
Monitoring the Execution of Declarative Model Transformations

Raffaela Groner, Sophie Gylstorff, Matthias Tichy
raffaela.groner@uni-ulm.de, sophie.gylstorff@uni-ulm.de, matthias.tichy@uni-ulm.de

Ulm University, Ulm, Germany

Abstract

Model transformations, applied at design and run
time, are key artifacts in Model-Driven Software Engi-
neering. The monitoring of a transformation’s execu-
tion is a prerequisite to enable a software engineer to
identify performance bottlenecks and improve trans-
formations. Monitoring is particularly relevant for
declarative model transformations since the order of
execution is not explicitly defined but instead the re-
sult of internal heuristics of the transformation engine.
In this paper, we present how we monitor the execu-
tion of Henshin model transformations using Kieker as
well as the resulting monitoring overhead. We show
that the monitoring overhead depends on the size of
the input model and that it is between 17.03% and
28.44%.

1 Introduction

Model-Driven Software Engineering (MDSE) aims at
handling the continuous growth in the complexity of
software by using models as key artifacts. An impor-
tant operation on these models is a model transforma-
tion, which translates an input model into an output
model.

Performance is a very important property of model
transformations as models depicting productive envi-
ronments can get quite large. For example, a model
from an industrial partner, that describes an elec-
tronic control unit of a car, consists of over 170000
model elements, and the application of transforma-
tions may take several hours.

Model transformations are usually interpreted by
a transformation engine whose internal optimizations
and their effects on the performance are unknown to
the software engineer. This is particularly relevant
for declarative model transformations as, in contrast
to operational model transformations, the order of ex-
ecution is not specified by the software engineer but
is instead the result of unknown heuristics. Hence, if
the performance is not satisfactory, the engineer lacks
important knowledge to identify performance bottle-
necks and, thus, is not able to change the transforma-
tion in order to improve its performance.

Monitoring of model transformations is so far re-
stricted to simply measuring the overall execution
time [3]. This information help to identify perfor-
mance bottlenecks, but the reasons why a specific

transformation takes long aren’t given. Some research
focuses on the optimization of the engines heuristic,
e.g. [2], whereby a transformation engineer doesn’t get
any further information how these optimizations influ-
ence her transformation during its execution. To our
knowledge there do no exist any approaches support-
ing detailed monitoring of the execution of declarative
model transformations including the results of the en-
gine’s heuristics. We need something similar to the
approach by Debray [1] which monitors the execution
of Prolog programs, e.g, monitoring when and where
backtracking occurs.

In this paper, we present how we monitor Hen-
shin model transformations. Henshin [5] is a declar-
ative model transformation language based on the
graph transformation paradigm. That means, the
model transformation consists of a precondition, the
so-called left-hand side (LHS), specified as a graph,
and a postcondition, the so-called right-hand side
(RHS), also specified as a graph. The transformation
is executed by finding a subgraph, isomorphic to the
LHS, in the model and changing that subgraph such
that it becomes isomorphic to the RHS.

Specifically, our monitoring approach for Henshin
answers the following questions:

Q1 How do we receive the order in which the elements
of the LHS are chosen to find an isomorphic node
in the input model?

Q2 How do we get the number of model elements
examined for each element in the LHS?

Q3 How can we monitor how binding decisions of a
model element to an element of the LHS affect
candidate sets for other LHS elements?

Q4 How can we monitor where and when backtrack-
ing occurs?

Q5 How can we measure how long the transformation
execution takes?

In the following Section 2, we present how we
use Kieker [4] to monitor the execution and answer
the above’s questions. We furthermore measured the
monitoring overhead. We conclude in Section 3 and
give an overview of future work.

2 Monitoring of Transformations

We extended the Henshin Eclipse Plugin to monitor
the execution of model transformations with the help

transferMoney(in amount, in fromId, in toId)

from:Account
id=fromId
credit=from.credit-amount

to:Account
id=toId
credit=to.credit+amount

clientFrom:Client clientTo:Client

:Bank

c1:Client
name="Alice"

c2:Client
name="Bob"

c3:Client
name="Charles"

a1:Account
id=1
credit=517.93

a2:Account
id=2
credit=200.00

a3:Account
id=3
credit=1012.63

a4:Account
id=4
credit=17.45

Transformation
Rule

Model

Part of LHS

Part of RHS

Part of LHS & RHS

Figure 1: The transformation rule transferMoney and
the used input model

NC search plan
candidates

clientFrom
{c1,c2,c3}

clientTo
{c1,c2,c3}

from
{a1,a2,a3,a4}

to
{a1,a2,a3,a4}

S1 E1c3

S2 E2c3

S3 a4

E3a3

S4 E4c2

....

{a3,a4}

{a3,a4}

BT1

{a2}

{a1,a2,a3,a4}

EE

transferMoney(amount=5, fromId=2, toId=4)

SE

Figure 2: Part of the execution trace from transfer-
Money

of Kieker [4]. To illustrate which data we collect we
use the example rule transferMoney that is shown in
Figure 1. In this figure, the LHS and RHS are com-
bined. This transformation rule defines the transfer of
a given amount of money, defined by amount, between
two accounts. The amount of money is subtracted
from an account with the given id fromId, and added
to an account with the given id toId. Each of these
accounts is referenced by a client that owns it. The
values for the parameters amount, fromId and toId
are set before application.

To illustrate how a transformation is executed and
which data is monitored we describe how the engine
executes the transformation transferMoney. In this
example, we apply transferMoney with amount=5,
fromId=2 and toId=4 on the input model shown at
the bottom of Figure 1. Figure 2 illustrates a part
of the execution trace from transferMoney where the
circles mark measuring points. The table at the top
shows the order in which the nodes of the LHS are
investigated in the row search plan and the possible
model elements for each node in row candidates.

By the time the execution starts, we measure the

start time in measuring point SE. For each node of the
LHS we monitor after the execution starts in measur-
ing point NC the number of candidates. We monitor
the number of candidates, because in worst case their
cross product is the maximum number of model ele-
ments which need to be investigated. This measure-
ment is also the answer to Q1, because at this point
in time the nodes are already ordered and so we re-
ceive the search order of the nodes implicit by their
order in NC. Then the engine starts to find a model
element for the node clientFrom. Here, we monitor in
measuring point S1 the start time of this search and
the number of possible candidates. The first model el-
ement that is investigated is c3, depicted in Figure 2
as a rectangle, which is a match for clientFrom. Since
transferMoney defines that clientFrom needs to be the
owner of from, the candidates for from are reduced to
{a3,a4}. This reduction is depicted in Figure 2 in the
column from. With this, the search for a match for
clientFrom is finished and we measure in measurement
point E1 the number of model elements which were
investigated until a match was found, here 1. We also
measure that the number of possible candidates for
from is reduced to 2 model elements and the end time.
The data from measurement point S1 and E1 help to
understand how long it takes until a match for client-
From was found, how many candidates were available,
how many candidates are investigated and how the
found match influences the candidates for from. So
the measuring points S and E are the answers for the
questions Q2 and Q3.

Then, just as with clientFrom, the engine looks for
a match for clientTo and for from. For from both can-
didates {a3,a4} are investigated, but none is a match
for from because from defines the restriction that an
account with id=fromId=2 has to be found. Since
there is no candidate left for from the search for its
match is finished. In such a case that no candidate
is a match for a node the engine uses backtracking.
This means the engine revokes the found match for
the previous node and tries to find a new one for it.
So the match for clientTo is revoked and thus also
its restriction of the possible candidates for to. As an-
swer for Q4 we use the measuring point BT1, in which
we monitor that the search goes back to clientTo and
the point in time before its match and the resulting
restrictions are revoked. That data provides the in-
formation that no match was found for from and that
it was also required to revoke the match for clientTo.
Then again, a match is searched for clientTo. This
matching process continues until a match was found
for each node and the transformation rule can be ap-
plied, or until there are no more possible candidates
and the execution of the transformation rule aborts.
In both cases we measure in measurement point EE
the point in time the execution of the transformation
ends. So the answers for Q5 are the measuring points
SE and EE.

2

With the help of this monitoring an engineer gains
three important pieces of information about the ex-
ecution of transferMoney : (1) The duration of the
transformation execution. (2) The engine needs to
backtrack clientTo because no match for from was
found. (3) The candidates for from are restricted
by clientFrom, for which the backtracking of clientTo
does not help to find a match for from. For this ex-
ample the engineer only needs to set the appropriate
engine parameter and the engine swaps the order of
from and clientTo in the search plan and the amount
of backtracking for clientTo and the number of in-
vestigated candidates for from will be reduced. In
this small example this swap will decrease the aver-
age execution duration with monitoring from 7.22ms
to 6.96ms1.

To investigate the monitoring overhead we applied
transferMoney with and without monitoring each 100
times1. We randomized for each application the values
of fromId and toId, and measured the execution dura-
tion of each application with and without monitoring.
This measurement is repeated on 11 input models,
where each has a different number of Accounts. Ta-
ble 1 shows the average of the measured durations
and the variance with (∅tM , σ2

M) and without (∅t,
σ2) monitoring. Table 2 shows the average overhead
for the measuring points in percent.

Number of
Accounts

∅t in
ms

∅tM
in ms

σ2 σ2
M Over-

head
160 6.982 8.830 0.137 2.474 26.46%
240 7.164 8.556 0.019 2.119 19.44%
320 7.252 9.314 0.037 2.599 28.44%
480 7.413 9.289 0.153 1.818 25.31%
640 7.584 9.474 0.123 1.517 24.93%
960 7.851 9.376 0.229 2.611 19.42%

1280 8.133 9.639 0.376 2.495 18.51%
1920 8.752 10.314 0.676 2.991 17.85%
2560 9.378 10.975 1.389 4.271 17.03%
3840 10.556 12.399 2.313 4.803 17.46%
5120 11.793 13.802 4.605 4.097 17.03%

Table 1: Average durations of transferMoney

It should be considered that the measured values in
table 1 and 2 aren’t very accurate. These examples are
so small, that we had to measure at the nanosecond
range. So also external factors like I/O or caching had
a major influence on the run time. Another negative
influence on our monitoring overhead is that we use
the AsciiFileWriter from Kieker which is slower than
e.g. the BinaryFileWriter.

3 Conclusion

Monitoring provides the foundation to understand the
trace of execution and the performance of a declara-
tive model transformation. We presented our moni-

1Ubuntu 18.04, 2 Pentium Dual-Core E5200 at 2.50GHz

Number of
Accounts

SE & EE NC S & E BT

160 2.26% 0.36% 1.71% 2.85%
240 1.51% 0.64% 1.86% 2.04%
320 3.30% 1.60% 2.18% 3.91%
480 2.71% 0.82% 1.19% 3.26%
640 3.05% 1.08% 1.98% 3.23%
960 3.09% 1.24% 1.36% 3.48%

1280 3.02% 0.83% 1.32% 3.65%
1920 3.18% 1.26% 1.12% 3.64%
2560 2.94% 1.14% 1.07% 4.32%
3840 3.21% 1.84% 0.82% 4.45%
5120 3.54% 1.50% 0.38% 4.27%

Table 2: Monitoring overhead for measuring points

toring implementation for Henshin.We describe where
and which data we collect to receive the execution du-
ration and to trace how the input model is searched for
subgraphs, like how many candidates are investigated,
how a match influences candidates for other matches
or how often a match needs to be revoked. Those in-
formation can help a transformation engineer to un-
derstand why her transformation takes so long. Also
we showed that the monitoring overhead depends on
the measuring points and the size of the input model.
Currently our monitoring implementation takes only
the search process to find a isomorphism of a subgraph
in the input model and the whole execution duration
into account. So we will extend it by adding new mea-
surement points e.g. to measure the time it takes to
load the input model and to monitor the execution of
control structures like a loop.
Acknowledgements This work was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) - Ti 803/4-1.

References

[1] S. K. Debray. “Profiling prolog programs”. In:
Software: Practice and Experience 18.9 (1988),
pp. 821–839.

[2] G. V. Batz, M. Kroll, and R. Geiß. “A first ex-
perimental evaluation of search plan driven graph
pattern matching”. In: International Symposium
on Applications of Graph Transformations with
Industrial Relevance. Springer. 2007, pp. 471–
486.

[3] W. Piers. “ATL 3.1–Industrialization improve-
ments”. In: Proceedings of the 2nd International
Workshop on Model Transformation with ATL.
Citeseer. 2010.

[4] Kieker Project. Kieker web site. http://kieker-
monitoring.net/ Visit: 08.06.2018. 2013.

[5] D. Strüber et al. “Henshin: A usability-focused
framework for emf model transformation devel-
opment”. In: International Conference on Graph
Transformation. Springer. 2017, pp. 196–208.

3

	Introduction
	Monitoring of Transformations
	Conclusion

