Reliable Component Development for End Users

Ludger Martin
Peter—Weyer—Stralle 37, 55129 Mainz, Germany
lumartin @NotaMusica.com

Abstract: In recent years, the opinion existed that end user developers create more ap-
plications than professional developers. Therefore special development environments
are needed to support the end user developer as best as possible.

In this paper, I present parts of the HOTAGENT component development environ-
ment especially arranged for end users. The focus of the investigation is on developing
reliable components. Special tools are presented to support the end user developer.
Visual effects show the end user developer the quality of a component or the need of
additional tests etc.

1 Introduction

Creating reliable software is still a contemporary issue. Many companies believe that they
don’t need extensive tests and maintenance strategies. But not only professional software
developer are compelled to test. Especially end user developers need to be stimulated to
test there programs. Development environments and their languages need to be easy but
flexible. To provide this component development environments are especially suited this
way.

In this paper tools will be presented to support the end user developer (EUD) to develop
reliable components. They visualize the EUD the reliability of components and the need
of specifying more tests or assertions for a component. They are part of the HOTAGENT
development environment [MMO03, Mar03]. In the next section we discuss the basic con-
cepts of end user development, components, and testing. The tools to support the EUD
during development are presented in Section 3. The paper concludes with a summary and
a discussion of future work in Section 4.

2 Basic Concepts

To discuss the development of reliable components for end user, first it is necessary to
present concepts of end user development. Later on, we define the term component and
explain strategies in testing.

Nowadays end user development is the most common form of programming. Mgrch ef al.
[MSW04] define end user development as customizing of applications by the end user.

568

The end user has expert and technological knowledge but only low or no knowledge in
programming at all.

End user development is done by customizing applications. To facilitate this, parts to build
an application must be under-designed at design time. Thereby the end user can create
special applications. He can make complex customizations or extensions.

Fischer et al. [FGY*04] point out a conflict between complexity and capability. To allow
to solve a huge amount of tasks the complexity of the development system increases and
it is harder to be handled by the end user. In my opinion the use of components can solve
this conflict.

Szyperski [Szy98] defines: “A component is a unit of composition with contractually spe-
cified interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.”

According to Liier and Rosenblum [LR01], a component should have a public and a private
part. The interface is the sole public part of the component. All other classes of the com-
ponent are private. The interfaces ensure the communication between all the components.
In our component model, every component provides entrances and exits. Communication
between components is possible only through these public entrances and exits. An entran-
ce can receive data and produce a result depending on the component. An exit is activated
if a component has to show any change by providing the appropriate data. To compose
components, exits are connected with entrances.

Mgrch et al. [MSWT04] explain three phases of component development for end users. In
the first phase customization the end user modifies parameters of a component. Extension
is done by creating new components by programming with source code. Integration is the
phase of creating or modifying applications using components.

Now testing will be discussed. McCarthy [McC97] defines an unit test as: “testing a func-
tion, module, or object in isolation from the rest of the program.” A unit is normally the
smallest item of programming. In component technology, the smallest unit is a component.
It is not useful or possible to break down the components and test the encapsulated classes.
Tests for component software need to regard components as black boxes.

Since we understand a component as a block with entrances and exits, a message or data
can be sent into the entrances and can be tested against the data coming from the exits.
The tester must define the data of the individual exits before checking the answers. The
combination of data sent into entrances and data expected at exits is called test fixture. If
an exit has a wrong value or is not activated, a failure has occurred.

Beside testing it is also possible to use Design by Contract. Assertions have to prove the
correct functionality of a component. These assertions are checked at run time. Using Ve-
rified Design by Contract formal verification during design time is done. This can help the
EUD during assembling components. So the EUD can correct the problem at the moment
of programming.

569

3 Reliable Component Development

Fischer et al. [FGY"04] point out that EUD need to be well motivated. Therefore HOT-
AGENT provides tools to support the user by creating components, by creating applicati-
ons, by testing, and by analysis. The next paragraphs describe how to create components,
how to specify assertions for the components and how to test components.

If the EUD has determined that a new component needs to be built to implement the ap-
plication, HOTAGENT COMPONENT [MMO03, Mar03] should be used. To design a new
component, entrances and exits can be created to specify the interface. In addition to spe-
cifying descriptions (self documentation) for the interface, it is required to indicate an
assertion for every entrance and exit. If the EUD specifies an assertion the color of the
entrance or exist is changed.

New Components are implemented using existing components. Having selected the in-
terior components it is necessary to connect these components among each other and to
the interface ports (entrances and exits) of the new composed component. It is possible to
connect one exit to several entrances and several exits to one entrance.

To support especially the EUD HOTAGENT COMPONENT shows the quality of the new
constructed component in the toolbar. The quality is measured by assertions specified for
the interface of the new component and by tests specified for the new component (see
below). A second indicator is the average quality of all interior used components.

During connecting components Verified Design by Contract is used. The postcondition
and precondition of the exits and entrances are checked against each other. If they don’t
fit, the EUD will be notified. During run time the assertions are also checked (Design by
Contract). Because of this the EUD is always informed where to tackle a problem.

Apart from displaying quality criteria, the editor offers the possibility to label and color
connections to support secondary notation. It also offers a number of display filters (level
of detail or separation of concern) to reduce the amount of information displayed on the
workspace.

Using the HOTAGENT COMPONENT editor the EUD is well supported by creating and
maintaining components. By specifying assertions he can increase the reliability. But this
is not enough. The EUD has to test it’s component which is described below.

The HOTAGENT TEST tool [MMO3, Mar(03] is used to specify test fixtures for components
and composed components. Every test fixture can be created according to the following
scheme: create all components to test, connect the components, send data to a component
entrance, and define an assertion for a component exit.

HOTAGENT TEST can be used in the same way as HOTAGENT COMPONENT to place and
connect components. Data to send to a component entrance can be created using a special
data component. Similarly, a test component can be used to complete a test fixture. These
two components can interpret any Smalltalk code to define a data set or to specify the test
block. If the test block is evaluated as true, the test is positive. When the test is executed,
the color of the test block component changes in relation to the result. HOTAGENT TEST
is able to store a test fixture with every component or component program.

570

HOTAGENT REGRESSION is a tool to run regression tests. It is similar to the SUnit/JUnit
test runner. It can run a specific test case or all test cases defined in a system.

4 Summary and Future Work

In this paper, I present some parts of HOTAGENT as a development environment suitable
for end users. The main focus is on creating reliable components. The tools presented try
to support the end user developer as best as possible by creating and maintaining reliable
components.

At the moment not all tools of HOTAGENT are revised to be suitable for end user devel-
opers. Investigations are in process how to support end user developers in all development
steps in a unified tool set with one consistent user interface and a common operational
paradigm. An assessment of HOTAGENT for EUD has to be accomplished.

A hard question is how to know whether a component is reliable or not. Is it sufficient
to specify assertions and test cases? Are there any conditions these assertions and test ca-
ses need to met. McCarthy [McC97] claims that it is always uncertain if a test suite is
complete. He proposes to test until finding several failures. It is also necessary to investi-
gate a different solution. Another interesting question is how much testing is needed for a
composition of components if the components have already been tested in isolation.

Literatur

[FGY104] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe und N. Mehandjiev. Meta-design: a
manifesto for end-user development. Commun. ACM, 47(9):33-37, 2004.

[LRO1] Chris Liier und David S. Rosenblum. Wren — An Environment for Component-Based
Development. In Proceedings of the Joint 8th European Software Engineering Confe-
rence and 9th ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Seiten 207 — 217, September 2001.

[Mar03] Ludger Martin. Visuelles Komponieren und Testen von Komponenten am Beispiel von
Agenten im elektronischen Handel. Dissertation, Darmstadt University of Technology,
2003.

[McC97] Adrian McCarthy. Unit and Regression Testing. Dr. Dobbs Journal, Februar 1997.

[MMO03] Ludger Martin und Johannes Martin. HotAgent: Round Trip Component Development.
Annals of Mathematics, Computing & Teleinformatics, 1(1), 2003.

[MSW+O4] Anders I. Mgrch, Gunnar Stevens, Markus Won, Markus Klann, Yvonne Dittrich und
Volker Wolf. Component-based technologies for end-user development. Commun.
ACM, 47(9):59-62, 2004.

[Szy98] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

571

