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Gait template protection using HMM-UBM
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Abstract: This paper presents a hidden Markov model-Universal background model gait authenti-
cation system, which is also incorporated into a template protection based on a fuzzy commitment
scheme. We show that with limited enrollment data the HMM-UBM system achieves a very compet-
itive equal error rate of ~ 1% using one sensor. The proposed template protection scheme benefits
from eigenfeatures coming from multiple Universal background model systems fused with a novel
technique that minimizes the bit error rate for genuine attempts. This allows the protected system to
achieve a false rejection rate below 5% with an effective key length of 64 bits.
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1 Introduction

Gait, the steady state movement pattern during locomotion, has been considered as an au-
thenticator in the last decade [AK16]. Gait can be observed a.o. with Inertial Measurement
Unit (IMU) sensors incorporated in all kinds of personal and wearable devices. Further-
more, gait has proven to be difficult to duplicate [GSBO7]. Although gait authentication
is achieving remarkable authentication performances, there are only a few examples of at-
tempts to reliably and securely protect gait templates in the literature [HCN15]. Template
protection [Br09] is one of the most sensible approaches for integrating biometrics into
secure and privacy friendly authentication solutions. In the case of biometric cryptosys-
tems such as fuzzy extractors [DRS04], this also enables the integration of biometrics into
cryptographic protocols.

In this work, we aim at designing a high performance gait template protection scheme
based on a biometric cryptosystem. We adopt one of the best performing and established
techniques for biometric authentication in different modalities [APA09, Fi07, RQDO00],the
well-established hidden Markov model universal background models (HMM-UBM), and
apply it to IMU-based gait authentication. This technique adapts UBM parameters to the
enrollment data, and it provides accurate results even when the enrollment data is scarce.
This system will be used as a baseline, and also as a starting point for the protected system,
based on fusing UBM-eigenfeatures [KBDO05] from multiple UBMs in a fuzzy commit-
ment scheme [JW99]. A novel continuous feature fusion technique will be used to obtain
binary templates from their continuous counterparts.

We evaluate the unprotected and protected HMM-UBM systems on the largest publicly
available gait dataset OU-ISIR [Ng14]. It contains gait data from IMU sensors located on
three body positions around the waist from 495 subjects performing two level walk se-
quences, a sequence for up-slope walk, and a sequence for down-slope walk. It enables
authentication on an open-world scenario with scarce training and authentication data. We
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show that in this scenario the proposed HMM-UBM approach using simple features de-
rived from the provided IMU data obtains authentication performances close to 1% Equal
Error Rate. Most important, the protected system using UBM-eigenfeatures from several
HMM-UBM systems obtains also a remarkable performance of ~ 0% False Acceptance
Rate and False Rejection Rate below 5% for an effective key length of 64 bits, which is
the best achieved compromise regarding security and usability for this modality.

2 Related work

Ngo et al. [Ng14] made the OU-ISIR dataset available to serve as a benchmark. They
re-evaluate 4 previously proposed gait authenticators. These methods extract gait cycles
to build a template gallery. However, this is the limiting factor, as robustly extracting
gait cycles is hard. The best work achieved an equal error rate (EER) of 14.3%. Lu et
al. [Lul4] steered away from extracting gait cycles by using a GMM-UBM verification
method. They extract standard statistical features in both time and frequency domain from
a 5 second window. They achieve an EER of 14.0%. San-Segundo et al. [Sal6] use the
same verification framework, but drop the MAP adaptation approach in favor of i-vector
adaptation. Features are based on perceptual lineal prediction (PLP) coefficients. An EER
of 6.1% is reached. Zhong and Deng [ZD14] exploit i-vector adapted GMM-UBM mod-
els as well. They propose another feature extraction method, called gait dynamic images
(GDI). It is a visual rotation invariant representation of gait. When evaluated on the bench-
mark OU-ISIR dataset an EER of 5.6% is attained. Zhao and Zhou [ZZ17] use GDI’s to
train a CNN. A binary classification model per user is trained for authentication purposes.
Zhao and Zhou do not report on achieved EERs. Furthermore, this approach requires 15
minutes of enrollment data. On top of that, this work focuses on a small closed world sce-
nario, where it is not possible to ensure the feasibility of the proposed approach for a more
general large population open world scenario. Especially, since the advantage of UBMs
w.r.t. classical ML and DL techniques is that they by definition make the ’open world as-
sumption’. Gadaleta and Rossi [GR18] address this by first training a CNN, to obtain a
gait representation. The representation serves as input for a one-class SVM. However, the
work resorts back to extracting individual gait cycles. A 0.15% EER is achieved by query-
ing the OSVM multiple times, with different gait cycles. The work has only been evaluated
with 15 users. Long gait sequences are necessary for training the representation network,
which is not available in the OU-ISIR database. Besides, in their results they suggest that
5 gait cycles is enough to provide accurate authentication in 80% of the cases, which is
approximately the amount of available data per gait sequence in the OU-ISIR database. In
terms of protection, Hoang et al. [HCN15] adopt a fuzzy commitment scheme. They built
a template gallery by extracting gait cycles. The work was evaluated with only 38 subjects.
The system requires 8 templates consisting of 4 gait cycles per subject. Which is around 4
times more training data than our system needs. They acquire a 139 bit effective key length
at a less favorable 16.18% FRR and a 0% FAR. Their authentication system without error
correcting codes performs worse than ours, with a 3.5% EER.

3 HMM-UBM Gait Recognition

In this section, we first explain the unprotected system for gait authentication based on
UBM-HMMs, and then continue how to use this system as a starting point for designing a
protected system based on the fuzzy commitment scheme.
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3.1 Unprotected system

In the proposed unprotected system, we use HMMs as generative models of the gait se-
quences. We use continuous density HMMs, where each state output probability function
is defined as a Gaussian Mixture Model (GMM). Gait acquisitions are defined as variable-
length sequences of feature vectors, which are modeled as the output of the HMM.

Since we are dealing with scarce enrollment data, we adopted the UBM-HMM approach
for authentication. In this approach an UBM is trained using gait sequences from multi-
ple persons, representing the whole population. During the enrollment phase, the means
of the UBM state output probability functions are adapted using Maximum-a-Posteriori
adaptation [RQDO00], obtaining an adapted model representing the enrolled user. During
authentication, the loglikelihood of the provided gait sequence is computed for both the
UBM and the adapted model, and the authentication is done by comparing the obtained
loglikelihood ratio with a threshold. In our system, this threshold is a system parameter, i.e.
we do not use user-specific thresholds or score normalization techniques. The relevance
factor 7 for the model adaptation was set to 14 as a result of a grid search.

3.2 Protected system

It is possible to use an UBM-HMM unprotected system as the underlying system of a fuzzy
commitment scheme. Below we explain how to obtain low-dimensional representations of
the users in a UBM-HMM system, and then how to use these representations under the
restrictions imposed by a fuzzy commitment scheme for template protection.

UBM-eigenfeatures The protected system we propose for gait authentication is based
on the use of HMM-UBM eigenfeatures. These eigenfeatures are a low-dimensional repre-
sentation of the adapted models. The differences between the means of the adapted models
and the UBM for a set of users representing the whole population are reduced in dimen-
sionality using Probabilistic Principal Components Analysis. The obtained representation
has several advantages for its use in a biometric fuzzy commitment cryptosystem, namely:
they preserve most of the discriminability; and they have a fixed length. The procedure for
obtaining these features was first introduced in [KBDO05] for GMMs, and it is explained in
detail in [Ar12] for the general case of HMMs.

Feature protection scheme The feature protection scheme is illustrated in Fig. 1, where
ECCencode and ECCyecode stand for the encoding and decoding procedures of an error cor-
recting code (ECC), and h () is a cryptographically secure hash function. The binary repre-
sentation b is not derived from the biometrics, but randomly generated. The authentication
succeeds only when the Hamming distance between the binary representation obtained
during authentication b and the one generated during the enrollment is equal or less than
the error correcting capability 7 of the employed ECC. This scheme is directly derived
from a fuzzy commitment scheme [JW99], but adding a quantization metadata 2, which
is computed during enrollment. It relates the enrollment biometrics and the binary repre-
sentation, and it is later on used during verification to assist the quantization of the probe
template. This quantization metadata is designed in such a way that although it minimizes
the Bit Error Rate (BER) for genuine attempts, it will not provide any information about
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the binary representation b, therefore it does not pose a risk for security, i.e., knowing the
metadata does not provide any advantage to a security adversary trying to guess the secret
string m. The composition of this metadata and its computation is thoroughly explained in
the next section.

Enrollment samples {f,..., fr} Authentication sample £
b Quantization metadata |2 i
- R ]
ANG | calculation

ECCencode

Enroliment stage _ Authentication stage

Fig. 1: Template protection approach incorporating quantization metadata to the Fuzzy Commitment

Quantization metadata Our protected system uses eigenfeatures coming from different
UBMs, and many of them cannot provide a BER after quantization which is usable within
a fuzzy commitment scheme, where the BER must be limited to the one that the employed
error correcting code (ECC) can handle. Therefore, the proposed approach fuses different
eigenfeatures to obtain each bit.

If we define n as the number of bits we need to extract—the length of the codeword w in
Fig. 1-from our set of available features % = {f7,..., fr}, the algorithm that we propose
computes a quantization metadata 2 constituted by n disjoint sets of features <7, and a
vector of weights w = [wy,...,wg|', i.e, 2= ({#,...,,},w). The randomly chosen
binary representation is denoted as b = [by,...,b,]. During authentication, each bit b; is

estimated from the probe vector f£ = [ fIP yeens f},f y used for authentication as follows:

sign (L, cowiff) +1
b; = >
The weights involved in this computation, as well as the disjoint sets defining which fea-

tures contribute to each bit, are computed during the enrollment from a set of E enrollment
vectors of features and the randomly chosen binary representation b.

(D

Let us assume that the features in % are uncorrelated Gaussians f; ~ A4 (l;, 0;). Let us
also assume that o; is known, and we have an estimate fI; from E enrollment samples, and
the feature mean is distributed population-wise as ; ~ .4 (0, 1). If the set of features con-

tributing to bit 7 is defined as «7; = { Sisens f"|r | } then the optimal BER for the genuine
attempts is obtained when the weights are computed as:
Wi1 = (2bl — 1) signﬁil (2)

pi, sign [(2b; — 1) p, | Z];;% Wiz,-‘fz%
Wi, = L Vk>1 (3)

k
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In this case, the BER associated with the bit b; for genuine attempts is as follows:

BER; (p1,E) = | — / —ert 2L o522 ] g, @)
1y 27[ 77002 \/i s

where the reliability of the binary feature p; is defined as p; = ):Wl wi; i / Z‘ffl‘ wlzj Gl%.

Obtaining the sets .27, . .., 7, in such a way that the average BER is minimized is a number
partitioning problem [K009]. We adopted a greedy approach for solving it, which provides
a good approximation to the optimal solution. This approach basically iterates on the avail-
able features—those who have not yet been chosen—, choosing the most reliable one among
them, i.e., the one with the maximum |p|. The chosen feature is then incorporated into the
least reliable set .o7/—the set with minimum p,. Weights are computed abiding Egs. 2 and 3.

It can be easily checked that the quantization metadata does not provide any information
about b, since the features in .% are uncorrelated and with median 0.

4 Feature extraction

In a gait system based on accelerometer and gyroscope sensory data, both linear accel-
eration including gravity a8(n) = (af(n),a$(n),as(n)) and gyroscopic velocity @(n) =
(ax(n), wy(n),w,(n)) signals are provided by the sensors at a given sample rate. In our
case, sensors provide samples at 100 Hz rate. From these signals, we derived the follow-

ing additional ones:

Gyroscopic dynamics ¢ (n) = (0 (n), o (n), 0 (n)), where each component () is
computed from its corresponding angular velocity component @,(n) as its first order dif-
ferences, i.e. 0y(n) = @y(n) — @;(n — 1). The magnitude of the angular dynamics were
also derived: ®(n) = | (n)| and a(n) = | (n)].

Roll and Pitch from Accelerometer The roll and pitch are estimated from the ac-

celerometer signals without removing the gravity, as r, (n) = atan2 [df (n) a5 (n)] and

pa(n) = atan2 [af (n),af (n)] respectively. Its associated roll and pitch velocities and ac-

celerations 7, (n), p,(n) , #;(n), and p, (n) are obtained as the first and second order
differences of r, (n) and p, (n) respectively.

Roll and Pitch from Accelerometer and Gyroscope If we define the pitch and roll
estimated from the gyroscope signals as p, (n) = Y._, @(n) and ry (n) = Y7 _, 0.(n), we
derive a joint estimate of the pitch and the roll signals as: f (n) =0.98 [f (n— 1) + fg (n)] +
0.02f, (n), where f is either the pitch p or the roll r.

Vertical and Horizontal components The vertical and horizontal acceleratlon compo—
nents are derived from the accelerometer data as a, (n) = ay (n) and aj, (n) = |a (n) + a? (n)|
respectively. Their corresponding velocities v, (n), vy, (n) are computed by integration, ‘and
their corresponding jerks j, (n), j; (n) are computed by as the first order differences.
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S Experiments

In this paper we only used the gait sequences from the OU-ISIR database labeled as level
walk captured with the Center sensor. Subjects usually have two level walk sequences ob-
served by three IMU sensors located around the waist. The first walk sequence is used for
enrollment, and the second one for test. Only the 483 users with two valid level walk se-
quences captured with the Left, Center, and Right sensors were considered, though only the
sensor Center is used in the experiments. These users were divided into two experimental
groups by lexicographic order of their pseudonyms, since no demographic data was avail-
able for a more sensible split. The first group is constituted by the first 242 users, labeled as
U(l), ..., UL, and the second one by the remaining 241 users, labeled as U(Z), . ,U%40. Re-
garding impostor attempts, each user is impersonated by the 5 next users from his group.
Only the second walks are used as impostor attempts, therefore group 1 has a total 242
genuine and 1210 impostor attempts, while group 2 has a total 241 genuine and 1205
impostor attempts.

Each group’s UBM and eigenmatrix is trained using all the captures from the other group.
Verification performance is reported for the unprotected system as the group-wise average
Equal Error Rate (EER). For the protected system, where the working point is fixed by the
employed ECC, FAR and FRR are reported for both groups.

[S [ M [ EER% ]

1 128 1.45
2 64 1.60
4 32 1.46
8 16 1.42
16 8 1.49

Tab. 1: Performance in terms of average EER% using the Center sensor of HMM-UBM configura-
tions with § states and M Gaussian mixtures per state for C =§-M = 128.

We tested the unprotected system introduced in Section 3.1 using the Center sensor and
the features introduced in Section 4. The average EER in the OU-ISIR dataset is shown in
Tab. 1 for different number of states S € {1,2,4,8,16} and number of Gaussian mixtures
in each state output distribution M € {128,64,32,16,8} for a constant model complexity
C=SM=128.

We also analyzed the authentication performance and EKL obtained by the protected sys-
tem introduced in Section 3.2. For this experiment, the UBM-eigenfeatures are obtained
from different unprotected systems, as shown in Tab. 2. Two different configurations of
the protected system were tested: System I, incorporating all the UBM-eigenfeatures from
16 unprotected systems, and System 2, incorporating all the UBM-eigenfeatures from 8
unprotected systems. In total, the number of UBM-eigenfeatures is F = 3840 for System
1, and F = 1920 for System 2.

The performance of this protected system is shown in Tab. 3 for different codes. The
parameter k shown in this table coincides with the EKL of the protected scheme. This
is the security parameter of the fuzzy commitment scheme. It can be seen that using 8
UBM-eigenfeatures sets it is possible to reach an EKL of 36, while when using 16 UBM-
eigenfeatures sets it is possible to reach up to 64 bits with a low FRR.
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[System [ ST M | D [ N[[System [ ST M [ D [ N |
1 1 128 240 4 2 1 128 240 2
2 64 120 4 2 64 120 2
1 32 60 s 1 32 60 2
8 16 30 L 8 16 30 2

Tab. 2: Unprotected systems incorporated into the protected systems. D stands for the number of
eigenfeatures computed for each state, and N is the number of unprotected systems with these pa-
rameters incorporated into the protected system.

BCH Code BCH Code
’ System n t Group ‘ FAR ‘ FRR H System n t Group ‘ FAR ‘ FRR ‘
1 127 T 64 10 I 0.08 4.96 2 127 729 ] 21 I 0.00 8.68
2 0.08 332 2 0.00 10.79
57 11 T 0.08 372 22 1 23 I 0.08 5.37
2 0.08 2.49 2 0.08 7.47
50 13 T 0.25 2.07 15127 T 0.25 2.89
2 0.25 1.66 2 0.25 373
63 57 | | 0.41 2.07 63 36 5 | 0.08 4.96
2 0.41 332 2 0.17 332
51 2 T 0.74 124 30 6 I 0.25 331
2 0.66 1.66 2 0.25 2.49
45 3 T 132 0.83 24 7 T 0.33 2.07
2 1.08 1.24 2 0.58 2.07

Tab. 3: Protected systems percentual performance figures for different code parameters.

6 Discussion and Conclusions

In this work we proposed HMM-UBM systems using simple and computationally inex-
pensive features for gait recognition, and analyzed their performance in an open world in
a scarce enrollment and authentication data scenario, using the OU-ISIR dataset.

The authentication performance of the proposed HMM-UBM system reaches EERs around
1% using a single sensor. This level of performance is remarkable in comparison to the
ones reported in the literature for this dataset. Although there are works reporting very low
error rates, they are tested in closed set scenarios with a reduced number of users, which
hinders a fair comparison with the one proposed here.

The quantization employed in the proposed protected method enables the fusion of mul-
tiple sets of features coming from multiple HMM-UBM systems. This fusion provides
binary features with a BER that practical ECCs can handle for EKLs equivalent to the
usual requirements for passwords [Gr17] and acceptable FRR.

These results demonstrate the feasibility of the proposed approaches in open-world sce-
narios even only with around 5 seconds of enrollment and authentication data.
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