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Abstract: The in-silico design of ligands binding to the protein surface instead of
deep binding pockets is still a great challenge. Often no appropriate binding pockets
are available in the apo experimental structures and standard virtual screening tech-
niques will fail. Here, we present two new algorithms for designing tailored ligand
binding pockets on the protein surface that account for protein backbone and side
chain flexibility. At first, the protein surface is scanned for potential pocket positions
using a program named PocketScanner. This program minimizes the protein energet-
ically in the presence of generic pocket spheres representing the new binding pockets
whose positions remain fixed. The side chains of the relaxed protein conformations
are then further refined by a second program named PocketBuilder. PocketBuilder
identifies all residues within a given radius of the pocket positions and searches for the
best combination of side chain rotamers using the A* algorithm. Given multiple pro-
tein conformations as input, PocketBuilder identifies those that lead to the best results,
namely protein conformations of low energy that possess binding pockets with desired
properties. The approach was tested on the proteins BCL-XL, IL-2, and MDM2 which
are involved in protein-protein interactions and hence represent challenging drug tar-
gets. Although the native ligand binding pocket was not or only partly open in the apo
crystal or NMR structures, PocketScanner and PocketBuilder successfully generated
conformations with pockets into which a known inhibitor could be docked in a native-
like orientation for two out of the three test systems. For BCL-XL, the docking scores
were even similar to those obtained in re-docking experiments to the inhibitor bound
crystal structure.

1 Introduction

After realizing that most diseases arise from aberrant molecular interactions, it has become
an important goal to identify these interactions and to modulate them, for example through
the binding of additional ligands, so that the native biological processes are reestablished
or unwanted interactions are inhibited. In particular, the development of computational
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tools supporting the design process of such modulators has become a very interesting re-
search area. It involves, for example, the in-silico design of ligands that should bind to
concave regions on the surface of the target protein. Given the three-dimensional tar-
get structure, one may predict the binding modes of a potential ligand by scanning the
protein surface for favorable binding pockets. To this end, several computational tools
have been developed that use geometric (e.g. PASS [BS00], SURFNET [Las95], Pock-
etFinder [ATA05], LigSite [HRB97]) or energetic (e.g. GRID [Goo85], MCSS [CMK93],
QSiteFinder [LJ05], CS-Map [LLY+07]) criteria for detecting such clefts or hot spots.
An example for pocket detection tools using only geometric criteria is the PASS (Putative
Active Sites with Spheres) algorithm that identifies empty volumes on the protein surface
by their burial extent. An example for the tools using energetic criteria for identifying
putative hot spots is MCSS that generates positions and orientations of functional groups
in the field of a flexible protein. In the case of enzymes, such binding pockets often cor-
respond to active sites that deeply extend into the protein interior and are relatively easy
to identify. It is much harder to detect pockets located at flat protein surfaces that often
require structural rearrangements to open and therefore may not be fully accessible in the
protein conformation used. The lack of clearly shaped binding pockets at protein-protein
interfaces is one of the reasons why the structure-based drug design of small molecule
protein-protein interaction inhibitors (SMPPIIs) remains a great challenge [AW04]. Until
today, most published SMPPIIs for this class of drug targets were identified by experimen-
tal screening methods [WM07].
We have previously presented a pocket detection protocol that provides a starting point for
in silico drug design for cases in which no potential binding pocket could be identified so
that standard screening methods would fail [EH07]. For the three protein systems MDM2,
BCL-XL, and interleukin-2 (IL-2), we found that large pockets not detectable in the crystal
structures of the free proteins opened frequently on the protein surfaces during standard
molecular dynamics (MD) simulations of 10 nanoseconds length at room temperature.
The identified transient pockets represent potential binding sites for new inhibitors. At the
native binding site, pockets of similar size as with a known inhibitor bound could indeed
be observed for all three systems. Docking known inhibitors with AutoDock 3 [MGH+98]
into these transient pockets resulted in docking results with less than 2 Å root mean square
deviation (RMSD) from the crystal structures. In a subsequent study, we could show that
when the water solvent was replaced by methanol the transient pockets opening in the MD
simulations tended to be larger and less polar (unpublished results). Moreover, the dock-
ing results improved significantly for two of the three systems. However, a limiting factor
of this pocket detection protocol is the high computational demand of MD simulations on
biomolecular systems and it would be desirable to achieve the opening of surface pockets
by a more efficient protocol. Fortunately, in many drug design applications, the approxi-
mate location of the binding site is already known. Hence, it is sufficient to sample only
the corresponding part of the protein surface. This local instead of global search allows
for a more accurate and directed sampling of low-energy protein conformations with ac-
cessible pockets. These protein conformations can then be used to optimize the interaction
between the protein and the ligand or for virtual screening. We will show below that the
problem of finding appropriate protein conformations can be solved efficiently using an in-
formed graph search algorithm like the A* algorithm [HNR68] that uses knowledge about
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the structure of the search space incorporated in heuristic functions to guide the search
towards optimal solutions. During this search, a graph is built up in which each node rep-
resents a partial solution. Given an initial node representing the initial state, the algorithm
searches the path to a given goal node, representing the goal state. The generated nodes
are maintained in a priority queue. The priority of a partial solution x is given by

f(x) = g(x) + h(x) (1)

where g(x) is the cost of this partial solution so far, i.e. from the start node to x and h(x)
is the heuristic estimate of the minimal cost to reach the goal node from x. If the heuristic
function is admissible (i.e. it never overestimates the cost of reaching the goal node) and
consistent (i.e. it fulfills the triangle inequality), it will always find a path with minimal
cost from a given start node to a given goal node if such a goal node exists. Leach applied
the A* search to the flexible docking and the side chain placement problems [Lea94].
After placing an anchor region of the ligand into the binding site, he generated all possible
ligand conformations. For each conformation that made no unfavorable interactions with
the protein backbone and all rotameric states of a residue, the optimal combination of
side chain rotamers was determined by an A* search. The initial node represented the
structure without assigned rotamers for the residues at the binding site, while the goal
nodes represented the optimal docking solutions, i.e. all residues had assigned rotamers.
In this work, we incorporated ideas from PASS, MCSS, and Leach’s application of the
A*-search into two new algorithms for the efficient generation of energetically favorable
protein conformations with accessible binding pockets at defined locations on the surface
of the BCL-XL, IL-2, and MDM2 proteins.

2 Methods and Materials

Our method uses two programs for the construction of putative binding pockets: Pock-
etScanner and PocketBuilder. PocketScanner scans a user-defined region of the protein
surface for potential pocket positions and generates protein conformations in which the
backbone has adapted to these pocket positions. PocketBuilder uses these intermediate
conformations for calculating a final set of conformations that best fulfil the search cri-
teria, namely the desired trade-off between a protein conformation with low-energy side
chain rotamers and a pocket of defined volume. Both programs were implemented in C++
using the BALL library [KL00] and the CHARMM EEF1 [LK99] force field that was
used to compute all energies given below. This force field treats the solvent as an implicit
continuum, and including such effects is crucial for designing pockets on protein surfaces.
Binding pockets are represented by generic pocket spheres that were added to the force
field. In the current setup, they only interact with the protein atoms via van-der-Waals
interactions (with a radius of 1, 2, or 3 Å and a well depth of 0.05 kcal/mol). The pocket
volumes and polarities were calculated as described in [EH07].

66



2.1 Structure Preparation

The unbound (apo) and inhibitor-bound protein structures of three test systems were taken
from the Protein Data Bank [BWF+00] (PBD entries 1R2D and 1YSI for BCL-XL, 1M47
and 1PY2 for IL-2, and 1Z1M and 1T4E for MDM2). All hetero atoms (including the
ligand) were manually removed. As residues 28-81 are missing in 1R2D, the two parts
of the protein were modeled as two distinct chains. The missing residues in 1M47 were
modelled as loops of the lowest AMBER/GBSA potential energy generated by the program
RAPPER [dBDBB03]. The structure of apo MDM2 is represented by 24 NMR models that
differ mainly in the loop regions. Since no model is defined as most representative, the
first model was chosen. The apo structures were superimposed on the inhibitor-bound
structures based on the Cα-coordinates using the VMD program [HDS96].

2.2 The PocketScanner Algorithm

PocketScanner creates a grid around a given center with suitable dimensions and edge
length and scans the protein surface for potential positions of pockets with a given radius.
The z-axis of this grid is the solvent vector defined by the initial pocket position and the
center of gravity of the 10 nearest solvent exposed atoms. The generic pocket sphere rep-
resenting the pocket center is then placed on each grid point and its burial count (number
of protein atoms within 8 Å) is calculated. Only those positions with a burial count above
a given threshold (default: 65) are accepted, otherwise the resulting cavity may be too flat.
As this criterion allows for pocket positions that are deeply buried inside the protein, we
additionally require that the minimal distance to any solvent exposed atom must be smaller
than 2 Å. The protein is then energy minimized in the presence of the generic pocket sphere
using 500 steps of L-BFGS or until the RMS gradient is smaller than 0.01 kcal mol−1Å−1.
During this energy minimization, the position of the generic pocket sphere is fixed, so that
the protein relaxes its conformation. If the burial count is still high enough after the en-
ergy minimization, this protein conformation in combination with this pocket position is
written to an output file and can be used as a starting conformation for PocketBuilder.

2.3 The PocketBuilder Algorithm

For calculating multiple protein conformations with putative binding pockets, Pocket-
Builder needs the following input data and parameters: starting conformations with pu-
tative pocket positions (either generated by PocketScanner or manually selected pocket
positions), the radius of these pockets, a search radius for defining the flexible residues
(default: 8 Å), a rotamer library, weights for scoring the internal protein energy, wenergy ,
and the van-der-Waals interaction energy with the pockets of the generated conformations,
wpocket, and the number of conformations to be generated. The algorithm consists of the
initialization stage and the A*-search. The initialization is performed separately for each

67



starting conformation. It starts with determining all N residues (except for Ala and Gly)
within a given distance from the generic pocket sphere and defines them as flexible. For
the rigid part of the protein including all other residues and the backbone and Cβ atoms
of the flexible residues, the energy Erigid and the van-der-Waals interaction energy with
the pocket (i.e. the generic pocket spheres) Erigid,pocket are calculated. For each of the
flexible residues i all rotamers j defined by the Dunbrack backbone independent rotamer
library from 2002 [DC97] (including the original side chain conformation) are tested and
their van-der-Waals interaction energy with the pocket Eij ,pocket and the energy change
ΔEij

resulting from including this side chain rotamer in the calculation of Erigid are

determined. After calculating E
weighted
ij

for each rotamer as

E
weighted
ij

= wenergy · ΔEij
+ wpocket · Eij ,pocket (2)

the number of allowed rotamers for this residue is reduced by deleting all rotamers j with
E

weighted
ij

≥ 100 kcal/mol. The pairwise non-bonded interaction energies Eij ,kl
between

the remaining rotamers j and l of each pair of residues i and k are calculated and stored in
a hash table.
After the initialization stage, the algorithm builds up a tree with one subtree per starting
conformation. The nodes in this tree represent partial solutions of the search problem, or
more precisely conformations in which rotameric states have only been assigned to a part
of the flexible residues. The order in which the flexible residues get defined side chain
conformations is fixed, so all nodes of the same level in a certain subtree have the same
residues already assigned. (The order in which side chains are added has no effect on the
final result.) Note that the levels of the leave nodes are identical within a subtree, but may
differ within different subtrees depending on the number of flexible residues defined for
this starting conformation. The buildup of the tree is controlled by the A* algorithm. The
algorithm assigns each node x a priority f(x) (see equation 1) that evaluates the true costs
g(x) of this partial conformation so far and the estimated minimal cost h(x) for reaching a
leaf node, where

g(x) = wpocket · Erigid,pocket + wenergy · Erigid +

x�
i=1

�
wpocket · Eir ,pocket + wenergy ·

�
ΔEir

+

i−1�
k=1

Eir ,kr

��
(3)

h(x) =

N�
k=x+1

min
l

(wenergy · ΔEkl
+ wpocket · Ekl,pocket) +

N�
k=x+1

��
x�

i=1

min
l

Eir ,kl

�
+

�
N�

n=x+2

min
l,m

Ekl,nm

��
(4)

In the summations, i runs over all flexible residues with already assigned rotamers r (i.e.
Eir

indicates that side chain i has been locked into rotamer r), k and n run over the remain-
ing ones, and l and m run over different rotamers of a side chain. In each step, the node
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representing the partial conformation that seems most promising (i.e. with lowest f(x)) is
selected. If this node is not a leaf node, a new node is added for each possible rotamer
of the succeeding residue and the priorities of these new partial solutions are determined.
Otherwise the corresponding conformation is written to an output file. The algorithm ter-
minates as soon as the total number of output conformations is reached.

2.4 Docking into Designed Pockets

Docking experiments were performed with AutoDock 3.0.5 [MGH+98] as described be-
fore [EH07]. The ligands were extracted from the complex crystal structure and rotatable
bonds were assigned with AutoTors. The grid maps were calculated with AutoGrid. The
grid centers were chosen to coincide with the pocket positions. The default grid spacing of
0.375 Å between the grid points and the default grid dimension of 60 x 60 x 60 points was
used and the standard Lamarckian Genetic Algorithm protocol with the default values. 10
independent docking runs were carried out for each PocketBuilder conformation.

3 Results and Discussion

PocketScanner and PocketBuilder were tested using the proteins BCL-XL, MDM2, and
IL-2. IL-2 is an important component of the immune response and BCL-XL and MDM2
belong to the apoptosis pathway. The binding pockets targeted by the small molecule lig-
ands are not or not fully open in the apo protein structures and thus cannot be used for
structure-based drug design. Docking the known inhibitors into these apo structures gave
poor results with lowest RMSDs of 2.9 - 3.4 Å as shown in Table 1.

Re-Docking Apo-Docking
System RMSD [Å] Score [kcal/mol] RMSD [Å] Score [kcal/mol]
BCL-XL - N3B 0.9 -10.5 3.3 -6.2
IL-2 - FRH 1.1 -10.8 2.9 -6.2
MDM2 - DIZ 1.1 -13.1 3.4 -6.7

Table 1: Best docking results for docking the inhibitor into its bound and the apo structure using
AutoDock3

The crystal or NMR structures of the apo proteins were scanned for positions of inducible
pockets using PocketScanner. The grid center was placed at the ligand center of mass,
the dimension was 11, and the edge length 2 Å. Running PocketScanner took about 1
hour on a single CPU of an Intel Core 2 Duo processor which mainly resulted from the
large number of energy minimizations. Out of the 113 possible positions, 67 (66) were ac-
cepted for BCL-XL, 25 (18) for IL-2, and 29 (20) for MDM2 when using a pocket radius
of 2 Å (3 Å respectively). Note that the pocket positions do not have to be located at the
inhibitor binding site. The grid and the accepted positions of BCL-XL are shown in Fig. 1.
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internal protein energy and protein-pocket interaction energy is calculated and the 20 start-
ing conformations with lowest score are retained. We are aware that this preselection may
delete conformations that would later on score better with altered side chain rotamers, but
running the algorithm with too many starting conformations is nearly infeasible. The A*
search took between 40 minutes and 4 hours depending on the number of possible nodes
in the search tree and on how similar the scores of these nodes are. The ratio between
the number of possible nodes and the number of generated nodes gives a measure for the
efficiency of the algorithm. As listed in Table 3, the number of possible conformations
increases with augmenting wpocket. At the same time, the algorithm generally finds the
500 leaf nodes with lowest score more efficiently, suggesting that the interaction energy
between the protein and the pocket is more diverse in the generated nodes than the internal
protein energy. This is not surprising as the absolute value of the internal protein energy is
about 4 orders of magnitude larger than the interaction energy with the pocket. No trend is
apparent for the influence of the weighting and the pocket radius on the mean pocket vol-
ume and polarity. These mean volumes even seem to suggest that PocketBuilder reduces
the volume of most pockets to snugly fit around the generic pocket spheres.

System
Pocket
Radius
[Å]

wpocket
# Confor-
mations

Efficiency
Ø Pocket
Volume [Å3]

Ø Pocket
Polarity

BCL-XL 2 0.5 1.0 · 1012 8.3 · 106 715.3 ± 21.9 0.36
2 0.9 1.9 · 1012 1.7 · 107 343.6 ± 31.7 0.27 ± 0.01
2 0.99 3.4 · 1012 1.6 · 109 337.4 ± 37.2 0.27 ± 0.01
3 0.5 1.7 · 1011 2.4 · 106 282.6 ± 34.2 0.30 ± 0.01
3 0.9 5.6 · 1011 7.1 · 106 276.1 ± 55.0 0.31 ± 0.01
3 0.99 4.5 · 1014 1.2 · 109 485.2 ± 92.7 0.37 ± 0.01

IL-2 2 0.5 2.0 · 1015 1.0 · 1011 291.7 ± 3.8 0.27
2 0.9 2.7 · 1016 9.3 · 1011 290.3 ± 4.8 0.27
2 0.99 1.9 · 1018 4.1 · 1013 359.6 ± 36.3 0.33 ± 0.01
3 0.5 1.2 · 1014 5.9 · 109 450.9 ± 80.2 0.31 ± 0.01
3 0.9 2.2 · 1015 6.9 · 1010 507.4 ± 90.7 0.30 ± 0.01
3 0.99 4.6 · 1016 1.2 · 1012 344.4 ± 23.3 0.33 ± 0.01

MDM2 2 0.5 1.5 · 1014 1.4 · 1010 314.0 ± 56.8 0.31 ± 0.02
2 0.9 1.4 · 1015 1.4 · 1010 420.0 ± 50.2 0.33 ± 0.02
2 0.99 2.1 · 1016 2.4 · 107 277.9 ± 19.6 0.32 ± 0.01
3 0.5 2.6 · 1012 7.0 · 108 233.8 ± 26.3 0.32 ± 0.01
3 0.9 8.8 · 1013 7.6 · 109 235.3 ± 27.1 0.32 ± 0.01
3 0.99 2.0 · 1015 1.4 · 1010 339.1 ± 89.1 0.31 ± 0.02

Table 3: Influence of the pocket radius and the weighting on the performance of PocketBuilder and
the properties of the induced pockets

The main goal of this study is to design pockets on the protein surface that are suitable for
ligand binding. Therefore, the known inhibitors were now docked into the generated con-
formations. The main questions are: (1) Can docking into the designed pockets reproduce
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the native ligand binding mode? (2) Which weighting and pocket radius requires the low-
est number of generated conformations? Table 4 lists the best scored docking results with
RMSD ≤ 2 Å (or the docking result with lowest RMSD) for each weighting and pocket
radius.

System
Pocket
Radius
[Å]

wpocket
RMSD
[Å]

Score
[kcal/mol]

Relative Score
Rank [%]

PocketBuilder
Conformation

BCL-XL 2 0.5 1.9 -10.0 42.0 213
2 0.9 2.0 -10.1 34.4 169

- 2 0.99 2.0 -10.2 33.6 241
3 0.5 1.7 -10.2 55.4 82

N3B 3 0.9 1.5 -10.4 58.2 376
3 0.99 2.0 -11.3 6.2 29

IL-2 2 0.5 1.8 -6.5 6.4 75
2 0.9 1.8 -7.3 1.7 226

- 2 0.99 2.0 -4.3 54.4 428
3 0.5 2.0 -5.6 44.1 167

FRH 3 0.9 2.0 -6.6 29.6 285
3 0.99 2.0 -4.4 60.6 430

MDM2 2 0.5 2.6 -7.9 83.1 193
2 0.9 2.6 -7.8 90.5 225

- 2 0.99 2.9 -9.1 4.9 113
3 0.5 3.2 -9.7 5.9 436

DIZ 3 0.9 3.1 -8.8 27.4 345
3 0.99 2.2 -9.1 88.3 41

Table 4: Influence of the pocket radius and the weighting on the docking results (shown are the best
scored docking results with RMSD ≤ 2 Å or the docking result with lowest RMSD)

Interestingly, for all setups the native ligand binding mode was found for BCL-XL and
IL-2. This indicates that PocketBuilder was successful in inducing the opening of native-
like binding pockets on the surface of the BCL-XL and the IL-2 proteins. An example of
how PocketScanner and PocketBuilder change the apo conformation is shown in Figure
2. For BCL-XL, the docking scores were even quite similar to that obtained in the re-
docking experiment. The unsatisfying docking scores for IL-2 may be due to the fact that
this binding site consists of two subpockets, that lie about 15 Å apart and with this setup,
only one of these subpockets can be induced. Here, using more than one generic pocket
sphere would most probably improve the docking score. However, the large relative rank
of most docking results shown in Table 4 indicates that our setup does not only lead to the
generation of pockets similar to those seen in the bound structure, but also to alternative
pocket conformations that possess the desired properties as well. Moreover, most setups
seem to prefer such alternative pockets because the best suited protein conformation is
often generated quite late during the A* search. For MDM2, our method was not able
to completely reproduce the native binding mode of the ligand. But when comparing the
docking results listed in Table 4 to the results when docking into the apo structure (listed
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