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Abstract: In this paper, we present an innovative solution for providing automated
polyglot persistence based on service level agreements defined over functional and
non-functional requirements of database systems. Complex applications require poly-
glot persistence to deal with a wide range of database related needs. Until now, the
overhead and the required know-how to manage multiple database systems prevents
many applications from employing efficient polyglot persistence solutions. Instead,
developers are often forced to implement one-size-fits-all solutions that do not scale
well and cannot easily be upgraded. Therefore, we introduce the concept for a Poly-
glot Persistence Mediator (PPM), which allows for runtime decisions on routing data
to different backends according to schema-based annotations. This enables applica-
tions to either employ polyglot persistence right from the beginning or employ new
systems at any point with minimal overhead. We have implemented and evaluated the
concept of automated polyglot persistence for a REST-based Database-as-a-Service
setting. Evaluations were performed on various EC2 setups, showing a scalable write-
performance increase of 50-100% for a typical polyglot persistence scenario as well
as drastically reduced latencies for reads and queries.

1 Introduction

Polyglot persistence is the concept of using different database systems within a single

application domain, addressing different functional and non-functional needs with each

system [SF12]. While virtually any non-single-purpose application could benefit from

polyglot persistence, there are currently some obvious drawbacks. Designing and im-

plementing an application on multiple databases is considerably harder than just using

one backend. Furthermore, application demands begin to exceed capabilities of single

databases. At the same time, overhead of configuration, deployment and maintenance in-

creases drastically with each database system used. Therefore today, superior polyglot

persistence solutions are often abandoned for lack of know-how and resources.

Recently, cloud providers began to allow programmers to develop and deploy applications

at stellar paces. However, using a state-of-the-art cloud services, tenants still have to make

the choice of using a certain database [Hac02, Agr09, Cur11]. To solve this dilemma,

we are going to present the PPM as a new kind of middleware service layer. Employing

a service level agreement (SLA), developers can define specific requirements for their

schemas. Schemas are centrally managed by the Orestes [Ges14] middleware, which maps
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them to individual database protocols. Even though many NoSQL systems do not employ

schemas (although some like DynamoDB or Cassandra do), we assume the presence of a

central schema in order to compute a database-independent evaluation of requirements.

For illustration, consider the scenario of an online newspaper: usually, there is a ranking

of the most popular articles. To this end, articles have to maintain hit-counters that need

to be written up to many thousand times per second. Assume the articles themselves are

kept in a document store and the application manages a sorted set of hit-counters for news

articles. The article itself is rarely changed after publication. Nevertheless, if hit-counters

and articles were stored together, too many writes on the hit-counter would eventually

slowdown reads. Using the SLA annotations for write-throughput and another annotation

for sorting, the PPM could decide to split objects so that writes on the hit-counter are stored

to Redis (achieving much higher throughputs), while reads are directed to MongoDB.

In this paper, we will first introduce a discrete classification of functional and non-functional

requirements of database systems, especially NoSQL systems. This enables us to derive

the concept of an automated choice of backends. In section 3, we explain the architecture

of our prototype. In section 4, we introduce our EC2 benchmark scenario. We will discuss

a number of enhancements in section 5.

2 Concept

Automated polyglot persistence requires formal decision criteria. To this end, we first

need a classification of functional and non-functional requirements. Table 1 provides an

overview of such requirements. On the highest level, requirements are divided into binary

and continuous requirements. Binary requirements support yes-or-no decisions: either a

database supports server-side joins or it does not. This might be subjective for some non-

functional requirements like scalability, since there is no agreed-upon way of measuring

it. Continuous requirements like write latency on the other hand can be evaluated by

comparing specific values to the context of an application. For instance, low latency for

an interactive website usually would not constitute low latency for high-frequency trading.

Therefore, automated polyglot persistence needs to provide rich-syntax SLAs that can be

parametrized with application-specific goals.

2.1 Requirements

Figure 1 provides an overview of our concept of annotation-based SLAs on those require-

ments. On a high level, tenants define schemas consisting of databases, classes and fields.

Tenants may then define annotations that can be used to annotate complete databases,

classes or attributes (fields) of a class. Binary functional and non-functional requirements

(capabilities) annotated at a certain hierarchy level result in constraints that have to be met

by every entity on and below that level. Continuous requirements are simply pushed down

to the field level, i.e., if a complete database is annotated to support 99.5% of read avail-
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Figure 1: SLA concept and persistence mediation.

ability, every field in that database inherits that annotation. Enforcing continuous require-

ments on higher levels (i.e., classes) is not feasible, since this would require knowledge

about the distribution of this requirement on all its child entities.

An annotation consists of an arbitrary number of binary requirements and continuous non-

functional requirements specified either through utility functions or specific goals on the

requirement (e.g., latency below 20 milliseconds). In the following section, we are going

to demonstrate how these specifications translate to routing decisions by introducing our

scoring model. We will also introduce how annotations combined over different hierarchy

levels can be resolved. Finally, using polyglot persistence, tenants also have to chose a

materialization model: Sticky partitioning instructs the mediator to always route opera-

tions for a schema-node to the same database. The primary database defines a read-only

master copy to which the mediator periodically materializes data stored in other databases.

A staleness bound defines the maximum tolerable delay ∆ between materializations. Un-

der the primary copy model, applications must thus tolerate eventual consistency with

∆-atomicity, i.e. the possibility of reading a value that has been stale for at most ∆. This

model allows to unite complex, slightly stale queries in the primary database with high
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throughput and low latency for simple updates and queries performed in other databases.

2.2 Resolution and scoring

Annotations are resolved by the provider by first comparing the specified binary require-

ments with all currently available systems. If no system can provide the desired combi-

nation, the provider can either reject the annotation right away or try to provision another

type of database. In this context, a system is one specific deployment of a database, i.e.,

an IaaS provider might manage a number of different configurations of the same database.

All databases capable of delivering the binary requirements are then scored to find an op-

timal setup for a specific tenant. The evaluation of annotations is performed recursively

over all hierarchy levels of the schema, as shown in algorithm 1.

Annotation Type Annotated at

Read Availability Continuous *

Write Availability Continuous *

Read Latency Continuous *

Write Latency Continuous *

Write Throughput Continuous *

Data Vol. Scalability Non-Functional Field/Class/DB

Write Scalability Non-Functional Field/Class/DB

Read Scalabilty Non-Functional Field/Class/DB

Elasticity Non-Functional Field/Class/DB

Durability Non-Functional Field/Class/DB

Replicated Non-Functional Field/Class/DB

Consistency* Non-Functional Field/Class

Scans Functional Field

Sorting Functional Field

Range Queries Functional Field

Point Lookups Functional Field

ACID Transactions Functional Class/DB

Conditional Updates Functional Field

Joins Functional Class/DB

Analytics Integration Functional Field/Class/DB

Fulltext Search Functional Field

Atomic Updates Functional Field/Class

Table 1: Proposed annotations.
*Multiple levels of consistency.
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Figure 2: Utility functions

We start at the database (root) level of the schema. First, we exclude all databases

incompatible with the current node’s constraints (i.e., its binary requirements), so child

nodes cannot choose databases their parent nodes do not support. Field nodes simply

calculate their scores according to the scoring model below. Other nodes recursively cal-

culate mappings of databases to scores for their child nodes. We then intersect among the

resulting databases (line 7) to find systems that can support all requirements of the child

nodes and average over the resulting scores of each database of each child node. When

the recursion returns to the current node and it is annotated (line 8), it adds the resulting
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optimal mapping to the routing model. Finally, (aggregated) scores are returned.

Consider the following example: a class is annotated towards object-level atomic updates.

One field of this class requires a certain level of write-throughput, another one has an

annotation for read-latency. At the root level, there is nothing to do, so the algorithm

turns to class nodes. For the specific class, all databases incapable of ensuring atomicity

are removed. Individual field level annotations are now evaluated and each returns a set

of databases capable of supporting both their binary and continuous requirements. The

recursion then returns and computes the intersection of each field node, determining which

databases can best support the required combination of throughput and latency. Finally,

the class node adds the result to its routing model and all data items will be stored to the

according database. Annotating a node with a binary requirement at database or class level

means that all items of this database/class will be stored to the same node. The algorithm

ensures compatibility of annotations along the schema hierarchy. It should be noted that

schema or annotation changes may require repartitioning, the details of which we leave to

future work.

Algorithm 1 Scoring algorithm for input schema node

1: procedure RANK(node, DBs) returns {db → score}
2: drop db ∈ DB if not node.annotations ⊆ db.capabilities

3: if node is f ield then

4: scores ←{db ∈ DBs → score(db,node)}
5: else

6: childScores ←{(child,db,score) |
child ∈ node.children and

(db,score) ∈ RANK(child,DBs)}
7: scores ← db, avg(score) from childScores

group by db

having count(child) = |node.children|

8: if node is annotated then

9: add (node → argmaxdb scores) to routingModel

10: return scores

The score of a database is calculated by adding individual scores for each continuous

non-functional requirement cn ∈ CN. Tenants can also assign arbitrary weights to each

requirement to model relative importance. The total score is then normalized by the sum

of weights.

score(db) =
∑
|CN|
i=1 wi ∗ fi(metric(cni))

∑
|CN|
i=1 wi

(1)

For our scoring model, we propose two alternatives. First, we consider requirement-

specific, normalized utility functions. A utility function maps values of a particular metric

to the utility this requirement has for a specific use-case: f (metric)→ utility ∈ [0,1].

Figure 2 shows two examples of requirement-specific utility. For instance, an interactive

application may consider any latency below 20 milliseconds to be acceptable, with a linear
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decrease to zero utility at, for instance, 50 milliseconds. On the other hand, availability

might be scored by a sigmoid function, indicating that availability below a certain thresh-

old is of zero utility and then drastically increases in utility up to some point of saturation

(e.g., 98% vs 99.99% of availability). Practically, users could interactively manipulate

these functions in a service dashboard. Normalization of utility functions helps computing

a unified score and to define SLA violations. For instance, the SLA may include multiple

thresholds with different consequences. First, monitoring such thresholds helps providers

to better understand their setups and the impact of changes on its performance. Falling

under a certain threshold could also result in auto-scaling the respective database. Second,

violations may trigger compensations for tenants in the form of refunds or service credit.

The second scoring model does not require users to specify a mapping of values to utili-

ties. Instead, they simply specify goal values for each requirement. Goals are then com-

pared against current metrics of the system in a manner of performance indexing [LS13]:

f (cni) = goal(cni)/metric(cni). For instance, a goal of 50 milliseconds in latency com-

pared to an actual average latency of 20 milliseconds would result in a score of 2.5. Thanks

to the collected metrics, arbitrary SLA models may be defined (e.g. pricing models based

on deviations [Bas12]). After computing scores, the database with the maximum score

will be selected to store the annotated field. This decision is made based on both the

current and historic values, using a weighted moving average of all the metrics collected

by the provider (i.e., calculating either performance indices or current values of all utility

functions). If annotations are changed later, the provider would have to support live data

migration between different databases.

2.3 Mediation

The Polyglot Persistence Mediator acts as a broker between applications and backend

databases. Applications use a defined interface, e.g., a REST API, to issue queries, CRUD

operations, transactions and other operations to the mediator in a database-agnostic fash-

ion. Based on the routing model the mediator selects the appropriate database and trans-

forms the incoming operation to database-specific operations:

trans f orm(agnosticOperation,db)→ dbOperations (2)

As an example, consider the addition of a value to an array-valued field, for which the

resolution step determined MongoDB as most appropriate for the tenant’s annotations.

The mediator looks up the affected field in the routing model which yields MongoDB.

Next, the mediator queries its transformation rule repository to map the incoming opera-

tion push(obj, field, val) to the specific operation {$push: { field: val }} and forwards it

to the selected MongoDB cluster. In general, an operation can be transformed into a set of

operations to account for potential data model transformations and denormalization (e.g.,

secondary index maintenance).

The mediator is stateless towards clients and can thus be replicated arbitrarily for linear

scalability. Updates to the routing model (schema changes) can be shared through coordi-

nation services (e.g., Zookeeper [Hun10]), consensus protocols (e.g., Paxos [Lam01], Raft
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[OO14]) or classic 2PC with different availability/consistency trade-offs [Bak11, Bai12].

The mediator also manages the aforementioned materialization model.

The PPM continuously monitors operations issued to backend databases to report metrics

for throughput, latency and availability, aggregating them into means, modes, weighted

moving averages, percentiles and standard deviations. The metrics are used for scoring

in the resolution step as well as the detection of SLA violations. Scoring thus reflects the

actual system state. Of course, when a new database is provisioned, metrics are unknown.

They can either be estimated using a system performance model of the database or by

running a synthetic workload [Coo10, Sob08] or historic traces. The mediator allows

two deployment models: The PPM can be deployed on-premise (e.g., in a private cloud)

relying on local database deployments and Database-as-a-Service offers of public cloud

providers (e.g. Amazon RDS/DynamoDB/S3, Windows Azure Table Storage).

3 Architecture for a Polyglot Persistence Mediator
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Figure 3: Evaluation of the Polyglot Persistence Mediator.

We implemented a prototype of the PPM as part of a middleware called Orestes, which
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provides standardised, REST-based access to different databases [Ges14]. More specifi-

cally, applications can use a universal interface which maps all client-side operations to

the appropriate server-side protocols, depending on the database an application prefers.

Orestes defines a data model consisting of objects and buckets that correspond to, for in-

stance, MongoDB documents and collections. We can thus achieve polyglot persistence

on a field level by adding annotations as schema meta data.

In our experiments, we used MongoDB as the principal storage facility (i.e., the primary

database materialization model) and Redis as a caching layer to accelerate writes, which

constitutes a typical polyglot persistence scenario. The PPM analyses annotations (us-

ing simple performance indices) and routes partial updates on objects annotated towards

write-throughput, write-latency etc. to Redis. The PPM contains a module that sched-

ules materialisation between databases while providing strong guarantees: strictly ordered

materialisation and an upper bound on the materialisation time for any particular object.

Similar measures are taken to ensure delete operations are carried out for all databases

containing parts of an object.

4 Evaluation

Evaluations were performed using various Amazon EC2 set-ups. To this end, we imple-

mented our own benchmark client, collecting metrics similar to the Yahoo! Cloud Serving

Benchmark (YCSB) [Coo10], i.e., averages, min/max and percentiles on latency as well

as average throughput.

The first test scenario describes a single client/single server setup for the aforementioned

scenario of hit-counters in online newspapers. Access patterns were generated according

to a Zipf-distribution. Materialisation intervals were set to 60 seconds. Figure 3a demon-

strates typical latency behaviour for medium throughputs. Notably, the actual throughput

of Orestes without PPM even decreases on higher loads (backwards curve). MongoDB

and Redis each ran on a separate m1.large instance, whereas the benchmark client and the

Orestes server with/without PPM each ran on a c3.4xlarge since the main overhead occurs

between client and Orestes server. MongoDB instances were equipped with 1,000 provi-

sioned IOPS for its main storage volume and the write-concern was set to acknowledged.

For the benchmark, 100,000 update operations were executed on 100 different articles in

MongoDB with hit-counters annotated to be stored in Redis. The line chart shows that

the Orestes middle-ware supported by the PPM performs significantly better than Orestes

without a PPM. In this context, Orestes without a PPM means that all database operations

were routed to a single database (i.e., MongoDB). We found that the throughput-limit cor-

responds to an average latency of approximately 500 milliseconds. In this setup, the PPM

achieved a 50% increase in write-throughput while maintaining lower latencies through-

out. For a HTTP baseline, we used Varnish to benchmark performing GET requests against

a static resource. At low throughputs, the PPM constantly achieved better latencies than

both Varnish and Orestes without a PPM. Subfigures b to d demonstrate results for a set-up

of 12 benchmark clients, 4 servers and 1 server for each database (all m1.large). Figure 3b
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shows results for a read-only benchmark. In our use-case of top-listed articles, we were

interested only in the top 10 articles in the sorted set. While articles were stored in Mon-

goDB, PPM-supported reads were routed to the Redis set. Reads without the PPM were

simply executed on MongoDB. Visibly, the persistence mediator provides a consistent la-

tency under 10 ms up to 15,000 reads on the sorted set per second. Note that the persistence

mediator would still route reads on other fields or the complete object to MongoDB (since

we only annotated a specific attribute).

Figure 3c demonstrates the same setup in a write-only scenario. Comparing desired and

actual throughputs, we can see that MongoDB can serve up to 12,000 writes per second

while the persistence mediator reaches 25,000. Hence, employing the PPM, we used Mon-

goDB as our default storage, but doubled write-throughput for a common scenario.

5 Future Work

Scoring and Database selection. The ability of a cloud provider to maintain its SLA

guarantees heavily depends on the scoring. To this end, it is crucial for the provider to se-

lect database configurations that indeed fulfill the requirements, i.e., consistently achieve

high scores. One line of further research therefore is the estimation of future scores based

on historic metrics. The scoring could then be adapted to prefer selections that have ex-

pected high scores in the future. There are many potential statistical and machine learning

techniques to achieve this. For instance reinforcement learning (e.g., Q-learning [Dut11])

could be used to learn from past selection decisions based on the utility achieved.

Workload Management and Multi-Tenancy. The persistence mediator could improve

performance by actively scheduling requests. Requests that pertain to throughput-oriented

annotations can be improved by batching while latency-sensitive requests can be scheduled

to experience minimum queuing delays. This workload management has to take place at

a per-database-level and depends on the multi-tenancy strategy employed by the mediator

to ensure sufficient isolation between tenants.

Polyglot Setups. As a practical question, future work needs to consider which system se-

tups might provide optimal polyglot persistence functionality. For our experiments, Redis

was used as an on-demand caching layer. Many other combinations are useful, too. For

instance, object stores like S3 can be used to store blob data, while shared-nothing file

systems such as HDFS could be used for fields with analytic potential, leveraged through

platforms such as Hadoop and Spark. Wide-column stores (e.g., HBase) and table stores

(e.g., DynamoDB) can similarly be used to store analyzable, structured, write-heavy data.

6 Conclusion

In this paper, we introduced our Polyglot Persistence Mediator approach. It enables

tenants to leverage automated polyglot persistence on a declarative basis using schema-
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annotations. By defining utility functions or performance indices for non-functional re-

quirements like availability and latency as well as demanded binary properties like object-

level atomicity, tenants specify their requirements. The mediator scores available backend

databases and selects the optimal database for each part of the tenant’s schema and auto-

matically routes data and operations. Exploiting the proposed annotations, providers are

free to define which requirements they provide SLAs on and users can employ annota-

tions in an opt-in fashion, maximizing flexibility on both ends. We provided evidence that

tremendous performance improvements can be expected and outlined the future challenges

for providing a general-purpose Polyglot Persistence Mediator.
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