,1;k) =1 for k= 0,...,n. Moreover, p(AUC = £} = (,%1) = 7. This is in accor-

dance with the example discussed in the Introduction.



264 Chris Zeinstra and Raymond Veldhuis and Luuk Spreeuwers
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Fig. 1: a) p(AUC) for m = 1,---,15 genuine and n = 100 imposter scores. Graphs are scaled such
that they can be interpreted as continuous probability distributions. b) The upper limit of 95% and
99% confidence intervals as a function of equal number of genuine and imposter scores. ¢) p(AUC)
for m =5, 10, 15 genuine and n = 100 imposter scores in blue, together with the approximation given
by (9) in red.

5.2 The 2 genuine/Even n imposter case

Suppose n is even, then it can be shown that (5) can be written as
p(n,2k) = (1+ g+ + -+ )1+ +q* +-+¢"). (13)
A straightforward calculation gives a staircase like shape:
p(2,n;2k) = p(2,n;2k+1)=k+1 if2k<n-—1,

p(2,nk) =5+1 ifk=n, (14)
p(2,n;k) = p(2,n;2n—k) ifk>n+1.

5.3 The 1-15 genuine/100 imposter case

In this example, we plot p(AUC) form =1, , 15 genuine and n = 100 imposter scores in
Figure 1a. In particular, we see respectively the uniform and staircase like shapes appearing
form=1and m=2.

5.4 Confidence bounds

Theorem 2 can be used to construct a two sided 1 — o confidence interval [% —Xa, % +Xq]
around the AUC of a random classifier that depends on the number of genuine and imposter

scores. Rewriting (9) shows that xg is given by xq = g1/ %521 with z defined implicitly

as P(zq) =1—- 9.

In Figure 1b we have chosen m = n, respectively o0 = 5% (zo = 1.96) and @ = 1%
(zq =2.33) and plotted the upper limit of confidence intervals as a function of the number
of genuine and imposter scores. This illustrates the asymptotic behaviour of the approxi-
mation; for smaller numbers of scores, the AUC of a random system can still deviate much
from AUC=0.50.
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6 Discussion

Figure 1a visualises the dependency of p(AUC) on the number of scores. Especially, we
observe that for a lower number of scores, the probability that a random system has an
AUC that differs significantly from 0.50 is non trivial. This is of relevance in, for example,
the case of a subject anchored approach to evidence evaluation.

Although Theorem 1 provides an exact result, it can be challenging to calculate the value of
the restricted partition function. One needs to resort to data structures to accommodate for
values that are larger than those can fit into an IEEE-754 64 bit integer representation. This
may result in an increased calculation time due to the lack of an efficient mapping from
primitive operators to single machine instructions. Moreover, if we would be interested in
the cumulative probability p(AUC > x), then a repeated calculation is not optimal as one
could better use its generating function (4) for the simultaneous calculation of p(n,m;k)
over a range of values of k.

The result of Theorem 2 is an approximative result, and it is instructive to see how well
it approximates the true probability distribution for finite values of m and n. We show the
exact and the approximation for three cases: m =5, 10, 15, and n = 100 in Figure lc.
Even for moderate values of m and n the approximation seems satisfactory. Furthermore,
if the number of genuine and imposter scores are equal (k) and k — oo, the distribution
becomes centered around AUC=0.50.

Although our work only considered approximative confidence bounds, we can also con-
struct exact confidence bounds, especially when the number of scores is low.

7 Conclusion

In this paper, we have presented an exact formula for the probability distribution of the
AUC of a random classifier, given a finite number of distinct genuine and imposter scores.
This work can be used in the situation when we want to determine the probability that a
random classifier produces the measured AUC; this is of interest when the measured AUC
is low or the total number of scores is limited, masking the true nature of the classifier. The
exact probability distribution involves the restricted partition function and can be approxi-
mated by a normal distribution. We used this approximation to derive confidence intervals
for the AUC as a function of the number of genuine and imposter scores.
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