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Abstract: The task of tracking extended objects or (partly) unresolvable group targets
raises new challenges for both data association and track maintenance. Due to limited
sensor resolution capabilities, group targets (i.e., a number of closely spaced targets
moving in a coordinated fashion) may show a similar detection pattern as extended ob-
jects, namely a varying number of detections whose spread is determined by both the
statistical sensor errors as well as the physical extension of the group or extended ob-
ject. Different tracking approaches treating these situations have been proposed where
physical extension is represented by a symmetric positive definite random matrix. In
this paper, a recently published Bayesian approach is discussed with regard to the es-
timator’s self-assessment of the estimation error for both kinematics and extension.

1 Introduction

In many tracking applications, the objects to be tracked are considered as point sources,
i. e., their extension is assumed to be neglectable in comparison with sensor resolution and
error. With ever increasing sensor resolution capabilities however, this assumption is no
longer valid, e. g., in short-range applications or for maritime surveillance where different
scattering centers of the objects under consideration may give rise to several distinct detec-
tions varying, from scan to scan, in both number as well as relative origin location. From
the associated data — assuming that the related association problem has been solved — we
cannot only estimate the kinematic state of the object but also its extension (honoring the
spread of the data in comparison with the expected statistical sensor error). But, more than
these quantities cannot safely be estimated as well in the (opposite) case where limited
sensor resolution causes a fluctuating number of detections for a group of closely spaced
targets and thus prevents a successful tracking of (all of) the individual targets.

Several suggestions for dealing with this problem can be found in literature. For an
early work, see [DBP90], for an overview of existing work up to 2004, refer to [WDO04].
In [Koc06, Koc08], a new and promising suggestion has been introduced by the distinction
between kinematical state (a random vector) on the one hand and physical extension (rep-
resented by a random matrix) on the other. In order to circumvent some of the problems
one may face when applying the Bayesian group tracking approach under circumstances
where the underlying assumptions of [Koc06, KocO8] do not hold, a new approach to
tracking of extended objects and group targets using random matrices has been proposed



in [FFO8, FF09]. In the following, we start with a short summary of this approach and
subsequently analyze the estimator’s self-assessment of the estimation error for both kine-
matics and extension.

2 Tracking of Extended Objects and Group Targets

The Bayesian approach to tracking extended objects and group targets in [FFO8, FF09]
adds to the kinematic state of the centroid described by the random vector x;, the physical
extension represented by a symmetric positive definite (SPD) random matrix X, thus con-
sidering some ellipsoidal shape. It is assumed that in each scan k there are n;, independent
position measurements y; = Hx;, + w7, where the random vector xj, denotes the state
to be estimated (for us, position and velocity in two or three spatial dimensions) and yy
the actual measurement (in the following, position only, i.e., H = [I4,04] with d = 2, 3).
In this paper, we will use the abbreviations Y}, := {y7, ;‘21 and Yy = {Y,.,n,.}k_,to
denote the set of the n;, measurements in a particular scan and for the sequence of what is
measured scan by scan, respectively. Now, expected sensor reports are considered as mea-
surements of the centroid scattered over group extension. Having regard to a statistical
sensor error of each individual measurement, wi is assumed to be a zero mean normally
distributed random vector with variance X, + R. This decisive assumption allows for an
estimation of the extension from sensor data based on the corresponding likelihood that
reads p(Yg | ng, xi, Xi) = H?il N (y7; Hxy, X, + R). The relevant probability distri-
butions of this paper are summarized in Figure 1. With the mean measurement y ;. and the
measurement spread Y as defined in Figure 2, it is easily shown that the measurement
likelihood can be written as

p(Yk |nk.,xk,Xk.) O(N(yk;HXk, X’;Iij:R) W(?k;nk - 1,Xk- + R) . (1)

It appears that, for this likelihood, no conjugate prior can be found that is both indepen-
dent of R and analytically traceable. For this reason, [Koc06, Koc08] ignores the sensor
error, i. e., setting R = 0, to derive a closed form solution within a Bayesian framework.
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Figure 1: Distributions of normal, Wishart and inverse Wishart density, see [GN99].
X and M are d-dimensional SPD (random) matrices, etr(-) is an abbreviation for exp(tr(-)) and
I"4 is the multivariate gamma function.
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Figure 2: Bayesian Formalism.
Yik—1 = X k-1 + R denotes the predicted variance of a single measurement. Some square roots
(e. g., via Cholesky decomposition) of the matrices Xy |x—1, Sgjx—1, and Yy, _; are required.

In [FFO8], several implications of the neglect of any (unavoidable) statistical sensor error
have been brought to attention. Among other things, the algorithm effectively estimates
extension plus sensor error, which consequently, if sensor errors become significant, leads
to a more than proportionally increased centroid estimation error because there is an al-
most fixed (up to a scalar constant) coupling between the estimated extension and the mean
squared position estimation error.

In view of these observations, a new approach has been sought that allows reliable track-
ing of extended objects and group targets in cases where sensor errors cannot be ignored
when compared with object or group extension. Using some careful approximations, the
proposed alternative approach in [FF08, FF09] honors the fact that both sensor error and
extension contribute to the measurement spread. In detail, the proposal may be interpreted
as approximating the marginal densities of the joint object state (xj,Xj) according to
p(xk | Vi) = N (xp; Xpji, Proji) and p(Xy, | Vi) = IV (X e + d + 1, 0o Xggi)»
which finally leads to the Bayesian formalism summarized in Figure 2. The dashed boxes
highlight the matrices Sy and Ny, which provide for the interdependency between
kinematics and extension estimation in the filtering step. Simulation results have shown
that this approach can compensate significant sensor errors to a large extent and thus, al-
though compensation is not complete, may be able to, e. g., detect orientation changes of
formations in cases where the original approach of [Koc06, Koc08] might fail to do so.



3 Performance Analysis

When using estimators, we usually are not only interested in the estimate itself but also
in the corresponding estimator’s self-assessment of the estimation error. In our case, the
stated uncertainty corresponds to the estimation error covariance and the mean square error
(MSE) respectively. For the kinematics estimate Xy, this estimation error covariance is
given by Var[xy | Yi] = Py, and therefore the corresponding MSE by tr Py, ;. In order
to judge the credibility of the kinematics estimate, we exploit the average normalized
estimation error squared, i. e.

1 M

ANEES, = dim(xn) - M ;; [(XHI@ - Xk)TPkﬁc(ka - Xk)} R 2
where values larger than 1 indicate that the filter is overly confident about its estimation
quality. The subscript p indicates tracking results concerning the pth run of a Monte
Carlo simulation totaling M runs. Transferring this credibility measure to the extension
estimate Xy, requires the MSE ey, which is computed by summing up the mean square
errors obtained for each element of X k|, With respect to the true extension X, see [FF09],
and can be written as ey, = tr Var[Xy, | Vx]. Following the idea of the ANEES to judge
the credibility of the extension estimate, we define

1A [tr [(xk|k_x,€)2]h
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where also values larger than 1 indicate that the filter is overly confident about its estima-
tion quality. In addition to the known relative (ANEES,, ANEESx) and absolute errors
(target location/speed error), we define

M
RMSEx = % Z [tr (X — Xk)Q]L 4)
p=1
for the extension part. In order to compute ANEESx and RMSEx, we need to know
the true ellipsoid X,. For this reason, we have considered an ellipse with diameters 340 m
and 80 m as an extended object in the (z,y)-plane. Such an extended target corresponds ap-
proximately to an aircraft carrier of the Nimitz-class'. The basis for our simulation was the
target trajectory in the upper part of Figure 3, where the speed was assumed to be constant
at 27kn (= 50km/h). We have chosen two different models to generate measurements.
The first corresponded to our assumed measurement likelihood y;, ~ N (Hxy, X, + R)
and is hereinafter referred to as A'(Xy + R). The second model ¢/ (X},) + N (R) assumed
that measurements were uniformly distributed over the extension X, and were addition-
ally afflicted with a zero mean normally distributed sensor error with variance R. Both
models generated measurements, where the number of measurements ny, for each scan &
was Poisson-distributed with mean 5. Furthermore, the (fictitious) observing sensor with
scan time 7' = 10s delivered uncorrelated noisy x- and y-measurements with standard
deviations o, = 100m and o, = 20 m.

lhttp: //en.wikipedia.org/wiki/Nimitz_class_aircraft_carrier. Retrieved on 2009-04-24.



Trajectory of the Extended Target (only every third scan)
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Figure 3: Trajectory of the extended object (top) and simulation results (middle and bottom). The
five figures in the bottom part summarize the results of M = 900 Monte Carlo runs, where
the solid line indicates the measurement generating model V(X + R) and the dashed one the
model U (Xj) + N (R). The dashed vertical lines mark each start and end of the three maneuvers.

The second model U (X, ) + N (R) seems to be more realistic in view of extended objects.
But, for an appropriate extension estimate in this case, we have to consider a scaling fac-
tor z, which can be directly integrated into the measurement likelihood by replacing Xy,
with X}, /2 in the right side of eq. (1). As a matter of course, this replacement affects the
tracking filter equations. For example, the predicted variance of a single measurement in
Figure 2 is modified according to Y1 = Xpx—1/2 + R.



The simulation results are summarized in the bottom part of Figure 3. First of all, it at-
tracts attention that the filter is too optimistic about its estimation quality during maneuver
phases despite the fact that we have used the refined interacting multiple model (IMM) ap-
proach of [FF09]. Similar peaks can be understandably discovered in the absolute errors
(target location/speed error, target extension error), where the measurement generating
model N'(Xj, + R) causes smaller absolute errors than /(X)) + A (R) for the kinemat-
ics part. This trend is quite contrary to the extension part. Furthermore, in the case of
ANEESx, the measurement generating model U (Xy) + N (R) involves a little too opti-
mistic self-assessment of the estimation error. This result is quite remarkable because, in
our opinion, the estimation error variance of the extension part will play a decisive role in
future developments of data association strategies. This raises the interesting question of
what an acceptable estimation error is, when there is no real ellipsoidal extension Xy, (e. g.
aircraft formations, convoys, ... ).

4 Conclusion

A recently published approach to tracking of extended objects and group targets has been
discussed with regard to the estimator’s self-assessment of the estimation error for both
kinematics and extension. Aside from more intensive performance studies with real sensor
data concerning a limited sensor resolution, the most challenging task of future work will
be the derivation of sophisticated data association techniques.
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