
FPGA Implementation of Cellular Automata Compared to
Software Implementation

Mathias Halbach, Rolf Hoffmann, Patrick Röder

TU Darmstadt, FB Informatik, FG Rechnerarchitektur
Alexanderstraße 10
D-64283 Darmstadt

Phone +49 6151 16 3713, 3606
Fax +49 6151 16 5410

halbach@informatik.tu-darmstadt.de
hoffmann@informatik.tu-darmstadt.de

patrick.roeder@web.de

Abstract: In order to optimize applications in the Cellular Automata model we have
searched for a performant platform to run billions of simulations. The question was how
much speed-up could be gained by using the FPGA technology compared to optimized
software. As an example we implemented two cellular automata rules in software on
a PC and also in FPGA logic. On our low end experimental platform we reached a
speed-up of 19 for a medium complex rule and 14 for a complex rule. If we would use
the latest high end FPGA technology, speed-ups up to many thousand are realistic. A
cluster of thousands of workstations would be necessary to reach the same performance
which is much more costly than a FPGA solution.

1 Motivation

The Cellular Automata (CA) dates back to John von Neumann [vN66] and Konrad Zuse
[Zu69]. It is a very elegant computing model which can be applied to many real problems
in physics, chemistry, or biology and also to computational or artificial problems. Such
problems are described by a field of cells and a local rule. The new cell state is defined
by the rule which takes all the states of its neighbours into account. All cells can work in
parallel because each cell can independently update its own state. Therefore the model is
massively parallel and is an ideal candidate to be implemented in hardware.

We have investigated the question how the CA model can efficiently be implemented in
hardware and how much performance can be gained out of a hardware solution compared
to a software solution.

In the past we have developed a series of CEPRA-machines (Cellular Processing Architec-
tures) which are all based on programmable FPGA technology. The CEPRA-8L [HVS94]
used 8 FPGAs or 8 DSPs for the 8-fold parallel computation of the rule. The CEPRA-1X
[HHVS97] [HHVW00] is a PCI plug-in card, which works in a stream like mode. The lines
of the cell array are held in the host and are streamed line by line to a line buffer, consisting
of 3 lines. The line buffer feeds a window of 3 by 3 cells which is taken as parallel input to
the FPGA computation. The CEPRA-S [HUVW00] [HHV01] consists of two FPGAs. The
first FPGA is dedicated for parallel computation, 9 data memories are connected to it. The
second FPGA interprets instructions which are stored in a control memory and controls the
data path by generating addresses for the data RAMs. The programming of the FPGAs is
supported by the language CDL [Ho98], which allows describing cellular rules in a concise

309

notation. CDL can be compiled into FPGA logic design files.

At the moment we work also with the Altera FLEX-10k evaluation board. It allows rapid
prototyping of new ideas in parallel architectures to reduce the cost and time for the de-
velopment of special printed circuits. Our results presented in this paper are based on
prototypes implemented on this board.

In the following we will compare the efficiency of software implementations to prototyped
FPGA implementations.

The first rule is called the WireWorld [De90] (in the following RuleWW), which allows to
describe digital circuits.

The description of this rule in a pseudo-code notation is

function RuleWW(NE,N,NW,E,C,W,SE,S,SW);
const wire=3;

head=2;
tail=1;
empty=0;

var sum;
begin

if C=empty then RuleWW:=empty
else if C=wire then

begin
sum:= (N=head)+(NE=head)+(E=head)+(SE=head)+

(S=head)+(SW=head)+(W=head)+(NW=head);
if (sum=1)or(sum=2) then RuleWW:= head

else RuleWW:=wire;
end

else if C=tail then RuleWW:=wire
else if C=head then RuleWW:=tail;

end;

The default data type is unsigned integer with range 0..3. The background without wires is
the empty state. Electrons can move along wires. A moving electron consists of a head and
a tail. An example circuit (full adder) is shown in fig. 1.

Figure 1: Wire World 4 bit full adder Figure 2: Rule Coast Line

310

The WireWorld rule is neither very simple nor very complex. In order to find out how
a more complex rule behaves, we have defined a second rule, called RuleCoast, which
generates coast line structures (fig. 2):

function RuleCoast (Cell, North, East, South, West);
// Rule Coast Line
const s1=40, s2=215;
A:= max (Cell, North, East, South, West);
B:= min (Cell, North, East, South, West);
small:= (Cell<s1) + (North<s1) + (East<s1)

+ (South<s1) + (West<s1);
big := (Cell>s2) + (North>s2) + (East>s2)

+ (South>s2) + (West>s2);
RuleCoast:= Cell/2 + (A-B)/2 + 4 * small - 4 * big;

By default the data type is unsigned integer with range 0..255.

2 Implementing Cellular Automata in Software (C)

The straight forward naive implementation uses a two dimensional array of cells A[0..
width+1, 0..height+1] and two loops. A second field B of the same dimensions is
recommended to hold the new calculated cells, i. e. to have access to the "old"values earlier
in the calculation sequence.

Compute-Phase

for(x=1; x<=width; x++)
for(y=1; y<=height; y++) {

Cell = A[x][y];
North = A[x][y-1];
NorthEast = A[x+1][y-1];
East = A[x+1][y];
SouthEast = A[x+1][y+1];
South = A[x][y+1];
SouthWest = A[x-1][y+1];
West = A[x-1][y];
NorthWest = A[x-1][y-1];
B[x][y] = RuleWW(Cell, North, NorthEast, East,

SouthEast, South, SouthWest,
West, NorthWest, x, y);

}

Update-Phase

for(x=1; x<=width; x++)
for(y=1; y<=height; y++)

A[x][y] = B[x][y];

The description of the rule RuleWW in C is

celltype RuleWW(celltype Cell, celltype North,
celltype NorthEast, celltype East, celltype SouthEast,

311

celltype South, celltype SouthWest, celltype West,
celltype NorthWest, int x, int y)

{
switch (cell) {
case 0: // Background

return 0;
case 1: // Electron Tail

return 3;
case 2: // Electron Head

return 1;
case 3:{ // Wire

int sum =
(y>1 && North == 2? 1 : 0) +
(x<width && y>1 && NorthEast == 2? 1 : 0) +
(x<width && East == 2? 1 : 0) +
(x<width && y<height && SouthEast == 2? 1 : 0) +
(y<height && South == 2? 1 : 0) +
(x>1 && y<height && SouthWest == 2? 1 : 0) +
(x>1 && West == 2? 1 : 0) +
(x>1 && y>1 && NorthWest == 2? 1 : 0);

return (sum == 1 || sum == 2)? 2 : 3; }
}

}

To reduce the computation time in software, the code can be optimized for the underlying
machine. The main methods of optimizing the code are

1. Use a one-dimensional field to reduce address calculations.

2. Use pointers instead of indices.

3. Write the calculation function inline to the compute phase.

4. Implement border with additional memory instead of if-statements.

5. Delete the update-phase by using two pointers, which point to A and B in one com-
putation and interchange the pointers for the next computation.

6. Change the loop iteration index from 1..n to n-1..0 (faster loop terminate check).

7. Reuse variables and intermediate results.

8. Reduce conditional statements, e.g. by using tables.

9. Use "case"(switch) instead of multiple if-statements, also nest if necessary.

10. Keep the cache filled.

11. Copy whole lines by a fast copy procedure (memcopy) into a three line buffer and
operate on the lines instead of accessing the whole field directly.

The rules were implemented in C with different degrees of code optimization using the
mentioned optimization methods. The used compiler was GNU gcc 3.3.1 with optimiza-
tion parameter –O3. The computation time on the platform Pentium 4 2.4 GHz (Fu-
jitsu/Siemens) with Windows XP and Cygwin 1.5.5 for the best optimized version is shown
in table 1, using the abbrevations displayed in table 2.

312

Size n x n #cells gen./s t/co c/co
128 x 128 16k 4296.9 14.2 ns 34
256 x 256 65k 1024.0 14.9 ns 36
512 x 512 256k 179.6 21.2 ns 51

1024 x 1024 1M 41.4 23.1 ns 55
2048 x 2048 4M 10.3 23.1 ns 56
4096 x 4096 16M 2.6 22.9 ns 55
8192 x 8192 64M 0.6 22.9 ns 55

Table 1: Wire World, optimized C-code

#cells number of cells
gen./s generations per second
t/co time per cell operation
c/co clock cycles per cell operation
ps pipeline stages
AS Design automatically optimized

for Area or Speed (values:
area=0..speed=10)

%uca percentage of used chip area
#ulc used logic cells
max. MHz max. clock frequency in MHz

Table 2: Abbreviations for tables

The rules can be implemented relatively fast in software and that the time per cell operation
only slightly increases with the number of cells. Possibly the increase is due to the fact
that the caches have limited size, but in general the used PC system is well balanced with
respect to memory accesses. An astonishing result was also that the computation time for
the unoptimized rule was only about two times longer, meaning that the compiler is able to
optimize the code efficiently.

The results for the most optimized C-code for the RuleCoast are shown in the table 3.

Size n x n gen./s t/co c/co
128 x 128 1719.0 35.5 ns 85.2
256 x 256 455.1 33.5 ns 80.5
512 x 512 110.1 34.6 ns 83.1

1024 x 1024 26.0 36.7 ns 88.2
2048 x 2048 5.5 43.3 ns 103.9
4096 x 4096 1.1 53.0 ns 127.3
8192 x 8192 0.3 54.5 ns 130.9

Table 3: Rule Coast Line, optimized C-Code

Compared to the RuleWW the computation time is about 2.5 times longer due to the fact
that RuleCoast is more complex and contains more if-statements, which even in the opti-
mized form can not be removed. The time per cell operation increases moderately with the
size of the field which is possibly due to increasing cache faults.

In the next section we investigate the question how much faster these two rules can be
implemented in FPGA hardware. 313

3 Hardware Prototype Implementation

We have implemented both rules in FPGA logic, using the Altera-Flex10k evaluation board
(FPGA chip Flex EPF10K70RC240-4) and the MaxPlus II tools. The rules were described
in the Hardware Description Language Verilog.

For example the description of the RuleCoast in Verilog is

module rule(clk, cnew, n, e, c, w, s);
input clk;
input [7:0] c,n,e,s,w;
output [7:0] cnew;
parameter s1 = 42, s2 = 213;

function [7:0] min;
input [7:0] a, b;
begin min = a<b? a : b; end
endfunction

function [7:0] max;
input [7:0] a, b;
begin max = a>b? a : b; end
endfunction

wire [2:0] as1 = (n<s1)+(e<s1)+(c<s1)+(w<s1)+(s<s1);
wire [2:0] as2 = (n>s2)+(e>s2)+(c>s2)+(w>s2)+(s>s2);
wire [7:0] as1_8bit = as1;
wire [7:0] as2_8bit = as2;
wire [7:0] as1_as2 = (as1_8bit<<2)-(as1_8bit<<2);
wire [7:0] maxne = max(n,e); //pipe#1
wire [7:0] maxcw = max(c,w); //pipe#1
wire [7:0] maxnecw = max(maxne,maxcw); //pipe#2
wire [7:0] max3 = max(maxnecw,s); //pipe#3
wire [7:0] minne = min(n,e); //pipe#1
wire [7:0] mincw = min(c,w); //pipe#1
wire [7:0] minnecw = min(minne,mincw); //pipe#2
wire [7:0] min3 = min(minnecw,s); //pipe#3
wire [7:0] max3_min3 = max3-min3;
wire [7:0] cnew = (max3_min3>>1)+as1_as2+(c<<1); //pipe#4
endmodule

The RuleWW was implemented in a register array of sizes 10 x 10, 64 cell operations in
the kernel field (8 x 8) work in parallel. The RuleCoast was implemented in a register array
of sizes 6 x 6, 16 cell operations in the kernel field (4 x 4) work in parallel. The designs
were synthesized with different parameters

(1) A parameter AS tells the synthesizer whether the area or speed should be optimized.
AS runs from 0 to 10.

(2) the number of pipeline stage was varied and optimized by hand. If pipeline stages are
used, only the optimal number and placement of stages are taken into consideration.

314

ps AS %uca #ulc max. MHz t/co speed-up
0 0 68 2554 19.5 0.80 ns 18
0 5 68 2554 21.2 0.74 ns 19
0 10 68 2554 19.7 0.79 ns 18

Table 4: Rule WireWorld synthesized, 64 rules in parallel

For the RuleWW (table 4) the maximal clock frequency varies between 19.5 and 21.2
MHz. The best time reached per cell operation was 0.74 ns. Compared to the best software
solution (14.2 ns) a speed-up of 19 is reached, using only 2554 logic cells (68 % of the total
amount). For the implementation of one rule in hardware approximately 2554/64 = 40
logic cells are needed.

The number of needed logic cells does not significantly depend on the number of pipeline
stages. The optimal choice of the parameter AS can lead to a design which is up to 9 %
faster.

For the RuleCoast (table 5) the maximal clock frequency varies between 6.6 and 25.8 MHz
(38.76 ns). The best time reached per cell operation was 2.7 ns. Compared to the best
software solution (33.48 ns ≈ 33 ns) a speed-up of 13.8 (≈ 14) is reached, using only 2259
logic cells (60 % of the total amount). For the implementation of one rule in hardware
about 2259/16 = 141 logic cells are needed. Even this complex rule can operate with a
clock frequency of 25.8 MHz using pipelining. This means that even very complex rules
can produce a new result in every clock cycle. It is recommended to use pipelining if
the straight forward approach without pipelining is to slow (6.6 MHz). It is interesting
to observe that the chosen value of the AS parameter does not always yield the expected
optimization.

ps AS %uca #ulc max. MHz t/co speed-up
0 0 71 2673 6.6 9.47 ns 3.5
0 10 80 2878 7.2 8.59 ns 3.9
3 0 60 2259 22.8 2.74 ns 12.2
3 5 60 2295 23.2 2.69 ns 12.4
3 10 69 2604 25.8 2.42 ns 13.8

Table 5: Rule Coast Line synthesized, 16 rules in parallel

We call the 16 x 16, respective 4 x 4 cell field computation window. If larger cell fields
are to be computed, the computation window has to be shifted over the whole field. To
solve this problem in hardware, different approaches are feasible. One approach is to allo-
cate enough registers to hold the whole field. Another approach is the use of the internal
memory banks on the chip and/or external memories. In the second approach, which was
demonstrated in the CEPRA-1X, shift register or FIFOs can be used to reuse cell values in
order to cut down the memory-read bandwidth.

4 Comparison Hardware vs. Software

The computation time for one new cell state is in software

tS = kS ∗ TS (1)

with ks = number of clock cycles per rule, TS = time for one computer clock.

315

The computation time for one new cell state is in FPGA hardware

tH = kH ∗ TH/p (2)

with kH = number of clock cycles per rule, TH = time for one FPGA clock. p = degree of
parallelism in hardware.

The speed-up using the FPGA is

S =
tS
tH

∗

kS

kH

∗

TS

TH

∗ p (3)

In our test cases the parameters are

Rule 1: RuleWW

S =
34

1
∗

0.416 ns
47.17 ns

∗ 64 = 19.2 (4)

Rule 2: RuleCoast

S =
80.5

1
∗

0.416 ns
38.76 ns

∗ 16 = 13.8 (5)

Using more advanced FPGA technology (Xilinx Virtex-E, Altera Stratix) we could operate
with higher clock rates and with a higher degree of parallelism. The FPGA Altera EPS120
supplies 114’140 logic cells and the Xilinx 2VP125 supplies 125’136 logic cells.

For the implementation of the rule RuleWW about 40 logic cells are needed, and for the
rule RuleCoast 141 logic cells. We assume that 50 % of the chip is available to implement
the compute window and the other 50 % for logic to feed the window and to communicate
to the outside. For the EPS120 we have 57070 cells available to implement the rules.

The degree of parallelism would then be

p(Rule 1) = 57070/40 = 1426 (6)
p(Rule 2) = 57070/141 = 404 (7)

If we assume a FPGA technology which operates at 1/15 of the actual PCs of clock rate we
reach the following speed-ups

S(Rule1) = 24 ∗ 1/15 ∗ 1426 = 2282 (8)
S(Rule2) = 142 ∗ 1/15 ∗ 404 = 3824 (9)

The speed-up is higher for the more complex rule 2. This is mainly due to the fact, that
even complex rules can be computed in one clock cycle by the use of pipelining.

5 Results

The implementation of the Cellular Automata computing model can be implemented sig-
nificantly faster in FPGA hardware than in optimized software. Whereas the execution time
in software depends on the complexity of the rule, the execution time (throughput) in hard-
ware is almost independent of the rule complexity because of pipelining. With pipelining
one new cell state computation can be completed in each clock cycle even for very complex
rules. Although the effort to implement a rule in hardware is much more time consuming
and not standard, the hardware solution is much cheaper than hundreds or thousands of PCs
working parallel together in software to gain the same performance.

316

References

[De90] Dewdney, A. K.: Draht- und eppichwelten. Spektrum der Wissenschaft. 1990.

[HHV01] Heenes, W., Hoffmann, R., und Völkmann, K.-P.: Hardware-Unterstützung für Einge-
bettete Hochleistungsanwendungen. thema Forschung 1/2001. TU Darmstadt. 2001.
ISSN 1434-7768.

[HHVS97] Hochberger, C., Hoffmann, R., Völkmann, K.-P., und Steuerwald, J.: The CEPRA-1X
Cellular Processor. In: IPPS97. Genf, Schweiz. 1997.

[HHVW00] Hochberger, C., Hoffmann, R., Völkmann, K.-P., und Waldschmidt, S.: The Cellu-
lar Processor Architecture CEPRA-1X and its Configuration by CDL. In: RAW 2000
(IPDPS 2000), Parallel Computing Technologies (LNCS 1800). Springer Verlag. 2000.

[Ho98] Hochberger, C.: CDL - Eine Sprache für die Zellularverarbeitung auf verschiedenen
Zielplattformen. PhD thesis. Darmstädter Dissertation D17. 1998.

[HUVW00] Hoffmann, R., Ulmann, B., Völkmann, K.-P., und Waldschmidt, S.: A Stream Processor
Architecture Based on the Configurable CEPRA-S. In: FPL 2000, in LNCS 1896.
Springer. 2000.

[HVS94] Hoffmann, R., Völkmann, K.-P., und Sobolewski, M.: The Cellular Processing Machine
CEPRA-8L. In: Jesshope, Jossifov, und Wilhelmi (Hrsg.), Parcella 94. volume 81 of
Mathematical Research. S. 179–188. Akademie Verlag. 1994.

[Rö03] Röder, P.: Effiziente Implementierung zellularer Automaten in Software. Studienarbeit.
TU Darmstadt. 2003.

[TM87] Toffoli, T. und Margolus, N.: Cellular Automata Machines. MIT Press. 1987.

[vN66] von Neumann, J.: Theory of Self-Reproducing Automata. Univ. of Illinois Press. 1966.

[Zu69] Zuse, K.: Rechnender Raum. Vieweg Braunschweig. 1969.

317

