
Towards an organic mobile terminal 
by utilising agent-based monitoring 
in a reconfigurable protocol stack 

Thorsten Schöler, Moez Mnif, Vladimir Kossovoi, Christian Müller-Schloer 

Institute of Systems Engineering, System- and Computer Architecture, 
University of Hannover 

Appelstraße 4 
30167 Hannover 

Germany 
{schoeler, mnif, vkossovoi, cms}@sra.uni-hannover.de 

 

 

Abstract: This paper introduces a flexible and reconfigurable protocol stack 
framework containing agent-based self-optimisation-capabilities for mobile termi-
nals. The framework architecture and implemented self-optimisation and recon-
figuration concepts are described. The feasibility of the approach is demonstrated 
by integrating a TCP / IP protocol stack implementation on the proposed frame-
work architecture. 

1 Introduction 

Traditionally, protocol stack software (in stationary terminals, such as personal com-
puters, as well as in mobile terminals) is implemented as a highly optimised and more or 
less monolithic piece of software. The monolithic approach does not satisfy the raising 
flexibility which is demanded from nowadays mobile terminals. The raise in flexibility 
stems from the increasing number of wireless standards to be supported by terminals as 
well as from higher software complexity and its inherent failure probability, which needs 
to be mastered. Furthermore it’s the enormous configuration complexity which calls for 
methods of reducing the user’s burden to configure his mobile terminal properly. We 
intend to introduce principles of organic computing, adopted from nature, into protocol 
stack software. 

Organic computing is a fast developing area in computer science. Systems based on 
organic computing ideas will change and adapt their components dynamically to follow 
the challenges of the environment [VDE04]. Software agents are one of the possible 
ways to answer the necessary intelligence requirements for organic computing. 

651



The first section of the paper describes a framework architecture for creating reconfigur-
able protocol stacks as a foundation for organic self-x abilities. Followed by a descrip-
tion of the implemented TCP / IP protocol stack, the organic monitoring abilities will be 
described and introduced to the framework by an agent-based monitoring system. 

2 Framework architecture and mechanisms 

The following section describes a protocol stack framework for building modular, recon-
figurable protocol stacks for mobile terminals. It is used as a foundation for the imple-
mentation of real networking protocol stacks (as described in the next section of this 
paper). 

As seen in Figure 1, the proposed reconfigurable protocol stack architecture consists of 
three major components. A framework, which implements the main functionalities like 
configuration management, validation, and monitoring (see also [SM04]); a library of 
generic software components (such as timers, checksum generators, message handling, 
encryption / decryption, etc.), from which the actual protocol stack layers will be con-
structed from and the actual protocol stack instances. The protocol stack implementation 
consists of a number of protocol stack layers which are composed from generic library 
and protocol-stack-specific components (downloaded over the air from external sources 
or from terminal framework library respectively). 

The protocol stack framework uses a thread-per-
message approach to pass data messages between 
the protocol stack layers (user plane). Compared 
to the thread-per-layer approach, this model 
yields performance advantages at to-be-crossed 
layer-boundaries. The chosen model does not 
require a context switch for crossing layer-to-
layer boundaries, thus although Java is considered 
as the primary implementation language, suffi-
cient performance will be achieved (see also 
[HP91] [OP92]). 

Additionally to this mechanism, a mailbox model 
is available to handle internal protocol stack con-
trol messages, exchanged directly between adja-
cent layers (control plane). 

An exemplary protocol stack implementation of the TCP / IP protocol stack, based on 
the proposed architecture and its concepts will be described in the next chapters to vali-
date the feasibility of the proposed software architecture. 

 

Figure 1: Reconfigurable protocol stack 
framework architecture 

652



3 TCP / IP Realisation 

While the TCP / IP protocol is not designed especially for wireless communication, with 
the increasing success of the Internet, it has become the de-facto industry standard. 
There is evidence that in the future all devices, especially mobile ones, will communi-
cate using TCP / IP. This was the principle reason to choose TCP / IP for validation of 
the framework and its functionalities. 

The TCP / IP protocol suite is a collective term applied to several protocols: The IP 
protocol itself and various protocols related to IP such as ARP, UDP, TCP, ICMP, 
SMTP, etc. Our proposed implementation consists of dedicated modules for TCP 
[RFC792], IP [RFC791], ICMP [RFC793] and ARP [RFC826]. 

While implementing TCP / IP, it was more important to optimise and enhance the vari-
ous mechanisms of the framework, than getting the entire features of TCP / IP. The im-
plementation was therefore designed to provide only the main functionalities of a well-
working TCP / IP stack. 

The TCP / IP stack is implemented in a modular 
manner; each module corresponds to a certain 
layer in the protocol stack, a TCP module, an 
IP / ICMP module and an ARP module. Native 
(C / C++) or existing legacy configurations, pure 
Java and mixed configurations are possible and 
can be exchanged during runtime. Additionally, 
test applications, which are based around the 
BSD-socket-API, have been ported for validation 
purposes. 

The possibility to base the implementation on generic reusable parts from the framework 
library, made the implementation of new modules much easier. 

Since each TCP / IP stack is based on a network device, the UNIX TUN / TAP device 
has been chosen to emulate a real Ethernet network device. Figure 2 shows how the 
stack is implemented in the framework. 

4 Agent-based monitoring towards organic computing 

To achieve the requirements of self-configuration, self-healing, self-protection and self-
optimisation, we have combined the framework architecture for reconfigurable protocol 
stacks with an intelligent multi-agent system. 

 

Figure 2: TCP / IP implementation in 
the framework 

653



An agent is an encapsulated computer system that is situated in some environment and is 
capable of flexible, autonomous action in that environment in order to meet its design 
objectives [Je00]. Most researchers agree on the following features of intelligent agents: 
autonomy, adaptiveness, collaborative behaviour, and mobility [FY99]. 
A multi agent system (MAS) in turn can be defined as a loosely coupled network of 
entities that work together to make decisions, or solve problems that are beyond the 
individual capabilities or knowledge of each entry [ZZ04]. 

The intelligence of the monitoring agent is packed in a robust structure of a finite state 
machine (FSM). Both, the states and actions of the FSM can be changed at runtime, 
providing the agents with the ability to adapt them to a changing environment. 

Specific sensors are situated in the framework to obtain runtime information (observer 
pattern) from the protocol stack. In this way, an agent can dynamically subscribe to the 
sensors of our protocol stack framework. An agent can request a list of all available 
sensors as well as agents. In combination with the observer pattern, this allows one agent 
to subscribe / unsubscribe to the conversation with other agents, allowing single-cast and 
multi-cast communication. Furthermore it allows agents to become sensors for other 
agents as well. 

As seen in Figure 3, the agents obtain data from sensors and software probes, such as: 
number of sent and received bytes, packet size, retransmission and error information 
from different network levels as well as information about user actions. 

 

Using their internal intelligence (rules) and by communicating with each other, they 
evaluate the data, update their own status and try to fulfil the self-healing tasks by taking 
actions and fixing configurations (closed-loop operation). Due to the flexible architec-
ture of this system, heterogeneous decision making algorithms can be implemented. 

 

Figure 3: Agent-based monitoring framework 

 

654



If the agents determine, that a problem cannot be solved by themselves, they try to con-
nect the terminal-based configuration manager (or even the network provider) and send a 
request for a new system configuration. In case of external help (network provider) a 
mobile configuration agent is sent to the terminal. This mobile agent can update the 
monitoring system so that the local agents can make the correct decisions in the future. 

Furthermore and to enhance prediction of system behaviour, the user activity should be 
followed. The agent system then will try to define a user profile. Application level agents 
monitor the user / system interaction. 

5 Current state and conclusion 

The described reconfigurable protocol stack framework has been validated by various 
implementations and configurations of the TCP / IP protocol suite and has been proven 
stable and helpful. Lower protocol stack layers (such as for WLAN and Bluetooth) are 
currently under examination and will be included. As described herein, the framework is 
currently being enriched with intelligent agents fulfilling self-monitoring and self-
healing tasks, making them important components of the framework. This envisaged 
monitoring approach provides a robust and dynamically runtime-extendable architecture 
towards an organic terminal. A mobile terminal protocol stack, acting in a closed loop 
with fewer connections to the network provider or to the user, is achieved. The recon-
figuration of the system, to current network demands through mobile agents, makes it 
possible to enhance the performance of mobile devices. This leads to a smaller burden 
for the user in managing the software complexity. 

References 

[FY99] Feldman, S. and Yu, E.: “Intelligent agents: A primer.”. 
http://www.infotoday.com/searcher/oct99/feldman+yu.htm. October 1999. 

[HP91] N. C. Hutchinson and L. L. Peterson: “The x-Kernel: An architecture for imple-
menting network protocols”. IEEE Transactions on Software Engineering, 17(1): 
64-76, Jan. 1991. 

[Je00] Jennings, N. R.: “On Agent Based Software Engineering”. Artificial Intelligence, 
Vol. 117, 2000, 277-296. 

[JSW98] Jennings N. R., Sycara, K., Wooldridge, M.: “A Roadmap of Agent Research 
and Development, Autonomous Development, Autonomous Agents and Multi 
Agent Systems”. Vol. 1, 1998, 7-38. 

[OP92] S. W. O'Malley and L. L. Peterson: “A dynamic network architecture”. ACM 
Transactions on Computer Systems, 10(2): 110-143, May 1992. 

[RFC791] Postel, J.: “Internet Protocol”. RFC 791, USC / Information Sciences Institute, 
1981. 

[RFC792] Postel, J.: “Internet Control Message Protocol”. RFC 792, USC / Information 
Sciences Institute, 1981. 

655




