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Abstract: Detailed knowledge of the estimation performance for passive tracking of
maneuvering targets is of fundamental interest. Therefore, the maximum achievable
localization accuracy for maneuvering targets from azimuth measurements as well as
from combined azimuth and azimuth rate measurements are calculated in this paper.
These targets perform a piecewise curvilinear motion with an unknown number of
maneuvers at unknown times. It is proven that in addition to the azimuth angles also
azimuth rates contain valuable information about the kinematics of maneuvering tar-
gets that can be exploited with advantage for state estimation.

1 Introduction

State estimation of an emitting source from passive bearing measurements collected by
a single moving observer is a widely investigated problem. This problem is commonly
referred to as Target Motion Analysis (TMA) [Bec01] and is encountered in various fields
like wireless communications, as well as airborne radar and underwater sonar applications.
Aspects of the TMA problem examined in the literature include bearings-only estimation
algorithms, estimation accuracy, and target observability [Bec01, Bec96].
In many cases, the targets are not moving inertially (i.e. non-accelerated), but are partly
strongly maneuvering. Commonly maneuvering targets can be characterized by the so-
called curvilinear motion model described in [BN97]. This model assumes constant and
simultaneously active tangential (i.e. along-track) and normal (i.e. cross-track) accelera-
tions at and an. An approximate solution of the curvilinear motion equation has also been
presented in [BN97] for the case that the relative change of velocity is much lower than
1. The evaluation of the Cramér-Rao bound (CRB) has been realized in [RA03, RAG04]
with the limiting condition that the maneuver change-over times and the maneuvers are
exactly known.
In [OH10], we considered maneuvering targets performing a curvilinear motion in each
maneuver segment (see Fig. 1) known as the piecewise curvilinear motion model estab-
lished by Becker [Bec05]. It is important to emphasize that the maneuver change-over
times are unknown, i.e. these parameters have to be estimated.
In contrast to [OH10], where we only investigated azimuth measurements, we consider
additional azimuth rate measurements in this work. The azimuth rate can be obtained,
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Figure 1: Scenario with an arbitrary moving sensor and a piecewise curvilinearly moving target.

e.g., by joint processing of sensor array signals. Since acquiring these quantities from
raw signals is an estimation problem, the CRB of the azimuth angles and azimuth rates
can be derived [WE95]. Recently, several estimation approaches have been proposed,
e.g., in [MBS05] for a planar array to obtain azimuth angles, elevation angles and the
corresponding rates.

2 Estimation problem

We consider the scenario depicted in Fig. 1. Amaneuvering target moves along a trajectory
rT(t) = (x(t), y(t))T with velocity ṙT(t) ∈ R

2×1 and constant tangential acceleration
at = |at| and normal acceleration an = |an|. Furthermore, a single observer moves
along an arbitrary trajectory rO(t) ∈ R

2×1. The target observer geometry is given by the
relative vector △r(t) = rT(t) − rO(t) and its velocity △ṙ(t) = ṙT(t) − ṙO(t). The
observer's objective is to estimate the target state from passively measured line-of-sight
azimuth angles α and azimuth rates α̇.

2.1 Motion model

The state of a target moving on a plane with constant tangential and normal acceler-
ation can be completely described by the position components of rT(t), two velocity
components of ṙT(t) given by the velocity v(t) and the course ϕ(t), and the acceler-
ation components at and an. The special cases of inertial motion (at = an = 0),
straight-line acceleration (at 3= 0, an = 0), and circular motion (at = 0, an 3= 0)
are included in this model. All target parameters are comprised in the parameter vector
x(t) = (x(t), y(t), v(t), ϕ(t), at, an)

T ∈ R
6×1. From the results of our previous work,

we know that the exact solution of the motion equation has the form

x(t) = f [x(t0); t, t0] , (1)
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where (1) describes the temporally evolution of the target state from t0 to t. The derivation
of the components in (1) can be found in [OH10]. Mentionable, the initial time t0 can be
replaced by any reference time tr > t0. The state at tr can be written shortly as xr = x(tr).
In the case of piecewise curvilinear motion, the dimension of the target state x(t) in-
creases by three components with each maneuver change-over. That means, two acceler-
ation components and the maneuver change-over time are added to the target state. With
M maneuvers, the augmented target state is specified by

x(t) =
(
x(t), y(t), v(t), ϕ(t), aT , t̃T

)T (2)

with a = (at,0, an,0, ..., at,M , an,M )T ∈ R
2+2M×1 and t̃ = (t̃1, ..., t̃M )T ∈ R

M×1. Here,
t̃m is the change-over time of them-th maneuver and at,m and an,m denote the tangential
and normal acceleration in the time interval [t̃m−1, t̃m],m = 1, ...,M .
Similar to (1), the target state can be parameterized by the state at another time, e.g. by
xm = x(t̃m). Since the reference state is commonly the current state, the state for M
maneuvers in the time interval [t0, tr] is given by

x(t) =




f [x1; t, t̃1] for t0 ≤ t ≤ t̃1
...

...
f [xm; t, t̃m] for t̃m−1 < t ≤ t̃m
...

...
f [xM ; t, t̃M ] for t̃M−1 < t ≤ t̃M

f [xr; t, tr] for t̃M < t ≤ tr

, (3)

where the state at some arbitrary time t is related to the reference state by

f [xm; t, t̃m] = f [f [· · · f [xr; t, tr]; · · · ]; t, t̃m] . (4)

2.2 Measurement model

For the sake of simplicity, we assume that the detection probability is equal to 1 and the
false alarm rate is equal to 0. The measured azimuth αm and azimuth rate α̇m at time ti,
i = 1, ..., N , are given by

αm(ti) = α(ti) + wα(ti) ,
α̇m(ti) = α̇(ti) + wα̇(ti) , (5)

where wα(ti) and wα̇(ti) denote the measurement error, and

α(t) = arctan
△x(t)

△y(t)
,

α̇(t) =
△ẋ(t)△y(t)−△x(t)△ẏ(t)

△x2(t) +△y2(t)
=

△ṙT(t) e
⊥
(t)

△r(t)
(6)
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indicate the true azimuth angle and the true azimuth rate. In (6),△ṙ(t) = (△ẋ(t),△ẏ(t))T ,
e
⊥
(t) is a unit vector orthogonal to the relative vector △r(t) = (△x(t),△y(t))T , and

△r(t) = |△r(t)| denotes the distance between observer and target (Fig. 1). The observer
state (position rO(t) and velocity ṙO(t)) is assumed to be exactly known. With this, the
equations in (6) only depend on the target state.
We assume that the azimuth and azimuth rate measurements are independent of each other,
that the measurement noise vectors are zero-mean Gaussian, and that the measurement
covariances read Wα = σ2

α IN and Wα̇ = σ2
α̇ IN . Here, σ2

α and σ2
α̇ denote the constant

noise variances and IN denotes the N × N -dimensional identity matrix. We note that in
practice, the variances may change from time to time and have to be estimated.
With the previous considerations, the problem can be stated as follows: Estimate the target
state xr at some reference time tr from all measurements. We consider two measurement
sets, only azimuth measurements and both azimuth and azimuth rate measurements.

3 Cramér-Rao bound (CRB)

The CRB provides a lower bound on the estimation accuracy of any unbiased estimator
and its parameter dependencies reveal characteristic features of the estimation problem.
Let xr denote an unknown parameter vector and let x̂r(ψm) be some unbiased estimate of
xr based on the measurement setψm. The CRB is given by the inverse Fisher Information
Matrix (FIM)

Jψ(xr) = E

{(
∂L(ψm;xr)

∂xr

)T(
∂L(ψm;xr)

∂xr

)}
, (7)

where E {·} denotes the expectation operation and

L(ψm;xr) = −
1

2
ln (det(2πWψ))−

1

2
(ψm−ψ(xr))

T W−1
ψ (ψm−ψ(xr)) (8)

is the log-likelihood function. Inserting (8) into (7), performing the expectation operation,
and using the noise covariances in Section 2.2, we obtain the FIMs

Jα(xr) =
1

σ2
α

N∑
i=1

(
∂α(ti)

∂xr

)T
∂α(ti)

∂xr
,

Jα̇(xr) =
1

σ2
α̇

N∑
i=1

(
∂α̇(ti)

∂xr

)T
∂α̇(ti)

∂xr
(9)

for the measurements of the azimuth (ψm = αm) and the azimuth rate (ψm = α̇m).
It is important to emphasize that the above given FIMs denote the maximum achievable
information at an arbitrary reference time tr based onN measurements. Finally, the CRBs
read J−1

α (xr) and (Jα(xr)+Jα̇(xr))
−1 for the azimuth-only case and the case using both

azimuth and azimuth rate.
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Figure 2: Observer path (green) with starting point (green square); target trajectory (blue) with target
starting point (blue square) and target maneuver change-over points (blue circles). Left: CRB for the
azimuth-only case (red ellipses). Right: CRB for combined azimuth and azimuth rate measurements
(red ellipses).

4 Simulation results

We consider the 2D scenario in Fig. 2. The target starts with the initial state (−9 km, 12 km,
50m/s, 90◦)T and performs the following maneuvers:

(t0, at,0, an,0) = (0 s, 0m/s2, 0m/s2) ,
(t̃1, at,1, an,1) = (400 s, 0m/s2, 0.5m/s2) ,
(t̃2, at,2, an,2) = (600 s, 0m/s2, 0m/s2) .

The observer moves counterclockwise along a circular path with constant velocity. This
is parameterized by rO(t0) = (0 km, 0 km)T , |ṙO(t0)| = 50m/s, ϕO(t0) = 0◦, and
aO,n = −1.25m/s2. The sensor collects one measurement per second, where the mea-
surement noise is zero-mean Gaussian distributed with covariances given in Section 2.2.
The corresponding standard deviations are σα = 2◦ and σα̇ = 1mrad/s which are similar
to the assumptions in [W+08].
In Fig. 2, the results of the Cramér-Rao analysis are given. The bounds are illustrated by
means of 90% confidence ellipses. In the left part of the figure the CRB for the azimuth-
only case are depicted, whereas in the right part of the figure the CRB for the combination
of azimuth and azimuth rate measurements are shown. Note that for visualization pur-
poses, ellipses have been drawn every 10 s and ellipses with an extent of over 30 km have
been omitted.
It can be recognized that for all three legs of the target motion the estimation accuracy
for the combined azimuth and azimuth rate case (right) is higher and converges faster
than for azimuth-only measurements (left). Especially for the turn motion in the middle
leg, reasonable estimation accuracies can be given for the combined azimuth/azimuth rate
case, whereas azimuth-only measurements provide only inferior accuracies. Additionally,
in Fig. 2, a decreasing estimation accuracy can be seen after a maneuver has taken place
which is due to the dimension change of the target state at this time.

848



5 Conclusions

The considered target motion model subsumes the models described in the literature. We
have presented an exact solution of the corresponding motion equation and have derived
the CRB for the case that the maneuver accelerations and change-over times are unknown.
In a Cramér-Rao analysis, we have found that the extension of the target state by accelera-
tion components and change-over times leads to a declined estimation accuracy. Neverthe-
less, the achievable estimation accuracy can be significantly improved by using additional
azimuth rate measurements.
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